
A Tree Approach for Solving the Exact Multiple String Matching Problem

Yi-Kung Shieh, Shyong-Jian Shyu, Chin-Lung Lu and Richard Chia-Tung Lee

Department of Computer Science

Nation Tsing Hua University, Hsinchu, Taiwan

d9762814@oz.nthu.edu.tw, sjshyu@mail.mcu.edu.tw, cllu@cs.nthu.edu.tw and

rctlee@rctlee.cyberhood.net.tw

Abstract
In this study, we deal with the exact multiple string

matching problem. Given a text T and a set of r
patterns P1, P2, ... , Pr, find the ending positions of all
sub-stringss in T which is equal to a pattern. By
transforming all sub-strings of T into a reference tree
such that each internal node stores a reference string,
the exact multiple pattern matching problem can be
efficiently solved by searching patterns in the tree via
the guidance of the reference strings. We design
elegant algorithms to construct the reference tree and
to search patterns in the tree in this paper. The
experiments involving problem instances from the
DNA sequences and the English language are
conducted to compare the performances of our
approach and the well-known Burrows-Wheeler
Transform (BWT) algorithm. The computational
results demonstrate the advantage of our approach
over BWT. In spite of the simplicity, the performance
of our approach is quite efficient and robust.

1. Introduction

The exact string matching problem is a classic
string problem. We are given a text string T = t1t2...tn
and a pattern string P = p1p2...pm. Each character in
text or pattern string is a character or a symbol. The
text string T can be denoted as T(1, n), and thus a
sub-string of T can be denoted as T(i, j) = titi+1...tj
where 1  i  j  n. The exact string matching
problem is to determine whether and where P
appears in T. Exact string matching is widely used in
DNA and English language text searching.

Comprehensive reviews of string matching
algorithms can be found in [6, 7, 8, 10, 19, 22]. We
may classify these algorithms into three categories:
(1) Algorithms without pre-processing:

Convolution Algorithm [9].
(2) Algorithms with pre-processing on pattern

strings: MP Algorithm [17], KMP Algorithm
[13], Boyer-Moore Algorithm [1], Horspool
Algorithm [11], Colussi Algorithm [5], Reverse
Factor Algorithm [14], Simon Algorithm [20],
Smith Algorithm [21], WM Algorithm [24],

BNDM Algorithm [18] and Lecroq Hashing
Algorithm [15].

(3) Algorithms with pre-processing on text string:
Suffix Tree Method [23], Suffix Array Method
[12] and Burrows-Wheeler Transform Algorithm
[2] (BWT, for short).

For the exact multiple string matching problem,
we expect that for a single text string, there will be a
large number of pattern strings. For instance, the Old
Testament of the Bible is a popular book and many
researchers will try to find where certain phrases
appear in it. Another application is the DNA
searching. For a given DNA sequence, many
researchers will try to determine whether some
pattern strings appear in it or not. In such condition,
it is worthwhile to conduct a pre-processing on the
text string such that the later searching for patterns in
the text will be very fast.

In this paper, we are interested in the exact
multiple string matching problem. Therefore, we will
compete with the algorithm in Category 3. Although
the time complexity of the pre-processing phase for
all algorithms in Category 3 are O(n), those of the
searching phase for the suffix tree method, suffix
array method and BWT are O(m+occ), O(m+logn+
occ) and O(m), respectively, where occ is the number
of occurrences of the found patterns. Since BWT is
more efficient than the other two methods, we shall
only consider the BWT as our comparison basis.

In Section 2, we briefly introduce the BWT
algorithm. Our approach for the single string
matching problem by constructing a reference tree
and searching the tree is informally explained in
Section 3, and then we define the reference tree and
present our pre-processing and searching algorithms
in Section 4. Experimental results are shown in
Section 5. Finally, we conclude this work in Section
6.

2. The Burrows-Wheeler Transform to
the Exact String Matching Problem

The Burrows-Wheeler Transform algorithm (BWT
for short) [2, 4] was first used for data compression.

Li and Durbin [16] utilized it to solve the exact string
matching problem.

Given a text string, we first add a special symbol $
onto the end of the string and start rotating the string.
For example, given T = gtcagtc$, the rotation of T is
tcagtc$g. We then rotate the string to obtain the
following strings:

1. gtcagtc$
2. tcagtc$g
3. cagtc$gt
4. agtc$gtc
5. gtc$gtca
6. tc$gtcag
7. c$gtcagt
8. $gtcagtc
These rotated strings are sorted lexicographically,

and then the result is as follows:
1. $gtcagtc
2. agtc$gtc
3. c$gtcagt
4. cagtc$gt
5. gtc$gtca
6. gtcagtc$
7. tc$gtcag
8. tcagtc$g
The above array is denoted as the sorted rotation

array. We pick up all of the last character of the
above strings from top to bottom. The resulting string
is called the BWT of T which is cctta$gg.

We can see that the sorted rotation array gives
each suffix in T an index. For instance, consider the
suffix tcagtc$ in T. It is indexed as 8 in the sorted
rotation array. For the suffix cagtc$ in T, it is indexed
as 4 in the array. We shall see that this indexing
scheme is quite useful for us to do string matching.

We define the following three functions:
(1) Count() is the number of characters smaller

than  in T lexicographically where  is a
character in alphabet of T. Table 1 gives the
Count function for the characters in the alphabet
of T = gtcagtc$.

Table 1. The Count function of T = atcatg$
 $ a c g t

Count() 0 1 2 4 6

(2) The range of the sorted rotation array of a
pattern P', denoted as SA(P') = (s, e), where s is
the starting row of the sorted rotation array
whose prefix contains P' and e is the ending row
of the sorted rotation array whose prefix
contains P'. For instance, SA(a) = (2, 2) and
SA(gt) = (5, 6). Note that the range of sorted
rotation array includes the whole BWT of T
initially, i.e. SA(" ") = (1, 8).

(3) Precede(i, ) is the number of character 
occurring in the prefix with length i of BWT of
T. For instance, let i = 6 and  = a. Then

Precede(i, ) = Precede(6, a) = 1. Table 2
displays the Precede function for the BWT of T.

Table 2. The Precede function for cctta$gg.
0 1 2 3 4 5 6 7 8

$ 0 0 0 0 0 0 1 1 1
a 0 0 0 0 0 1 1 1 1
c 0 1 2 2 2 2 2 2 2
g 0 0 0 0 0 0 0 1 2
t 0 0 0 1 2 2 2 2 2

The BWT can be used to solve the exact string
matching problem. The pattern string P may be
considered to be P = P'. Let us assume that we have
constructed the sorted rotation array and already
found SA(P') = (s, e). Then we can determin the
range of P = P' based upon the following equation:

SA(P) = SA(P') = (s', e') =
(Count()+Precede(s1, )+1, Count()+Precede(e, ))

For example, assume that P = gtc. Note that SA(" ")
= (1, 8) initially.
(1) For the shortest suffix P(3, 3) = c, we have:

SA(c) = (s', e')
= (Count(c)+Precede(s1, c)+1, Count(c)+Precede(e, c))
= (Count(c)+Precede(11, c)+1, Count(c)+Precede(8, c))
= (2+0+1,2+2)
= (3, 4)

(2) For the suffix P(2, 3) = tc = tP(3, 3), we have:
SA(tc) = SA(tP(3, 3)) = (s', e')
= (Count(t)+Precede(s1, t)+1, Count(t)+Precede(e, t))
= (Count(t)+Precede(31,t)+1, Count(t)+Precede(4, t))
= (6+0+1, 6+2)
= (7, 8)

(3) For the suffix P(1,3) = gtc = gP(2, 3), we have:
SA(gtc) = SA(gP(2, 3)) = (s', e')
= (Count(g)+Precede(s1, g)+1, Count(g)+Precede(e, g))
= (Count(g)+Precede(71, g)+1, Count(g)+Precede(8, g))
= (4+0+1, 4+2)
= (5, 6)
The whole pattern has been considered and found

the range to be from 5 to 6. That is, the prefixes with
the length of P from the 5th row of sorted rotation
array to the 6th sorted rotation array are equal to P.

Let  be the alphabet of T and P and  be the size
of . The time complexity for obtaining the sorted
rotation array and the two auxiliary functions is O(n)
and the space complexity is O(n). The time
complexity of searching is O(|P|), where |P| is the
length of pattern P. The biggest problem for the
BWT method is the space required. If n is great, such
as 16M and  is 63 for English language, the Precede
function will be too large for ordinary personal
computers.

The Skew algorithm [12] constructs the sorted
rotation array more efficiently. Chen [3] further
improved the Skew algorithm. In [4], the authors

modified the BWT space complexity by proposing a
data compression method. The space complexity is
reduced from O(n) to O(nlog)-bit but the
searching time is increased to O(|P|+(logn+occ)
logn/loglogn) where occ is the number of the
occurrences of the found patterns. Note that the time
complexity of searching for original BWT [16] is
only O(|P|).

3. An Informal Introduction of Our

Reference String Approach

Our reference string approach can be informally
explained as follows: Suppose we have a set of input
strings with the same length m and a test string x,
also with length m. We like to find strings in the
input strings which are exactly equal to string x. This
approach consists of two stages: The pre-processing
phase and the searching phase. Let us first introduce
the pre-processing phase.

The pre-processing essentially constructs a
reference tree. The root of the tree, denoted as N,
contains a pointer PS(N) pointing to the set S(N)
which contains all input strings and a reference string,
denoted as RF(N), as shown in Figure 1.

Figure 1. The root node N in the reference tree

Suppose our input strings are {gcca, ctac, ctaa,
acgt, ttgc, ccac, ctgc, tgta, acta, ggac, cggc, ctag} and
we choose ctac as the reference string. Then the root
node of the reference tree will be shown in Figure 2.

Figure 2. The root node N with the reference string

ctac

We calculate the distances between these strings of
S(N) and the reference string RF(N). The
measurement of the distance between two strings is
Hamming distance. The definition of Hamming
distance between two strings with equal length is the
number of positions at which the corresponding
characters or symbols are different. All of the
distances are positive integers, ranging from 0 to m.
We now expand the root node. Let N-i denote the ith
child node of N. N-i contains a pointer pointing to all
of the strings of S(N) whose distances with RF(N) are
i. This set is denoted as S(N-i). Each node N-i also
contains a reference string RF(N-i) which is selected
from S(N-i). If the size of S(N-i) is too small, we
terminate the expanding; otherwise, we recursively
expand the tree with S(N-i) as the root node. Figure 3
illustrates the above discussion.

Figure 3. The nodes in level 1 and level 2 of the

reference tree

For our input strings and the reference string, we
will have the reference tree expanded as shown in
Figure 4. The complete reference tree is shown in
Figure 5.

Figure 4. The nodes in level 1 and level 2 with the

reference strings

After the reference tree has been constructed, we
search the test string x in this reference tree. The
search starts from the root node. In root node N, the
distance d between its reference string RF(N) and x is
calculated. If d is 0, x must be identical with RF(N).

Figure 5. The complete reference tree of the example

Figure 6. The search for the test string x = ccac in the reference tree

Then we get the solution and stop searching the
reference tree. If d is greater than 0, the search would
be continued to its sub-trees. The possible solution
only exists in the sub-tree rooted by the child node
N-d because the distances between RF(N) and strings
in S(N-d) all are d. Hence, we only search the child
node N-d recursively.For example, assume that the
test string is x = ccac and the reference tree is shown
in Figure 5. The search starts from the root node N.
The distance between reference string RF(N) = ctac
and x = ccac is 1. We continue searching the sub-tree
rooted by N-1. In the node N-1, the distance between
reference tree RF(N-1) = ctaa and x = ccac is 2, and
then we search the sub-tree rooted by N-1-2. In the
node N-1-2, the distance between reference string
RF(N-1-2) = ccac and x = ccac is 0. That is, we get
the solution because the reference string RF(N-1-2) is
equal to the test string. The above searching
procedure is illustrated in Figure 6.

Once the reference tree with reference strings has
been built, the subsequent search for a string (or
searches for multiple strings) would be very efficient.
To solve the problem considered, we shall give
formal descriptions and implementation details of
our reference tree in the next section.

4. Applying Reference String Approach to

Exact String Matching Problem

The exact string matching problem is defined as
follows: We are given a text string T of length n and
a pattern string P of length m. Our work is to
determine whether P appears in T and if does, where
it appears. We observe that determining whether P is
in T is less efficient that determining whether a prefix
of P of length, say ℓ (< m), is in T. Therefore, we
may compare first T(i, i+ℓ1) for 1  i  nm+1 with
the prefix of the pattern string, also of length ℓ. If
they are identical, we continue to compare the rest of

strings. Otherwise, there would be no further
comparison. This will save our searching time. Such
idea inspires our development of the reference strings
and reference tree for T. Note that the length ℓ has to
be shorter than m.

The reference tree is formally described as
follows:
(1) The root node is denoted as N.
(2) For every node X, there is a corresponding S(X)

where each element of S(X) is a sub-string of
length ℓ in T. Note that in the root node N, S(N)
consists of sub-strings T(i, i+ℓ1)’s where 1  i
 nm+1.

(3) For every node X, it contains a pointer PS(X)
pointing to the linked list storing the starting
positions of the strings in S(X).

(4) For every internal node X, there is a chosen
reference string RF(X) from S(X). X stores the
starting position of RF(X).

(5) For every internal node X, the child nodes of X
are X-0, X-1, ..., X-ℓ where S(X-i) contains all
strings of S(X) whose distance to RF(X) are i.

(6) For every node X-0, the strings in S(X-0) are
equal to RF(X). X-0 is a leaf node because as
soon as the searching reaches it, the sub-strings
which are equal to the ℓ prefix of the pattern
have been found.

(7) For any node X, if the size of S(X) is smaller
than or equal to a pre-specified parameter k (<
nm+1), X is a leaf node because we will simply
conduct an exhaustive search on all strings of
S(X).

(8) In a leaf node, there is no reference string.
Let  denote a reference tree and I denote the ith

sub-tree of  where 0  i  ℓ. The pre-processing
algorithm is as follows:

Algorithm Pre-processing
Input: Text string T, length m, length ℓ and

parameter k

Output: The reference tree  with respect to T, ℓ and
k

Let S be the set containing sub-strings T(i, i+ℓ1)’s in
T where 1  i  nm+1

Let PS be the pointer pointing to the linked list
consisting of the starting positions of the strings
in S

Call  = ConstructRefTree(T, PS, ℓ, k)
return 

Algorithm Constructing Reference Tree
Input: Text string T, pointer PS pointing to the list

consisting of the starting positions of the
strings in S, length ℓ and parameter k

Output: The reference tree  with respect to T, ℓ and
k

ConstructRefTree(T, PS, ℓ, k)
Follow PS to obtain S
if (|S|  k) then
 Create a leaf node X and set PS(X) as PS
else // |S| > k
 Create an internal node X
 Arbitrary choose a string from S to be the

reference string RF(X) whose starting position
in T is stored in X

 for (each i[0, ℓ]) do S(X-i) = 
 for (each position j in the list pointed by PS(X)) do
 Compute distance d between RF(X) and T(j, j+ℓ1)
 Add T(j, j+ℓ1) into S(X-d)
 endfor
 for (each i[0, ℓ]) do
 Create a link list to store the starting positions

of the strings in S(X-i) and set PS(X-i) as the
pointer pointing to the list

 endfor
 Create a leaf node X-0, pointed by 0, to store PS(X-0)
 for (each i[1, ℓ]) do
 if (|S(X-i)| > 0) then
 i = ConstructRefTree(T, PS(X-i), ℓ, k)
 else
 i is null
 endif
 endfor

// i is the pointer pointing to the ith sub-tree of
// X rooted by X-i

 Set 0, 1, ... , ℓ (rooted by X-0, X-1, ... , X-ℓ,
respectively) as the sub-trees of X

endif
return  (the pointer pointing to the tree rooted by X)

During the tree construction, every internal node

distributes the strings of S(X) (whose starting
positions in T are stored as a linked list pointed by
PS(X)) into S(X-0), S(X-1), ... , S(X-ℓ) according to
their distances to RF(X). The sub-trees of X rooted by
X-1, X-2, ... , X-ℓ having strings of S(X-1), S(X-2), ... ,
S(X-ℓ) are built in a recursive way. After the tree has

been constructed, every internal node X only stores
the starting position of RF(X). The ℓ prefixes of all
sub-strings of length m in T are actually distributed
into the corresponding leaves and stored by their
starting positions in the corresponding lists. Each leaf
node X merely stores the pointer PS(X). The space
complexity of the reference tree is O(n).

In an internode node X, the probability that a string
in S(X) is equal to RF(X) is (1/)ℓ where  is the size
of alphabet of T. The probability that a string in S(X)
is different to RF(X) shall be 1(1/)ℓ. We expect the
character comparisons for construction of the
reference tree to be O(nℓ(1(1q0)

h1)/q0) where h
is the height of the reference tree and q0 = (1/)ℓ.

The searching in the reference tree can be
informally described as follows:
Step 1: Let X = N where N is the root node of the

reference tree.
Step 2: Compute the distance d between the prefix

with length ℓ of the pattern and RF(X).
Step 3: If d is 0, compare the rest of the pattern with

T(i+ℓ, i+m1) for each i in the list pointed
by PS(X-0) to obtain solutions and exit.

Step 4: If d is not 0 and child node X-d is an internal
node, let X = X-d and go to Step 2.

Step 5: If d is not 0 and X-d is a leaf node,
exhaustively search the strings in PS(X-d) to
get solutions and exit.

In a leaf node X-t (t  0) where T(i, i+ℓ1) is
different from reference string RF(X), we have to
handle a special string matching problem which is to
determine whether or not T(i, i+ℓ1) is equal to the
pattern string for each i in the list pointed by PS(X-t).
Any string matching algorithm can be applied to
verify these strings. We simply compare the two
strings character by character until any mismatch
occurs or they exactly match. This method is simple
and very efficient.

We search the pattern from the root node of the
reference tree. The searching algorithm is as follows:

Algorithm Searching

Input: Text string T, reference tree , pattern P,
length ℓ and length m

Output: Ending positions of all occurrences of P in T
Searching(T, , P, ℓ, m)
R =  // solutions will be stored into set R
Let X be the root node of 
Compute the distance d between RF(X) and the

prefix with length ℓ of P
if (d = 0) then
 Obtain pointer PS(X-0) from child node X-0
 for (each position j in the list pointed by PS(X-0)) do
 if (T(j+ℓ,j+m1)=P(ℓ+1,m)) then R = R{j+m1}
 endfor
else
 if (child node X-d is empty) then R = 

 else if (X-d is a leaf node) then
 // perform the special string matching
 Obtain pointer PS(X-d) from child node X-d
 for (each position j in the list pointed by PS(X-d)) do
 if (T(j, j+m1) = P) then R = R{j+m1}
 endfor
 else // X-d is an internal node
 R = RSearching(T, d, P, ℓ, m)
 // d is the sub-tree rooted by X-d
 endif
endif
return R

The time complexity of determining whether the

prefix with length ℓ of P is equal to the reference
string of any internal node in the reference tree is
O(hℓ). In leaf node X-0 where each string T(i, i+ℓ1)
for each i in the list pointed by PS(X-0) is equal to
RF(X), the number of strings is O(nq0) where q0 =
(1/)ℓ. The worst case of the number of character
comparisons for verifying these strings is
O(nq0|P|). In leaf node X-t (1  t  ℓ) where each
string T(j, j+ℓ1) for each j in the list pointed by
PS(X-t) is different from RF(X), the worst case of the
number of character comparisons for verifying the
strings stored in this leaf is O(k|P|).

Our approach can be used to tackle the exact
multiple string matching problem in which r patterns
denoted as P1, P2, ... , Pr are considered. For each
pattern, we have to find the ending positions of all
occurrences in T. Let mi be the length of Pi and ℓmin
be the shortest length among all patterns. Given a
text T, length ℓ and parameter k, we first construct
the reference tree by Algorithm Pre-processing where
ℓ must be shorter than ℓmin. Then, whether and where
Pi is in T can be easily determined by searching the
reference tree via the reference strings for 1  i  r.

As previously discussed, the worst case of the
number of character comparisons for the special
string matching in a leaf node is O(k|Pi|) where 1  i
 r. However, in practical implementations, the
number of character comparisons needed is much
smaller than k|Pi|. The performances of our
approach and the BWT algorithm for the problem
considered are tested and compared in the following
section.

5. Experimental Results

The parameters in our approach include the
alphabet , length n of text T, size r of patterns P1,
P2, ... , Pr, length mi of pattern Pi for 1  i  r, length
ℓ (such that ℓ+1 is the number of the children for
each internal node in the reference tree) and k. As
mentioned, in computational biology the researchers
often need to search established lists of short motifs

in specific segment of DNA sequence. Or, we would
like to find inspiring phrases in the Bible or classic
novels/speeches. Thus, the alphabets in our
experiments include the DNA sequence ( = 4) and
English language ( = 63). Specifically, we designed
three experiments to test our approach for various
problem instances:

(1) the real DNA sequence;
(2) the Bible; and
(3) the real DNA sequence with longer lengths of

texts.
For the first two experiments, the lengths of the

texts were set as 1M (106) and 4.04M, respectively,
and the size of the patterns was r = 104. Each pattern
was randomly selected to be a sub-string of the text.
That is, each pattern appears in the text at least once.
The lengths of the r patterns may be different from
each other. In addition, different pattern groups for
different purposes (e.g., finding short/long motifs,
searching simple/compound phrases, etc.) may also
be different. Thus, we tested ten pattern groups with
lengths: 10020%, 20020%, ... , 100020%,
respectively. Note that the range of the lengths of the
first group is [80, 120], while that of the last group is
[800, 1200]. For each pattern group, 1000
independent pattern sets (with r = 104 each) were
tested. The results for each group reported in the
following are the average outcomes of these 1000
independent runs. Based on our preliminary and
extensive experiments, the length ℓ was set to be 20
and k = ℓ20 = 400.

Regarding the third experiment, we prepared eight
texts with lengths 50M, 100M, 150M, ... , 400M and
the pattern group with length 10020%. Likewise,
each pattern appears in the text at least once. For the
pattern group, 100 independent pattern sets were
tested, and the average results of these 100
independent runs are reported.

For the purpose of comparison, the famous BWT
algorithm was also implemented. Our experimental
platform is a personal computer with a 2.4GHz CPU
(Intel Q6600) and 4GB main memory. The operating
system is CentOS 6.5 64-bit. Our and BWT
algorithms were implemented in C language and
complied by GUN Compiler Collect (gcc) 4.4.7 with
the level 3 of its optimization options (-O3). The
computational results of our approach and BWT for
the three experiments are reported as follows one by
one.

Experiment 1.

We downloaded the sequence of Drosophila
Miranda from National Center for Biotechnology
Information (NCBI). The gi number is 1036192274
and the ref number is NC_030304.1. The symbols
N’s were eliminated, and then the length of the whole
sequence was about 32M. We simply chose the prefix

with length 1M as our test text.
Let RT denote our approach using ℓ = 20. Let

tp(BWT) and tp(RT) be the pre-processing time (in
seconds) of BWT and RT, respectively, for a certain
problem instance. Table 3 summarizes tp(BWT),
tp(RT) and tp(BWT)/tp(RT) for each of the ten pattern
groups where the better value between tp(BWT) and
tp(RT) is shown in bold.

Table 3. Comparison on pre-processing time of
BWT and RT in Experiment 1

Pattern
length

tp(BWT) tp(RT) tp(BWT)/tp(RT)

10020% 0.471343 0.178984 2.633437
20020% 0.476015 0.179076 2.658173
30020% 0.482690 0.179114 2.694876
40020% 0.488278 0.179034 2.727292
50020% 0.494930 0.178998 2.765003
60020% 0.499993 0.179049 2.792493
70020% 0.505980 0.179076 2.825504
80020% 0.512138 0.178998 2.861138
90020% 0.517186 0.178910 2.890761
100020% 0.522407 0.179021 2.918133

It is easily seen from Table 3 that the
pre-processing time tp(RT) is shorter than tp(BWT)
for every pattern group tested. The pre-processing
time of our approach is more efficient than that of
BWT in this experiment.

Let ts(BWT) and ts(RT) be the searching time (in
seconds) of BWT and RT for a certain problem
instance. Table 4 presents ts(BWT), ts(RT) and
ts(BWT)/ts(RT) for the ten pattern groups tested. It is
obvious that RT outperforms BWT as well in terms
of the searching time. When the lengths of the pattern
groups grow, the increment of ts(RT) is rather slight;
while that of ts(BWT) becomes relatively
magnificent. The search by way of the reference
strings in our reference tree is more efficient than
that by BWT, especially for long patterns.

Table 4. Comparison on searching time of BWT
and RT in Experiment 1

Pattern
length

ts(BWT) ts(RT) ts(BWT)/ts(RT)

10020% 0.163133 0.042020 3.882270
20020% 0.314126 0.045183 6.952305
30020% 0.470059 0.048036 9.785557
40020% 0.618686 0.049916 12.394543
50020% 0.770425 0.052571 14.654943
60020% 0.920703 0.055937 16.459642
70020% 1.071062 0.058261 18.383859
80020% 1.221137 0.058369 20.920985
90020% 1.370734 0.063551 21.569039

100020% 1.520726 0.064559 23.555600

Figure 7 illustrates the total time spent by BWT

and RT for the ten pattern groups. As the lengths of
the patterns increase, the performance of BWT
degrades, while that of our approach is quite robust.
The advantage of our algorithm over BWT is
appealing in this experiment.

Figure 7. Comparison on total time spent by BWT

and RT (real DNA for n = 1M)

Experiment 2.

We downloaded the King James version of the
Bible (Old Testament) from the web-site String
Matching Researching Tool (SMART) to be the test
text. The length of the strings in this version is about
4.04M with  = 63.

Table 5 exhibits the pre-processing times tp(BWT)
and tp(RT) as well as the ratio tp(BWT)/tp(RT) for the
ten pattern groups. From Table 5, it can be seen that
tp(RT) is again shorter than tp(BWT) for every pattern
group tested. The efficiency of constructing the
reference tree can thus be convinced.

Table 5. Comparison on pre-processing time of
BWT and RT in Experiment 2

Pattern
length

tp(BWT) tp(RT) tp(BWT)/tp(RT)

10020% 5.173900 1.100900 4.699700
20020% 5.253240 1.102420 4.765189
30020% 5.337910 1.101530 4.845905
40020% 5.419230 1.100650 4.923663
50020% 5.503010 1.100160 5.002009
60020% 5.574120 1.100380 5.065632
70020% 5.653880 1.101080 5.134849
80020% 5.730030 1.100240 5.207982
90020% 5.811140 1.101190 5.277146

100020% 5.884700 1.100580 5.346908

Table 6 displays the searching times ts(BWT) and
ts(RT) as well as the ratio ts(BWT)/ts(RT) for the ten
pattern groups. We realize from Table 6 that RT
outperforms BWT and the superiority of RT over
BWT increases as the lengths of the pattern groups
grow.

Table 6. Comparison on searching time of BWT
and RT in Experiment 2

Pattern
length

ts(BWT) ts(RT) ts(BWT)/ts(RT)

10020% 0.285199 0.076977 3.704990
20020% 0.553022 0.080230 6.892958
30020% 0.820660 0.081806 10.031783
40020% 1.088120 0.082409 13.203898
50020% 1.353990 0.085557 15.825590
60020% 1.619080 0.088429 18.309378
70020% 1.882580 0.091258 20.629205
80020% 2.143070 0.091729 23.363059
90020% 2.400370 0.094309 25.452184

100020% 2.663520 0.096227 27.679549

Figure 8 displayed the total time spent by BWT
and RT for the ten pattern groups. When the lengths
of the patterns increase, the performance of BWT
degrades, while that of our approach is still quite
stable. The computational consequence is similar to
that of Experiment 1.

Figure 8. Comparison on total time spent by BWT

and RT (the Bible data)

Experiment 3.

From the consequences of Experiments 1 and 2,
we know that our approach is elegant and better than
BWT (under (n, ) = (1M, 4) and (n, ) = (4.04M,
63)) especially for searching long patterns. In this
experiment, we would like to know the performances
of BWT and our approach for longer texts. We set r =
104 as well and fixed the range of the lengths of
patterns as [80, 120] (instead of long patterns, which
favor our approach). We downloaded the first and
second chromosomes of Homo sapiens from NCBI
with gi numbers 568815364 and 568815352 as well
as the ref numbers NT_077402.3 and NT_005334.17,
respectively. The symbols N’s were eliminated, and
then we concatenated them into a long sequence of
length about 470M. We chose the texts to be the
prefixes of lengths 50M, 100M, 150M, 200M, 250M,
300M, 350M and 400M of the long sequence. For a
certain text, patterns were randomly selected from
the text.

Table 7 shows the pre-processing times tp(BWT),
tp(RT) and the ratio tp(BWT)/tp(RT). When the length
of the text increases, both tp(RT) and tp(BWT)

increase. The growth of tp(RT) is gentle, while that of
tp(BWT) becomes serious. Let us observe
tp(BWT)/tp(RT). It tends to be larger when the text
grows longer. For n = 50M, tp(RT) is three times
faster than tp(BWT); whereas, for n = 350M, it
becomes 10 times faster. In fact, under our test
platform, when the length of the text becomes longer
than 150M, the space requirement for recording its
auxiliary tables obliges BWT to access the external
memory. This phenomenon could be better explained
via the information of ts(BWT) in the subsequent
Table 8. Note that Table 7 does not record the
information of tp(BWT) for n > 350M owing to the
lengthy response time.

Table 7. Comparison on pre-processing time of
BWT and RT in Experiment 3

Text
length

tp(BWT) tp(RT) tp(BWT)/tp(RT)

50M 63.178 20.039 3.152711
100M 135.909 44.195 3.075205
150M 230.356 70.065 3.287771
200M 585.023 97.215 6.017802
250M 948.621 124.916 7.594071
300M 1273.720 161.797 7.872334
350M 2115.930 201.974 10.47625
400M - 293.387 -

-: No record.

The results of the searching times are listed in
Table 8. Both ts(BWT) and ts(RT) grows as n
increases. However, ts(BWT)/ts(RT) is about 1 for n
= 100M; while, it turns to be about 28 for n = 150M
and up to 3649 for n = 200M. The dramatic variance
is due to the requirement of external memory of
BWT in our platform. In the extreme case of n =
350M, ts(BWT) is slower than ts(RT) about 8333
times.

Table 8. Comparison on searching time of BWT
and RT in Experiment 3

Text
length

ts(BWT) ts(RT) ts(BWT)/ts(RT)

50M 0.159 0.136 1.168993
100M 0.161 0.160 1.005254
150M 5.238 0.183 28.68003
200M 756.697 0.207 3649.353
250M 1473.220 0.234 6295.247
300M 2001.190 0.316 6326.153
350M 2897.040 0.348 8333.664
400M - 0.491 -

Figure 9 illustrates the total times spent by BWT
and RT for the eight texts of different lengths. The
superiority of our approach is computationally
demonstrated here. It is obvious that the time of our
approach increases steady when the length of text
increases; while BWT may increase dramatically

owing to the requirement of the external memory.

Figure 9. Comparison on total time spent by BWT

and RT (for different text lengths)

6. Concluding Remarks

To deal with the exact multiple string matching
problem, we design simple and elegant algorithms to
construct the sub-strings of the text as a reference
tree and search the patterns in the tree. Each internal
node X only stores the staring position of one
reference string of length ℓ selected from T and has
ℓ+1 sub-trees rooted by nodes X-0, X-1, ... , X-ℓ. All
sub-strings in T are deliberately distributed into these
sub-trees according to the reference strings in the
internal nodes and physically stored by their starting
positions in the leaf nodes. Specifically, any
sub-string starting at position a in T would be
distributed from X into X-d if the distance between
T(a, a+ℓ1) and RF(X) is d in a recursive way. It is
simply stored as a in some leaf node in the form of
X-0, or X-t (1tℓ) whose size is no greater than k.
Such a simple idea makes the searches of the patterns
easy and efficient. By comparing the ℓ prefix of the
pattern to the reference string in the internal node, we
know which among the ℓ+1 child nodes should be
further searched. When the search goes from the root
to some leaf, a special string matching (for the rest of
the pattern if its ℓ prefix equal to some reference
string; or the whole pattern otherwise) is performed
to determine the solutions. The space complexity is
O(n). The number of character comparisons is
O(nℓ(1(1q0)

h1)/q0) in the per-processing phase
where h is the height of the reference tree and q0 =
(1/)ℓ. In the searching phase, a pattern P needs
O(hℓ) time to determine whether its prefix is equal
to any reference string and uses O(k|P|) to deal with
the special string matching in the leaf node.

With proper arrangements of ℓ and k, our reference
string approach delivers pleasing performance on
solving the exact multiple string matching problem.
In our experiments including the data sets from the
real DNA sequences and the Bible, our approach
outperforms the well know BWT algorithm for both
the pre-processing (tree constriction) and searching
phases. According to the computational results of our
experiments, our approach is more efficient than
BWT. As the length of the text increases, the

performance of our approach degrades gracefully in
terms of time and space; whereas, that of BWT may
reduce dramatically owing to the access of the
external memory to meet its large space requirement.

We emphasize that our approach, in spite of its
simplicity, is advantageous and competitive for the
exact multiple string matching problem. The formal
analysis for the relationship between the height of the
tree and parameter k and the comparison of the
numbers of character comparisons between the
theoretical and computational outcomes are
presented in the appendix. How to find a suitable (or
even the best) setting of ℓ and k in terms of the given
texts with various lengths (n) and patterns with
different sizes (r) and lengths (mi) is worthy of
further investigation. It is also interesting to tackle
the approximate string matching problem by
extending our reference string approach.

References
[1] Boyer, R.S. and Moore, J.S. (1977) A fast

string searching algorithm. Communications of
the ACM, 22, 762-772.

[2] Burrows, M. and Wheeler, D.J. (1999) A block
sorting lossless data compression algorithm.
Technical Report 124. Digital Equipment
Corporation, USA.

[3] Chen, T.W. and Lee, R.C.T (2016) Application
of the BWT method to solve the exact string
matching problem, Proceedings of the 33rd
Workshop on Combinatorial Mathematics and
Computation Theory, Taipei, Taiwan, 13-14
May, pp. 52-57, Tsinghua University Press,
Hsinchu.

[4] Chien, Y.F., Hon, W.K., Shah, R., Thankachan,
S.V. and Vitter, J.S. (2015) Geometric BWT:
Compressed text indexing via sparse suffixes
and range searching. Algorithmica, 71,
258-278.

[5] Colussi, L. (1991) Correctness and efficiency
of the pattern matching algorithms.
Information and Computation, 95, 225-251.

[6] Crochemore, M., Hancart, C. and Lecroq, T.
(2007) Algorithms on Strings. Cambridge
University Press, New York.

[7] Crochemore, M. and Rytter, W. (1994) Text
Algorithms. Oxford University Press, New
York.

[8] Crochemore, M. and Rytter, W. (2002) Jewels
of Stringology. World Scientific Press,
Singapore.

[9] Fischer, M.J. and Paterson, M.S. (1974)
String-matching and other products.
Proceedings of the 7th SIAM–AMS Complexity
of Computation, Providence, RI, 18-19 April,
pp. 113-125. American Mathematical Society,
Providence.

[10] Gusfield, D. (1997) Algorithms on Strings,

Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University
Press, New York.

[11] Horspool, R.N. (1980) Practical fast searching
in strings. Software: Practice and Experience,
10, 501-506.

[12] Kärkkäinen, J. and Sanders P. (2003) Simple
linear work suffix array construction.
Proceedings of the 30th international
conference on Automata, language and
programming, Eindhoven, Netherlands, 30
June - 04 July, pp. 943-955, Springer-Verlag,
Berlin.

[13] Knuth, D.E., Morris, J.H. and Pratt, V.R. (1977)
Fast pattern matching in strings. SIAM Journal
on Computing, 6, 323-350.

[14] Lecroq, T. (1992) A variation on the
Boyer-Moore algorithm. Theoretical Computer
Science, 92, 119-144.

[15] Lecroq, T. (2007) Fast exact string matching
algorithms. Information Processing Letters,
102, 229-235.

[16] Li, H. and Durbin, R. (2009) Fast and accurate
short read alignment with Burrows-Wheeler
transform. Bioinformatics, 25, 1754-1760.

[17] Morris, J.H. and Pratt, V.R. (1970) A linear
pattern-matching algorithm. Technical Report
40. University of California, Berkeley.

[18] Navarro, G. and Raffinot, M. (2000) Fast and
flexible string matching by combining
bit-parallelism and suffix automata. Journal of
Experimental Algorithmics, 5, 1-36.

[19] Navarro, G. and Raffinot, M. (2002) Flexible
Pattern Matching in Strings: Practical On-line
Search Algorithms for Texts and Biological
Sequences. Cambridge University Press, New
York.

[20] Simon, I. (1993) String matching algorithms
and automata. Proceedings of 1st American
Workshop on String Processing, Belo
Horizonte, Brazil, 13-15 September, pp.
151-157, Springer-Verlag, London.

[21] Smith, P.D. (1994) On tuning the
Boyer-Moore-Horspool string searching
algorithm. Software: Practice and Experience,
24, 435-436.

[22] Szpankowski, W. (2001) Average Case
Analysis of Algorithms on Sequences. John
Wiley & Sons, Inc., New York.

[23] Ukkonen, E. (1995) On-line construction of
suffix trees. Algorithmica, 14, 249-260.

[24] Wu, S. and Manber, U. (1994) A fast algorithm
for multi-pattern searching. Technical Report
TR-94-17. Department of Computer Science,
University of Arizona, USA.

