
A Tree Approach for Solving the Exact Multiple String Matching Problem 
 

Yi-Kung Shieh, Shyong-Jian Shyu, Chin-Lung Lu and Richard Chia-Tung Lee 

Department of Computer Science 

Nation Tsing Hua University, Hsinchu, Taiwan 

d9762814@oz.nthu.edu.tw, sjshyu@mail.mcu.edu.tw, cllu@cs.nthu.edu.tw and 

rctlee@rctlee.cyberhood.net.tw 
 
 

Abstract 
In this study, we deal with the exact multiple string 

matching problem. Given a text T and a set of r 
patterns P1, P2, ... , Pr, find the ending positions of all 
sub-stringss in T which is equal to a pattern. By 
transforming all sub-strings of T into a reference tree 
such that each internal node stores a reference string, 
the exact multiple pattern matching problem can be 
efficiently solved by searching patterns in the tree via 
the guidance of the reference strings. We design 
elegant algorithms to construct the reference tree and 
to search patterns in the tree in this paper. The 
experiments involving problem instances from the 
DNA sequences and the English language are 
conducted to compare the performances of our 
approach and the well-known Burrows-Wheeler 
Transform (BWT) algorithm. The computational 
results demonstrate the advantage of our approach 
over BWT. In spite of the simplicity, the performance 
of our approach is quite efficient and robust. 
 
 
1. Introduction 
 

The exact string matching problem is a classic 
string problem. We are given a text string T = t1t2...tn 
and a pattern string P = p1p2...pm. Each character in 
text or pattern string is a character or a symbol. The 
text string T can be denoted as T(1, n), and thus a 
sub-string of T can be denoted as T(i, j) = titi+1...tj 
where 1  i  j  n. The exact string matching 
problem is to determine whether and where P 
appears in T. Exact string matching is widely used in 
DNA and English language text searching. 

Comprehensive reviews of string matching 
algorithms can be found in [6, 7, 8, 10, 19, 22]. We 
may classify these algorithms into three categories: 
(1) Algorithms without pre-processing:  

Convolution Algorithm [9]. 
(2) Algorithms with pre-processing on pattern 

strings: MP Algorithm [17], KMP Algorithm 
[13], Boyer-Moore Algorithm [1], Horspool 
Algorithm [11], Colussi Algorithm [5], Reverse 
Factor Algorithm [14], Simon Algorithm [20], 
Smith Algorithm [21], WM Algorithm [24], 

BNDM Algorithm [18] and Lecroq Hashing 
Algorithm [15]. 

(3) Algorithms with pre-processing on text string: 
Suffix Tree Method [23], Suffix Array Method 
[12] and Burrows-Wheeler Transform Algorithm 
[2] (BWT, for short). 

For the exact multiple string matching problem, 
we expect that for a single text string, there will be a 
large number of pattern strings. For instance, the Old 
Testament of the Bible is a popular book and many 
researchers will try to find where certain phrases 
appear in it. Another application is the DNA 
searching. For a given DNA sequence, many 
researchers will try to determine whether some 
pattern strings appear in it or not. In such condition, 
it is worthwhile to conduct a pre-processing on the 
text string such that the later searching for patterns in 
the text will be very fast. 

In this paper, we are interested in the exact 
multiple string matching problem. Therefore, we will 
compete with the algorithm in Category 3. Although 
the time complexity of the pre-processing phase for 
all algorithms in Category 3 are O(n), those of the 
searching phase for the suffix tree method, suffix 
array method and BWT are O(m+occ), O(m+logn+ 
occ) and O(m), respectively, where occ is the number 
of occurrences of the found patterns. Since BWT is 
more efficient than the other two methods, we shall 
only consider the BWT as our comparison basis. 

In Section 2, we briefly introduce the BWT 
algorithm. Our approach for the single string 
matching problem by constructing a reference tree 
and searching the tree is informally explained in 
Section 3, and then we define the reference tree and 
present our pre-processing and searching algorithms 
in Section 4. Experimental results are shown in 
Section 5. Finally, we conclude this work in Section 
6. 
 
 
2. The Burrows-Wheeler Transform to 
the Exact String Matching Problem 
 

The Burrows-Wheeler Transform algorithm (BWT 
for short) [2, 4] was first used for data compression. 



Li and Durbin [16] utilized it to solve the exact string 
matching problem. 

Given a text string, we first add a special symbol $ 
onto the end of the string and start rotating the string. 
For example, given T = gtcagtc$, the rotation of T is 
tcagtc$g. We then rotate the string to obtain the 
following strings: 

1. gtcagtc$ 
2. tcagtc$g 
3. cagtc$gt 
4. agtc$gtc 
5. gtc$gtca 
6. tc$gtcag 
7. c$gtcagt 
8. $gtcagtc 
These rotated strings are sorted lexicographically, 

and then the result is as follows: 
1. $gtcagtc 
2. agtc$gtc 
3. c$gtcagt 
4. cagtc$gt 
5. gtc$gtca 
6. gtcagtc$ 
7. tc$gtcag 
8. tcagtc$g 
The above array is denoted as the sorted rotation 

array. We pick up all of the last character of the 
above strings from top to bottom. The resulting string 
is called the BWT of T which is cctta$gg. 

We can see that the sorted rotation array gives 
each suffix in T an index. For instance, consider the 
suffix tcagtc$ in T. It is indexed as 8 in the sorted 
rotation array. For the suffix cagtc$ in T, it is indexed 
as 4 in the array. We shall see that this indexing 
scheme is quite useful for us to do string matching. 

We define the following three functions: 
(1) Count() is the number of characters smaller 

than  in T lexicographically where  is a 
character in alphabet of T. Table 1 gives the 
Count function for the characters in the alphabet 
of T = gtcagtc$. 

Table 1. The Count function of T = atcatg$ 
 $ a c g t 

Count() 0 1 2 4 6 

(2) The range of the sorted rotation array of a 
pattern P', denoted as SA(P') = (s, e), where s is 
the starting row of the sorted rotation array 
whose prefix contains P' and e is the ending row 
of the sorted rotation array whose prefix 
contains P'. For instance, SA(a) = (2, 2) and 
SA(gt) = (5, 6). Note that the range of sorted 
rotation array includes the whole BWT of T 
initially, i.e. SA(" ") = (1, 8). 

(3) Precede(i, ) is the number of character  
occurring in the prefix with length i of BWT of 
T. For instance, let i = 6 and  = a. Then 

Precede(i, ) = Precede(6, a) = 1. Table 2 
displays the Precede function for the BWT of T. 

Table 2. The Precede function for cctta$gg. 
0 1 2 3 4 5 6 7 8 

$ 0 0 0 0 0 0 1 1 1 
a 0 0 0 0 0 1 1 1 1 
c 0 1 2 2 2 2 2 2 2 
g 0 0 0 0 0 0 0 1 2 
t 0 0 0 1 2 2 2 2 2 

The BWT can be used to solve the exact string 
matching problem. The pattern string P may be 
considered to be P = P'. Let us assume that we have 
constructed the sorted rotation array and already 
found SA(P') = (s, e). Then we can determin the 
range of P = P' based upon the following equation: 

SA(P) = SA(P') = (s', e') =  
(Count()+Precede(s1, )+1, Count()+Precede(e, )) 

For example, assume that P = gtc. Note that SA(" ") 
= (1, 8) initially. 
(1) For the shortest suffix P(3, 3) = c, we have: 

SA(c) = (s', e') 
= (Count(c)+Precede(s1, c)+1, Count(c)+Precede(e, c)) 
= (Count(c)+Precede(11, c)+1, Count(c)+Precede(8, c)) 
= (2+0+1,2+2) 
= (3, 4) 

(2) For the suffix P(2, 3) = tc = tP(3, 3), we have: 
SA(tc) = SA(tP(3, 3)) = (s', e') 
= (Count(t)+Precede(s1, t)+1, Count(t)+Precede(e, t)) 
= (Count(t)+Precede(31,t)+1, Count(t)+Precede(4, t)) 
= (6+0+1, 6+2) 
= (7, 8) 

(3) For the suffix P(1,3) = gtc = gP(2, 3), we have: 
SA(gtc) = SA(gP(2, 3)) = (s', e') 
= (Count(g)+Precede(s1, g)+1, Count(g)+Precede(e, g)) 
= (Count(g)+Precede(71, g)+1, Count(g)+Precede(8, g)) 
= (4+0+1, 4+2) 
= (5, 6) 
The whole pattern has been considered and found 

the range to be from 5 to 6. That is, the prefixes with 
the length of P from the 5th row of sorted rotation 
array to the 6th sorted rotation array are equal to P. 

Let  be the alphabet of T and P and  be the size 
of . The time complexity for obtaining the sorted 
rotation array and the two auxiliary functions is O(n) 
and the space complexity is O(n). The time 
complexity of searching is O(|P|), where |P| is the 
length of pattern P. The biggest problem for the 
BWT method is the space required. If n is great, such 
as 16M and  is 63 for English language, the Precede 
function will be too large for ordinary personal 
computers. 

The Skew algorithm [12] constructs the sorted 
rotation array more efficiently. Chen [3] further 
improved the Skew algorithm. In [4], the authors 



modified the BWT space complexity by proposing a 
data compression method. The space complexity is 
reduced from O(n) to O(nlog)-bit but the 
searching time is increased to O(|P|+(logn+occ) 
logn/loglogn) where occ is the number of the 
occurrences of the found patterns. Note that the time 
complexity of searching for original BWT [16] is 
only O(|P|). 
 
 
3. An Informal Introduction of Our 

Reference String Approach 
 

Our reference string approach can be informally 
explained as follows: Suppose we have a set of input 
strings with the same length m and a test string x, 
also with length m. We like to find strings in the 
input strings which are exactly equal to string x. This 
approach consists of two stages: The pre-processing 
phase and the searching phase. Let us first introduce 
the pre-processing phase. 

The pre-processing essentially constructs a 
reference tree. The root of the tree, denoted as N, 
contains a pointer PS(N) pointing to the set S(N) 
which contains all input strings and a reference string, 
denoted as RF(N), as shown in Figure 1. 

 
Figure 1. The root node N in the reference tree 

Suppose our input strings are {gcca, ctac, ctaa, 
acgt, ttgc, ccac, ctgc, tgta, acta, ggac, cggc, ctag} and 
we choose ctac as the reference string. Then the root 
node of the reference tree will be shown in Figure 2. 

 
Figure 2. The root node N with the reference string 

ctac 

We calculate the distances between these strings of 
S(N) and the reference string RF(N). The 
measurement of the distance between two strings is 
Hamming distance. The definition of Hamming 
distance between two strings with equal length is the 
number of positions at which the corresponding 
characters or symbols are different. All of the 
distances are positive integers, ranging from 0 to m. 
We now expand the root node. Let N-i denote the ith 
child node of N. N-i contains a pointer pointing to all 
of the strings of S(N) whose distances with RF(N) are 
i. This set is denoted as S(N-i). Each node N-i also 
contains a reference string RF(N-i) which is selected 
from S(N-i). If the size of S(N-i) is too small, we 
terminate the expanding; otherwise, we recursively 
expand the tree with S(N-i) as the root node. Figure 3 
illustrates the above discussion. 

 
Figure 3. The nodes in level 1 and level 2 of the 

reference tree 

For our input strings and the reference string, we 
will have the reference tree expanded as shown in 
Figure 4. The complete reference tree is shown in 
Figure 5. 

 
Figure 4. The nodes in level 1 and level 2 with the 

reference strings 

After the reference tree has been constructed, we 
search the test string x in this reference tree. The 
search starts from the root node. In root node N, the 
distance d between its reference string RF(N) and x is 
calculated. If d is 0, x must be identical with RF(N). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The complete reference tree of the example 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The search for the test string x = ccac in the reference tree 
 
Then we get the solution and stop searching the 
reference tree. If d is greater than 0, the search would 
be continued to its sub-trees. The possible solution 
only exists in the sub-tree rooted by the child node 
N-d because the distances between RF(N) and strings 
in S(N-d) all are d. Hence, we only search the child 
node N-d recursively.For example, assume that the 
test string is x = ccac and the reference tree is shown 
in Figure 5. The search starts from the root node N. 
The distance between reference string RF(N) = ctac 
and x = ccac is 1. We continue searching the sub-tree 
rooted by N-1. In the node N-1, the distance between 
reference tree RF(N-1) = ctaa and x = ccac is 2, and 
then we search the sub-tree rooted by N-1-2. In the 
node N-1-2, the distance between reference string 
RF(N-1-2) = ccac and x = ccac is 0. That is, we get 
the solution because the reference string RF(N-1-2) is 
equal to the test string. The above searching 
procedure is illustrated in Figure 6. 

Once the reference tree with reference strings has 
been built, the subsequent search for a string (or 
searches for multiple strings) would be very efficient. 
To solve the problem considered, we shall give 
formal descriptions and implementation details of 
our reference tree in the next section. 
 
 
4. Applying Reference String Approach to 

Exact String Matching Problem 
 

The exact string matching problem is defined as 
follows: We are given a text string T of length n and 
a pattern string P of length m. Our work is to 
determine whether P appears in T and if does, where 
it appears. We observe that determining whether P is 
in T is less efficient that determining whether a prefix 
of P of length, say ℓ (< m), is in T. Therefore, we 
may compare first T(i, i+ℓ1) for 1  i  nm+1 with 
the prefix of the pattern string, also of length ℓ. If 
they are identical, we continue to compare the rest of 

strings. Otherwise, there would be no further 
comparison. This will save our searching time. Such 
idea inspires our development of the reference strings 
and reference tree for T. Note that the length ℓ has to 
be shorter than m. 

The reference tree is formally described as 
follows: 
(1) The root node is denoted as N. 
(2) For every node X, there is a corresponding S(X) 

where each element of S(X) is a sub-string of 
length ℓ in T. Note that in the root node N, S(N) 
consists of sub-strings T(i, i+ℓ1)’s where 1  i 
 nm+1. 

(3) For every node X, it contains a pointer PS(X) 
pointing to the linked list storing the starting 
positions of the strings in S(X). 

(4) For every internal node X, there is a chosen 
reference string RF(X) from S(X). X stores the 
starting position of RF(X). 

(5) For every internal node X, the child nodes of X 
are X-0, X-1, ..., X-ℓ where S(X-i) contains all 
strings of S(X) whose distance to RF(X) are i. 

(6) For every node X-0, the strings in S(X-0) are 
equal to RF(X). X-0 is a leaf node because as 
soon as the searching reaches it, the sub-strings 
which are equal to the ℓ prefix of the pattern 
have been found. 

(7) For any node X, if the size of S(X) is smaller 
than or equal to a pre-specified parameter k (< 
nm+1), X is a leaf node because we will simply 
conduct an exhaustive search on all strings of 
S(X). 

(8) In a leaf node, there is no reference string. 
Let  denote a reference tree and I denote the ith 

sub-tree of  where 0  i  ℓ. The pre-processing 
algorithm is as follows: 
 

Algorithm Pre-processing 
Input: Text string T, length m, length ℓ and 

parameter k 



Output: The reference tree  with respect to T, ℓ and 
k 

Let S be the set containing sub-strings T(i, i+ℓ1)’s in 
T where 1  i  nm+1 

Let PS be the pointer pointing to the linked list 
consisting of the starting positions of the strings 
in S 

Call  = ConstructRefTree(T, PS, ℓ, k) 
return  
 

Algorithm Constructing Reference Tree 
Input: Text string T, pointer PS pointing to the list 

consisting of the starting positions of the 
strings in S, length ℓ and parameter k 

Output: The reference tree  with respect to T, ℓ and 
k 

ConstructRefTree(T, PS, ℓ, k) 
Follow PS to obtain S 
if (|S|  k) then 
 Create a leaf node X and set PS(X) as PS 
else  // |S| > k  
 Create an internal node X  
 Arbitrary choose a string from S to be the  

reference string RF(X) whose starting position  
in T is stored in X 

 for (each i[0, ℓ]) do S(X-i) =  
 for (each position j in the list pointed by PS(X)) do 
  Compute distance d between RF(X) and T(j, j+ℓ1) 
  Add T(j, j+ℓ1) into S(X-d) 
 endfor 
 for (each i[0, ℓ]) do  
  Create a link list to store the starting positions  

of the strings in S(X-i) and set PS(X-i) as the  
pointer pointing to the list 

 endfor 
 Create a leaf node X-0, pointed by 0, to store PS(X-0) 
 for (each i[1, ℓ]) do  
  if (|S(X-i)| > 0) then  
   i = ConstructRefTree(T, PS(X-i), ℓ, k) 
  else 
   i is null 
  endif 
 endfor  

// i is the pointer pointing to the ith sub-tree of  
// X rooted by X-i 

 Set 0, 1, ... , ℓ (rooted by X-0, X-1, ... , X-ℓ,  
respectively) as the sub-trees of X 

endif 
return  (the pointer pointing to the tree rooted by X) 

 
During the tree construction, every internal node 

distributes the strings of S(X) (whose starting 
positions in T are stored as a linked list pointed by 
PS(X)) into S(X-0), S(X-1), ... , S(X-ℓ) according to 
their distances to RF(X). The sub-trees of X rooted by 
X-1, X-2, ... , X-ℓ having strings of S(X-1), S(X-2), ... , 
S(X-ℓ) are built in a recursive way. After the tree has 

been constructed, every internal node X only stores 
the starting position of RF(X). The ℓ prefixes of all 
sub-strings of length m in T are actually distributed 
into the corresponding leaves and stored by their 
starting positions in the corresponding lists. Each leaf 
node X merely stores the pointer PS(X). The space 
complexity of the reference tree is O(n). 

In an internode node X, the probability that a string 
in S(X) is equal to RF(X) is (1/)ℓ where  is the size 
of alphabet of T. The probability that a string in S(X) 
is different to RF(X) shall be 1(1/)ℓ. We expect the 
character comparisons for construction of the 
reference tree to be O(nℓ(1(1q0)

h1)/q0) where h 
is the height of the reference tree and q0 = (1/)ℓ. 

The searching in the reference tree can be 
informally described as follows: 
Step 1: Let X = N where N is the root node of the 

reference tree. 
Step 2: Compute the distance d between the prefix 

with length ℓ of the pattern and RF(X). 
Step 3: If d is 0, compare the rest of the pattern with 

T(i+ℓ, i+m1) for each i in the list pointed 
by PS(X-0) to obtain solutions and exit. 

Step 4: If d is not 0 and child node X-d is an internal 
node, let X = X-d and go to Step 2. 

Step 5: If d is not 0 and X-d is a leaf node, 
exhaustively search the strings in PS(X-d) to 
get solutions and exit. 

In a leaf node X-t (t  0) where T(i, i+ℓ1) is 
different from reference string RF(X), we have to 
handle a special string matching problem which is to 
determine whether or not T(i, i+ℓ1) is equal to the 
pattern string for each i in the list pointed by PS(X-t). 
Any string matching algorithm can be applied to 
verify these strings. We simply compare the two 
strings character by character until any mismatch 
occurs or they exactly match. This method is simple 
and very efficient. 

We search the pattern from the root node of the 
reference tree. The searching algorithm is as follows: 
 

Algorithm Searching 

Input: Text string T, reference tree , pattern P, 
length ℓ and length m 

Output: Ending positions of all occurrences of P in T 
Searching(T, , P, ℓ, m) 
R =     // solutions will be stored into set R 
Let X be the root node of  
Compute the distance d between RF(X) and the 

prefix with length ℓ of P 
if (d = 0) then 
 Obtain pointer PS(X-0) from child node X-0 
 for (each position j in the list pointed by PS(X-0)) do 
  if (T(j+ℓ,j+m1)=P(ℓ+1,m)) then R = R{j+m1} 
 endfor 
else 
 if (child node X-d is empty) then R =  



 else if (X-d is a leaf node) then  
 // perform the special string matching 
  Obtain pointer PS(X-d) from child node X-d 
  for (each position j in the list pointed by PS(X-d)) do 
   if (T(j, j+m1) = P) then R = R{j+m1} 
  endfor 
 else  // X-d is an internal node 
  R = RSearching(T, d, P, ℓ, m) 
  // d is the sub-tree rooted by X-d 
 endif 
endif 
return R 

 
The time complexity of determining whether the 

prefix with length ℓ of P is equal to the reference 
string of any internal node in the reference tree is 
O(hℓ). In leaf node X-0 where each string T(i, i+ℓ1) 
for each i in the list pointed by PS(X-0) is equal to 
RF(X), the number of strings is O(nq0) where q0 = 
(1/)ℓ. The worst case of the number of character 
comparisons for verifying these strings is 
O(nq0|P|). In leaf node X-t (1  t  ℓ) where each 
string T(j, j+ℓ1) for each j in the list pointed by 
PS(X-t) is different from RF(X), the worst case of the 
number of character comparisons for verifying the 
strings stored in this leaf is O(k|P|). 

Our approach can be used to tackle the exact 
multiple string matching problem in which r patterns 
denoted as P1, P2, ... , Pr are considered. For each 
pattern, we have to find the ending positions of all 
occurrences in T. Let mi be the length of Pi and ℓmin 
be the shortest length among all patterns. Given a 
text T, length ℓ and parameter k, we first construct 
the reference tree by Algorithm Pre-processing where 
ℓ must be shorter than ℓmin. Then, whether and where 
Pi is in T can be easily determined by searching the 
reference tree via the reference strings for 1  i  r.  

As previously discussed, the worst case of the 
number of character comparisons for the special 
string matching in a leaf node is O(k|Pi|) where 1  i 
 r. However, in practical implementations, the 
number of character comparisons needed is much 
smaller than k|Pi|. The performances of our 
approach and the BWT algorithm for the problem 
considered are tested and compared in the following 
section. 
 
 
5. Experimental Results 
 

The parameters in our approach include the 
alphabet , length n of text T, size r of patterns P1, 
P2, ... , Pr, length mi of pattern Pi for 1  i  r, length 
ℓ (such that ℓ+1 is the number of the children for 
each internal node in the reference tree) and k. As 
mentioned, in computational biology the researchers 
often need to search established lists of short motifs 

in specific segment of DNA sequence. Or, we would 
like to find inspiring phrases in the Bible or classic 
novels/speeches. Thus, the alphabets in our 
experiments include the DNA sequence ( = 4) and 
English language ( = 63). Specifically, we designed 
three experiments to test our approach for various 
problem instances: 

(1) the real DNA sequence; 
(2) the Bible; and 
(3) the real DNA sequence with longer lengths of 

texts. 
For the first two experiments, the lengths of the 

texts were set as 1M (106) and 4.04M, respectively, 
and the size of the patterns was r = 104. Each pattern 
was randomly selected to be a sub-string of the text. 
That is, each pattern appears in the text at least once. 
The lengths of the r patterns may be different from 
each other. In addition, different pattern groups for 
different purposes (e.g., finding short/long motifs, 
searching simple/compound phrases, etc.) may also 
be different. Thus, we tested ten pattern groups with 
lengths: 10020%, 20020%, ... , 100020%, 
respectively. Note that the range of the lengths of the 
first group is [80, 120], while that of the last group is 
[800, 1200]. For each pattern group, 1000 
independent pattern sets (with r = 104 each) were 
tested. The results for each group reported in the 
following are the average outcomes of these 1000 
independent runs. Based on our preliminary and 
extensive experiments, the length ℓ was set to be 20 
and k = ℓ20 = 400. 

Regarding the third experiment, we prepared eight 
texts with lengths 50M, 100M, 150M, ... , 400M and 
the pattern group with length 10020%. Likewise, 
each pattern appears in the text at least once. For the 
pattern group, 100 independent pattern sets were 
tested, and the average results of these 100 
independent runs are reported. 

For the purpose of comparison, the famous BWT 
algorithm was also implemented. Our experimental 
platform is a personal computer with a 2.4GHz CPU 
(Intel Q6600) and 4GB main memory. The operating 
system is CentOS 6.5 64-bit. Our and BWT 
algorithms were implemented in C language and 
complied by GUN Compiler Collect (gcc) 4.4.7 with 
the level 3 of its optimization options (-O3). The 
computational results of our approach and BWT for 
the three experiments are reported as follows one by 
one. 
 
Experiment 1. 
 

We downloaded the sequence of Drosophila 
Miranda from National Center for Biotechnology 
Information (NCBI). The gi number is 1036192274 
and the ref number is NC_030304.1. The symbols 
N’s were eliminated, and then the length of the whole 
sequence was about 32M. We simply chose the prefix 



with length 1M as our test text.  
Let RT denote our approach using ℓ = 20. Let 

tp(BWT) and tp(RT) be the pre-processing time (in 
seconds) of BWT and RT, respectively, for a certain 
problem instance. Table 3 summarizes tp(BWT), 
tp(RT) and tp(BWT)/tp(RT) for each of the ten pattern 
groups where the better value between tp(BWT) and 
tp(RT) is shown in bold. 

Table 3. Comparison on pre-processing time of 
BWT and RT in Experiment 1 

Pattern 
length 

tp(BWT) tp(RT) tp(BWT)/tp(RT)

10020% 0.471343 0.178984 2.633437 
20020% 0.476015 0.179076 2.658173 
30020% 0.482690 0.179114 2.694876 
40020% 0.488278 0.179034 2.727292 
50020% 0.494930 0.178998 2.765003 
60020% 0.499993 0.179049 2.792493 
70020% 0.505980 0.179076 2.825504 
80020% 0.512138 0.178998 2.861138 
90020% 0.517186 0.178910 2.890761 
100020% 0.522407 0.179021 2.918133 

It is easily seen from Table 3 that the 
pre-processing time tp(RT) is shorter than tp(BWT) 
for every pattern group tested. The pre-processing 
time of our approach is more efficient than that of 
BWT in this experiment.  

Let ts(BWT) and ts(RT) be the searching time (in 
seconds) of BWT and RT for a certain problem 
instance. Table 4 presents ts(BWT), ts(RT) and 
ts(BWT)/ts(RT) for the ten pattern groups tested. It is 
obvious that RT outperforms BWT as well in terms 
of the searching time. When the lengths of the pattern 
groups grow, the increment of ts(RT) is rather slight; 
while that of ts(BWT) becomes relatively 
magnificent. The search by way of the reference 
strings in our reference tree is more efficient than 
that by BWT, especially for long patterns. 

Table 4. Comparison on searching time of BWT 
and RT in Experiment 1 

Pattern 
length 

ts(BWT) ts(RT) ts(BWT)/ts(RT)

10020% 0.163133 0.042020 3.882270 
20020% 0.314126 0.045183 6.952305 
30020% 0.470059 0.048036 9.785557 
40020% 0.618686 0.049916 12.394543 
50020% 0.770425 0.052571 14.654943 
60020% 0.920703 0.055937 16.459642 
70020% 1.071062 0.058261 18.383859 
80020% 1.221137 0.058369 20.920985 
90020% 1.370734 0.063551 21.569039 

100020% 1.520726 0.064559 23.555600 

Figure 7 illustrates the total time spent by BWT 

and RT for the ten pattern groups. As the lengths of 
the patterns increase, the performance of BWT 
degrades, while that of our approach is quite robust. 
The advantage of our algorithm over BWT is 
appealing in this experiment. 

 
Figure 7. Comparison on total time spent by BWT 

and RT (real DNA for n = 1M) 
 
Experiment 2. 
 

We downloaded the King James version of the 
Bible (Old Testament) from the web-site String 
Matching Researching Tool (SMART) to be the test 
text. The length of the strings in this version is about 
4.04M with  = 63.  

Table 5 exhibits the pre-processing times tp(BWT) 
and tp(RT) as well as the ratio tp(BWT)/tp(RT) for the 
ten pattern groups. From Table 5, it can be seen that 
tp(RT) is again shorter than tp(BWT) for every pattern 
group tested. The efficiency of constructing the 
reference tree can thus be convinced. 

Table 5. Comparison on pre-processing time of 
BWT and RT in Experiment 2 

Pattern 
length 

tp(BWT) tp(RT) tp(BWT)/tp(RT)

10020% 5.173900 1.100900 4.699700 
20020% 5.253240 1.102420 4.765189 
30020% 5.337910 1.101530 4.845905 
40020% 5.419230 1.100650 4.923663 
50020% 5.503010 1.100160 5.002009 
60020% 5.574120 1.100380 5.065632 
70020% 5.653880 1.101080 5.134849 
80020% 5.730030 1.100240 5.207982 
90020% 5.811140 1.101190 5.277146 

100020% 5.884700 1.100580 5.346908 

Table 6 displays the searching times ts(BWT) and 
ts(RT) as well as the ratio ts(BWT)/ts(RT) for the ten 
pattern groups. We realize from Table 6 that RT 
outperforms BWT and the superiority of RT over 
BWT increases as the lengths of the pattern groups 
grow. 



Table 6. Comparison on searching time of BWT 
and RT in Experiment 2 

Pattern 
length 

ts(BWT) ts(RT) ts(BWT)/ts(RT)

10020% 0.285199 0.076977 3.704990 
20020% 0.553022 0.080230 6.892958 
30020% 0.820660 0.081806 10.031783 
40020% 1.088120 0.082409 13.203898 
50020% 1.353990 0.085557 15.825590 
60020% 1.619080 0.088429 18.309378 
70020% 1.882580 0.091258 20.629205 
80020% 2.143070 0.091729 23.363059 
90020% 2.400370 0.094309 25.452184 

100020% 2.663520 0.096227 27.679549 

Figure 8 displayed the total time spent by BWT 
and RT for the ten pattern groups. When the lengths 
of the patterns increase, the performance of BWT 
degrades, while that of our approach is still quite 
stable. The computational consequence is similar to 
that of Experiment 1. 

 
Figure 8. Comparison on total time spent by BWT 

and RT (the Bible data) 
 
Experiment 3. 
 

From the consequences of Experiments 1 and 2, 
we know that our approach is elegant and better than 
BWT (under (n, ) = (1M, 4) and (n, ) = (4.04M, 
63)) especially for searching long patterns. In this 
experiment, we would like to know the performances 
of BWT and our approach for longer texts. We set r = 
104 as well and fixed the range of the lengths of 
patterns as [80, 120] (instead of long patterns, which 
favor our approach). We downloaded the first and 
second chromosomes of Homo sapiens from NCBI 
with gi numbers 568815364 and 568815352 as well 
as the ref numbers NT_077402.3 and NT_005334.17, 
respectively. The symbols N’s were eliminated, and 
then we concatenated them into a long sequence of 
length about 470M. We chose the texts to be the 
prefixes of lengths 50M, 100M, 150M, 200M, 250M, 
300M, 350M and 400M of the long sequence. For a 
certain text, patterns were randomly selected from 
the text. 

Table 7 shows the pre-processing times tp(BWT), 
tp(RT) and the ratio tp(BWT)/tp(RT). When the length 
of the text increases, both tp(RT) and tp(BWT) 

increase. The growth of tp(RT) is gentle, while that of 
tp(BWT) becomes serious. Let us observe 
tp(BWT)/tp(RT). It tends to be larger when the text 
grows longer. For n = 50M, tp(RT) is three times 
faster than tp(BWT); whereas, for n = 350M, it 
becomes 10 times faster. In fact, under our test 
platform, when the length of the text becomes longer 
than 150M, the space requirement for recording its 
auxiliary tables obliges BWT to access the external 
memory. This phenomenon could be better explained 
via the information of ts(BWT) in the subsequent 
Table 8. Note that Table 7 does not record the 
information of tp(BWT) for n > 350M owing to the 
lengthy response time.  

Table 7. Comparison on pre-processing time of 
BWT and RT in Experiment 3 

Text 
length

tp(BWT) tp(RT) tp(BWT)/tp(RT)

50M 63.178 20.039 3.152711 
100M 135.909 44.195 3.075205 
150M 230.356 70.065 3.287771 
200M 585.023 97.215 6.017802 
250M 948.621 124.916 7.594071 
300M 1273.720 161.797 7.872334 
350M 2115.930 201.974 10.47625 
400M - 293.387 - 

-: No record. 

The results of the searching times are listed in 
Table 8. Both ts(BWT) and ts(RT) grows as n 
increases. However, ts(BWT)/ts(RT) is about 1 for n 
= 100M; while, it turns to be about 28 for n = 150M 
and up to 3649 for n = 200M. The dramatic variance 
is due to the requirement of external memory of 
BWT in our platform. In the extreme case of n = 
350M, ts(BWT) is slower than ts(RT) about 8333 
times. 

Table 8. Comparison on searching time of BWT 
and RT in Experiment 3 

Text 
length

ts(BWT) ts(RT) ts(BWT)/ts(RT)

50M 0.159 0.136 1.168993 
100M 0.161 0.160 1.005254 
150M 5.238 0.183 28.68003 
200M 756.697 0.207 3649.353 
250M 1473.220 0.234 6295.247 
300M 2001.190 0.316 6326.153 
350M 2897.040 0.348 8333.664 
400M - 0.491 - 

Figure 9 illustrates the total times spent by BWT 
and RT for the eight texts of different lengths. The 
superiority of our approach is computationally 
demonstrated here. It is obvious that the time of our 
approach increases steady when the length of text 
increases; while BWT may increase dramatically 



owing to the requirement of the external memory. 

 
Figure 9. Comparison on total time spent by BWT 

and RT (for different text lengths) 
 
 
6. Concluding Remarks 
 

To deal with the exact multiple string matching 
problem, we design simple and elegant algorithms to 
construct the sub-strings of the text as a reference 
tree and search the patterns in the tree. Each internal 
node X only stores the staring position of one 
reference string of length ℓ selected from T and has 
ℓ+1 sub-trees rooted by nodes X-0, X-1, ... , X-ℓ. All 
sub-strings in T are deliberately distributed into these 
sub-trees according to the reference strings in the 
internal nodes and physically stored by their starting 
positions in the leaf nodes. Specifically, any 
sub-string starting at position a in T would be 
distributed from X into X-d if the distance between 
T(a, a+ℓ1) and RF(X) is d in a recursive way. It is 
simply stored as a in some leaf node in the form of 
X-0, or X-t (1tℓ) whose size is no greater than k. 
Such a simple idea makes the searches of the patterns 
easy and efficient. By comparing the ℓ prefix of the 
pattern to the reference string in the internal node, we 
know which among the ℓ+1 child nodes should be 
further searched. When the search goes from the root 
to some leaf, a special string matching (for the rest of 
the pattern if its ℓ prefix equal to some reference 
string; or the whole pattern otherwise) is performed 
to determine the solutions. The space complexity is 
O(n). The number of character comparisons is 
O(nℓ(1(1q0)

h1)/q0) in the per-processing phase 
where h is the height of the reference tree and q0 = 
(1/)ℓ. In the searching phase, a pattern P needs 
O(hℓ) time to determine whether its prefix is equal 
to any reference string and uses O(k|P|) to deal with 
the special string matching in the leaf node. 

With proper arrangements of ℓ and k, our reference 
string approach delivers pleasing performance on 
solving the exact multiple string matching problem. 
In our experiments including the data sets from the 
real DNA sequences and the Bible, our approach 
outperforms the well know BWT algorithm for both 
the pre-processing (tree constriction) and searching 
phases. According to the computational results of our 
experiments, our approach is more efficient than 
BWT. As the length of the text increases, the 

performance of our approach degrades gracefully in 
terms of time and space; whereas, that of BWT may 
reduce dramatically owing to the access of the 
external memory to meet its large space requirement.  

We emphasize that our approach, in spite of its 
simplicity, is advantageous and competitive for the 
exact multiple string matching problem. The formal 
analysis for the relationship between the height of the 
tree and parameter k and the comparison of the 
numbers of character comparisons between the 
theoretical and computational outcomes are 
presented in the appendix. How to find a suitable (or 
even the best) setting of ℓ and k in terms of the given 
texts with various lengths (n) and patterns with 
different sizes (r) and lengths (mi) is worthy of 
further investigation. It is also interesting to tackle 
the approximate string matching problem by 
extending our reference string approach. 
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