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Abstract

In this note, we give a simpler and more in-
tuitive proof of Witsenhausen′s lemma. For an
addressing of a graph G, it is required that the dis-
tance of any two vertices in G is equal to the dis-
tance of their addresses. Witsenhausen′s lemma
states that the minimum length of an addressing
of G is at least the maximum of the number of
positive and negative eigenvalues of the distance
matrix of G.

1 INTRODUCTION

The well-known Graham-Pollak Theorem[5, 10]
shows that any partition set of the edges of Kn

consists at least n − 1 complete bipartite graphs.
Graham and Pollak proved it in their seminal
paper as a corollary of Witsenhausen′s lemma
[5] that is a consequence of some properties of
quadratic forms and the Sylvesters Law of Inertia.
The inertia of a square matrix is the ordered triple
of the number of positive, zero, and negative eigen-
values. Due to wide applications, generalizations
and extensions of the inertia of the distance ma-
trix corresponding to a graph [1, 2, 8], it still draws
attention of researchers. In fact, there have been
more than five different proofs, without applying
Witsenhausen′s inequality, since Graham and Pol-
lak had published their paper [4, 7, 9, 11, 12]. Our
aim in this note is to give an elementary and more
intuitive proof of Witsenhausen′s inequality.

We review some background as follows. For a
network of computers it is desirable to be able to
send a message from the source to the destination
without the destination knowing that a message
is on its way [10]. We can model the network as
a graph G and assign an address for each vertex.
The address is from {0, 1}k. Sometimes we need
an extra symbol ’*’ to make it possible. The dis-
tance of two vertices in the graph is equal to the

Hamming distance of the addresses. Thus, we con-
sider addresses from {0, 1, ∗}k. The distance be-
tween two addresses is defined to be the number
of places where one has a 0 and the other a 1.
For an addressing of a graph G, we require that
the distance of any two vertices in G is equal to
the distance of their addresses. Denote by N(G)
the minimum value of N for which there exists an
addressing of G with length N .

2 The New Proofs

Theorem 1. (Witsenhausen′s inequality [5]) Let
n+, respectively n−, be the number of positive,
respectively negative, eigenvalues of the distance
matrix (dij) of the graph G. Then N(G) ≥
max{n+, n−}.

We aim at giving a simpler and more intuitive
proof of the above Theorem. We first prove the
following lemma, which yields a simpler proof.

Theorem 2. 1 Let A and B be two symmetric (or
Hermitian) matrices. Then n+(A+B) ≤ n+(A)+
n+(B). It is also true for n−.

To prove Theorem 2, we use a known result for
the eigenvalues of Hermitian matrices.

Lemma 3. [6] If A is Hermitian and x∗Ax > 0
for all non-zero vectors x in a k-dimensional sub-
space, then A has at least k positive eigenvalues,
i.e. n+(A) ≥ k.

2.1 Proof of Theorem 2

Proof. For convenience, let k = n+(A + B), ka =
n+(A) and kb = n+(B). Let u1, . . . , uk be the or-
thonormal eigenvectors corresponding to the pos-
itive eigenvalues of A + B. It is clear that for
any real vector x with x∗(A + B)x > 0 we have

1This theorem is a special case of Thm 2.8.1 in [3].



x∗Ax > 0 or x∗Bx > 0. Thus, u∗iAui > 0 or
u∗iBui > 0 for i = 1, . . . , k.

If k > ka + kb, then u∗iAui > 0 holds for more
than ka ui’s or u∗iBui > 0 holds for more than
kb ui’s. In either case, the satisfying ui’s form a
subspace. While by Lemma 3, it implies n+(A) >
ka or n+(B) > kb. This is impossible! Therefore,
we have k ≤ ka + kb.

2.2 Proof of Theorem 1

To illustrate the idea, we consider the following
example. Let A be the distance matrix of a graph
as follows, where V (G) = {1, 2, 3, 4, 5} and A(i, j)
is the distance between vertex i and vertex j.

A =


0 1 2 2 3
1 0 1 1 2
2 1 0 1 1
2 1 1 0 1
3 2 1 1 0


Let the following be a possible labeling, where
the variable xi relates to the address of the ver-
tex i. For each column, there is a corresponding
quadratic form. In this example we have: (x1 +
x2)(x4 +x5), x1(x2 +x3 +x4 +x5), (x1 +x4)(x3 +
x5), x2(x3 + x5) and x3x5. Summing up the
quadratic forms, we have the form

∑
(i,j) di,jxixj ,

where di,j is the distance between vertex i and
vertex j.

1 2 3 4 5
x1 1 1 1 ∗ ∗
x2 1 0 ∗ 1 ∗
x3 ∗ 0 0 0 1
x4 0 0 1 ∗ ∗
x5 0 0 0 0 0

Let x = (x1, . . . , x5)t be a vector. Then each
quadratic form can be represented as xtBx/2 with
some 0-1 symmetric matrix B of rank 2 and trace
0. Such matrix has two non-zero eigenvalues. In
general, if xixj appears in a quadratic form, then
put ’1’ at the entries B(i, j) and B(j, i). So B is
clearly symmetric with trace 0 and rank 2.

Proof. Let A be the distance matrix of G and sup-
pose we can label the graph with {0, 1, ∗}N and
preserve the distance, where N is the length of the
address. Then there will be N quadratic forms,
each relates to a 0-1 symmetric matrix of rank 2
and trace 0. The sum of these N matricies is sim-
ply A. I.e., there is a sequence of N matricies,
B1, . . . , BN with A =

∑N
i=1 Bi. Since each Bi

has rank 2 and trace 0, Bi has exactly one pos-
itive eigenvalue and one negative eigenvalue, i.e.
n+(Bi) = n−(Bi) = 1. Initially, let A be the
zero matrix, which implies n+(A) = n−(A) = 0.
Then add the Bi’s to A one by one. By The-
orem 2, each time we add Bi to A, n+(A) and
n−(A) each increases at most by 1. Thus it is
clear there should be at least max{n+(A), n−(A)}
additions, i.e. N ≥ max{n+(A), n−(A)}. This
completes the proof.
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