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Abstract

Given a metric graph G = (V,E,w) and a pos-
itive integer k, the Single Allocation k-Hub
Routing problem is to find a spanning subgraph
H∗ of G such that (i) C∗ ⊂ V is a clique of size
k in H∗; (ii) V \ C∗ forms an independent set
in H∗; (iii) each v ∈ V \ C∗ is adjacent to ex-
actly one vertex in C∗; and (iv) the routing cost
r(H∗) =

∑
u,v∈V dH∗(u, v) is minimized where

dH∗(u, v) is the distance of vertices u and v in
H∗. The vertices selected in C∗ are called hubs
and the rest of vertices are called non-hubs. In
this paper, we show that the Single Allocation
k-Hub Routing problem is NP-hard in metric
graph and we give a 2-approximation algorithm to
solve this problem running in O(n2) time where n
is the number of vertices in the input graph.

1 Introduction

The design of hub-and-spoke networks is a key
issue with applications on transportation, e.g., air-
line [8] and cargo delivery systems [14]. The major
concern to design a hub-and-spoke network with
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high quality is to connect a large amount of ori-
gin/destination (O/D) pairs by using a small num-
ber of links. The usage of hub facilities helps to re-
duce the connections between all nodes. To locate
k hubs in hub networks in order to route the traffic
between origin/destination pairs with minimum
cost is the classical hub location problem called
the k-Hub Median problem [13, 15]. Notice that
the general k-hub median problem considers that
each pair of origin/destination has different unit
traffic (flow) cost. We call a hub location problem
multi-allocation, if a demand node can be served
by several hubs. If each demand node can be
served by exactly one hub, the hub location prob-
lem is single-allocation. The k-hub median prob-
lem is NP-hard. Many linear programming-based
and heuristic algorithms were proposed to solved
the k-hub median problem and its variants prob-
lems (see the survey papers [1, 2, 12]).

Another hub location problem, the Single Al-
location k-Hub Center problem, is to choose
a fixed number k of vertices as hubs and to as-
sign each non-hub vertex to exactly one of the
chosen hubs in such a way that the maximum dis-
tance/cost between origin-destination pairs is min-
imized [3, 14]. Unlike the k-Hub Median problem
to minimize the total cost of all origin-destination
pairs, the Single Allocation k-Hub Center
problem is to minimize the poorest service qual-
ity. Chen et al. [4] proved that for any ϵ > 0,
it is NP-hard to approximate the Single Allo-
cation k-Hub Center problem to a ratio 4

3 − ϵ
and gave a 5

3 -approximation algorithm running in
time O(kn3) to solve the same problem. The Star
k-Hub Center problem is another hub location



problem with min-max criterion. It is to pick k
nodes as hubs among the set of demand nodes
connecting with the central given hub c and to
connect each of the remaining demand nodes to
exactly one of the k chosen hubs such that the
longest path in the tree structure network is min-
imized. Chen et al. [5] showed that for any ϵ > 0,
to approximate the Star k-Hub Center prob-
lem to a ratio 1.5 − ϵ is NP-hard and give a 5

3 -
approximation algorithms for the same problem.
Moreover, for input graphs satisfying β-triangle
inequality, i.e., w(u, v) ≤ β ·(w(u, x)+w(x, v)) for
all vertices u, v, x in the input graph G = (V,E,w)
and β ≥ 1/2, it was showed that for any ϵ > 0,
to approximate the Star k-Hub Center prob-
lem to a ratio g(β) − ϵ is NP-hard and r(β)-
approximation algorithms were given in the same
paper where g(β) and r(β) are functions of β [6].

Although numerous research results on solving
various hub location problems in past twenty-five
years [2, 7], the design of approximation algo-
rithms for hub location problems only made very
little progress in the past two decades, especially
for the k-Hub Median problem [10, 11]. In this
paper, we consider a variant of the k-Hub Me-
dian problem that each pair of origin/destination
has the same unit traffic (flow) cost called the Sin-
gle Allocation k-Hub Routing problem. The
Single Allocation k-Hub Routing problem is
to choose a fixed number k of vertices as hubs and
to assign each non-hub vertex to exactly one of
the chosen hubs in such a way that the sum of
distance/cost between all origin-destination pairs
is minimized.

In this paper, we consider a graph G =
(V,E,w) with a distance function w(·, ·) being a
metric on V such that w(v, v) = 0, w(u, v) =
w(v, u), and w(u, v) + w(v, r) ≥ w(u, r) for all
u, v, r ∈ V . Let the routing cost r(G) =
Σu,vdG(u, v) be the sum of all pairs distance in the
graph where dG(u, v) denotes the length of short-
est paths between u and v in G. We list the for-
mal definition of the Single Allocation k-Hub
Routing problem in the following.

Single Allocation k-Hub Center (SAkHC)

Input: A metric graph G = (V,E,w) and a posi-
tive integer k.

Output: A spanning subgraph H∗ of G such that
(i) vertices (hubs) in C∗ ⊂ V form a clique of
size k in H∗; (ii) vertices (non-hubs) in V \ C∗

form an independent set in H∗; (iii) each non-hub
v ∈ V \ C∗ is adjacent to exactly one hub in C∗;
and (iv) the routing cost r(H∗) is minimized.

Figure 1: An example of a single allocation k-hub
routing network with k = 4 where the hubs are
the major post offices and the non-hubs are the
other small post offices.

In this paper, we investigate the approximabil-
ity of the Single Allocation k-Hub Routing
problem.

The paper is organized as follows: In Section 2,
we prove that the Single Allocation k-Hub
Routing problem is NP-hard. In Section 3, we
give a 2-approximation algorithm running in time
O(n2) for the Single Allocation k-Hub Rout-
ing problem where n is the number of vertices in
the input graph.

We close this section with some notation defini-
tions. For a vertex v in a graph H, we use NH(v)
to denote the set of vertices adjacent to v and
NH [v] = NH(v) ∪ {v}. For a vertex set X, we use
NH(X) =

∪
v∈X NH(v) \X. For u, v in graph H,

let dH(u, v) denote the distance between u and v in
H. For a graph H, we use r(H) = Σu,v∈HdH(u, v)
to denote the routing cost of H where dH(u, v) de-
notes the length of shortest paths between u and
v in H.

2 NP-hardness

In this section, we show that the Single Al-
location k-Hub Routing problem is NP-hard.

Lemma 1. The Single Allocation k-Hub
Routing problem is NP-hard.

Proof. We prove the Single Allocation k-
Hub Routing problem is at least as hard as the
well-known NP-hard problem Exact Cover by
3-Sets (X3C) [9]. To show such a statement, we
reduce the the input (U ,S) of the Exact Cover
by 3-Sets problem to the Single Allocation
k-Hub Routing problem.



Exact Cover by 3-Sets (X3C)

Input: A universe U of elements, |U| = 3q and a
collection S of size 3 subsets of U , |S| = m.

Question: Is there a subset S∗ ⊆ S with |S| = q
such that

∪
si∈S∗ si = U?

Let (U ,S) be an input instance of Exact
Cover by 3-Sets.

We construct a metric graph G = (V = U ∪
S ∪ B, E,w) of the Single Allocation k-Hub
Routing problem according to (U ,S). We add a
vertex set B with |B| = m3 which is partitioned
into m groups Bs with size |Bs| = m2 and each Bs

is corresponding to one vertex s ∈ S. For b ∈ Bs,
we say that s is the big brother of b ∈ Bs. Each
vertex in B has exactly one big brother. We define
the cost of edges as follows.

• For u, v ∈ U , w(u, v) = 2.

• For v ∈ U and s ∈ S, if v ∈ s, w(v, s) = 1;
otherwise w(v, s) = 2.

• For si, sj ∈ S, w(si, sj) = 1.

• For b ∈ Bs, w(b, s) = 1.

• For b /∈ Bs, w(b, s) = 2.

• For b ∈ Bs and b′ ∈ Bs′ , if s = s′, w(b, b′) = 2;
otherwise w(b, b′) = 3.

• For b ∈ B and u ∈ U , w(b, u) = 2.

For a feasible solution H, the routing cost will
be computed in two parts: r(H) = r1(H)+r2(H),
where r1(H) is the total pairwise distance between
vertices in B and r2(H) is the remaining distance
of other pairs r2(H) = r(H)− r1(H).

It is not hard to see that G is a metric graph.
Let H∗ be an optimal solution of the Single Al-
location k-Hub Routing problem in G with
k = m and C∗ be the set of k hubs in H∗.

Suppose that S∗ ⊂ S is a solution of X3C. We
now construct a spanning subgraph H by choosing
vertices in S, i.e., C = S. For each v ∈ U , connect
v to a set s ∈ S∗ such that v ∈ s and w(v, s) =
1. All vertices in B are connected to their big
brothers.

Notice that there is exact one such set s ∈ S∗

that contains v since S∗ is a solution of X3C. We
see that

r(H) = rX3C =
∑

u,v∈V

dH(u, v)

=
∑

u,v∈C

dH(u, v) +
∑

u∈V \C,v∈C

dH(u, v)

+
∑

u,v∈V \C

dH(u, v)

=
m · (m− 1)

2
+3q · (1 + 2(m− 1))

+m3 · (1 + 2(m− 1))

+3 · 3q · (3q − 1)

2
− 3 · q

+3 · m
3 · (m3 −m2)

2

+2 · m
3 · (m2 − 1)

2

+3q
(
3 · (m3 −m2) + 2 ·m2

)
= m5(

3m− 1

2
) + o(m5).

It follows that r(H∗) ≤ rX3C .
We then show that if there exists an algorithm

that finds an optima solution H∗ of the Single
Allocation k-Hub Routing problem in G such
that r(H∗) ≤ rX3C , then there exists a solu-
tion S ′ ⊆ S of the X3C problem. Supposed
that H∗ is a solution of the Single Alloca-
tion k-Hub Routing problem on graph G with
r(H∗) ≤ rX3C .

Claim 1. There are less than m2

2 +m many ver-
tices from S not connected to their big brothers in
H∗.

Proof. If there are m2

2 +m vertices from S that
are not connected to their big brothers. Since

there are only m hubs allowed, at least m2

2 of them
are non-hubs and we call these non-hubs B′. The
total pairwise distance between vertices in B is at
least

r1(H
∗) =

∑
u,v∈B

dH(u, v)

=
∑

u,v∈B\B′

dG(u, v)

+
∑

u∈B\B′,v∈B′

dH(u, v)

+
∑

u,v∈B′

dH(u, v).



Since the distance on graph H can not be smaller
than the distance on G for all pairs of vertices, we
have

r1(H
∗) ≥

∑
u,v∈B\B′

dG(u, v)

+
∑

u∈B\B′,v∈B′

(1 + dG(u, v))

+
∑

u,v∈B′

4

≥ m5(
3m

2
) + o(m5)

> rX3C .

This contradicts to the assumption that r(H∗) ≤
rX3C . This completes the proof.

Claim 2. All s ∈ S must be hubs and all elements
from B and U are non-hubs in H∗.

Proof. If there is a non-hub s ∈ S inH∗, there are
at least m2 − m vertices in B that are non-hubs
and not connected to their big brother s. This
contradicts to the fact of Claim 1. Therefore, S
is the hub set in H∗. Since the size of the hub
set is m, we see that all elements in B and U are
non-hubs. This completes the proof.

Claim 3. For all non-hubs v ∈ B ∪ U , if u is the
hub connected to v in H, we have dH∗(u, v) = 1.

Proof. Suppose that there is a non-hub v ∈ B∪U
connected to a hub u with dH∗(u, v) > 1. By
Claim 2 the the hub set of graph H∗ is S, we can
always find another hub u′ with dH(u′, v) = 1.
Since |Bs| = m2, by the help of Claim 1, there

are at least m2

2 − m non-hub in B connected to
u′. Let H ′ be the graph obtained by changing
the connected hub and making each non-hub in
H∗ connected to a hub with distance 1. We have
r(H∗) ≥ r(H ′)+ m2

2 −m. This is contradict to the
assumption that r(H) ≤ rX3C . This completes
the proof.

Claim 4. Each s ∈ C either is not adjacent to
any non-hub in U or is adjacent to exactly three
non-hubs in U .

Proof. In graph H∗, if there are x1 hubs con-
nected to three non-hubs in U , x2 hubs connected
to two non-hubs in U and x3 hubs connected to
one non-hub in U with 3x1 + 2x2 + x3 = 3q and
x1 < q, the pairwise distance between vertices in
U is at least

3 · 3q · (3q − 1)

2
− 3 · x1 − x2

≥ 3 · 3q · (3q − 1)

2
− 3 · q.

We have r(H∗) > rX3C . This contradicts to the
assumption that r(H∗) ≤ rX3C . This completes
the proof.

According to Claims 1–4, the collection of hubs
that are connecting to non-hubs in U is a solution
to the (X3C) problem. Therefore the Single Al-
location k-Hub Routing problem is NP-hard.

3 A 2-approximation algorithm

In this section, we give a 2-approximation algo-
rithm for the Single Allocation k-Hub Rout-
ing problem.

LetH∗ be an optimal solution of Single Allo-
cation k-Hub Routing problem in G and r(H∗)
is the routing cost of H∗. We have the following
lemma.

Lemma 2. Let G be a connected weight graph. If
G′ is a spanning subgraph of G, the routing cost of
G′ is not smaller than the routing cost of G, i.e.,
r(G′) ≥ r(G)

Proof. Since G′ is a subgraph of G and G is a
metric graph, we have dG′(u, v) ≥ dG(u, v). By
definition, routing cost is the sum of all pairs dis-
tance in the graph, we have

r(G′) =
∑

u,v∈V

dG′(u, v)

≥
∑

u,v∈V

dG(u, v) = r(G).

Therefore, we have r(G′) ≥ r(G) and the lemma
is proved.

Let z = argminv∈V

∑
u∈V

dG(u, v) and Z is a

spanning star G with center z, we have the fol-
lowing lemma.

Lemma 3. The routing cost of Z is not greater
than two times the sum of all edge cost in G, i.e.,
r(Z) ≤ 2 ·

∑
u,v∈V

dG(u, v).
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Figure 2: An example of a spanning star Z of graph G with v1 = argminv∈V

∑
u∈V

dG(u, v).

Proof. Let S be the set of all spanning stars of
G, then the weight sum of all spanning stars in S
is equal to adding all edge weight in G twice. In
other words,∑

s∈V

∑
u∈V

w(u, s) = 2 ·
∑

u,v∈V

w(u, v).

Since z = argminv∈V

∑
u∈V

w(u, v), we have

∑
u∈V

w(u, z) ≤
∑

s∈V

∑
u∈V w(u, s)

n

=
2 ·

∑
u,v∈V w(u, v)

n
.

By definition,

r(Z) =
∑

u,v∈V

dZ(u, v)

= (n− 1) ·
∑
u∈V

w(u, z)

≤
2(n− 1) ·

∑
u,v∈V w(u, v)

n

≤ 2 ·
∑

u,v∈V

w(u, v).

Therefore, we have r(Z) ≤ 2·
∑

u,v∈V

w(u, v) and the

lemma is correct.

Algorithm BasicAPXSAkHR

Let U := V . Initially, C = ∅. Construct a span-
ning subgraph H of G by the following steps.

Step 1: Find v1 = argminv∈V

∑
u∈V

w(u, v)

Step 2: Pick k − 1 vertices {v2, . . . , vk} in U . Let
C := C ∪ {v1, v2, . . . , vk} and U := U \
{v1, v2, . . . , vk}.

Step 3: Connect all vertices in U to v1.

Step 4: Return H.

Theorem 1. There is a 2-approximation algo-
rithm for the Single Allocation k-Hub Rout-
ing problem running in time O(n2).

Proof. It is easy to see that in time O(n2) Al-
gorithm BasicAPXSAkHR return a spanning sub-
graph of G satisfying that C is a clique of size k in
H; V \C forms an independent set in H; and each
vertex in V \ C is adjacent to exactly one vertex
in C.

We now show that H is a 2-approximate so-
lution. Let H∗ denote an optimal solution of
the Single Allocation k-Hub Routing prob-
lem and r(H∗) is the routing cost of H∗. Since
H∗ is a spanning subgraph of G, according to
Lemma 2, we have r(G) ≤ r(H∗). By Lemma 3,
we have r(Z) ≤ 2 · r(G) ≤ 2 · r(H∗). Since
Z is a subgraph of H, by Lemma 2, we have
r(H) ≤ r(Z) ≤ 2 · r(H∗). Thus,

r(H) ≤ 2 · r(H∗).

This completes the proof.

4 Concluding remarks

In this paper, we give a 2-approximation of the
Single Allocation k-Hub Routing problem.
For the future work, it is interesting to see whether
the gap between lower and upper bounds can be
reduced. One possibility is to show that for any
ϵ > 0, it is NP-hard to approximate the Single
Allocation k-Hub Routing problem to a ratio
α − ϵ where α > 0. The other possibility is to
design a γ-approximation algorithm for the Sin-
gle Allocation k-Hub Routing problem and
γ < 2.
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