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Abstract

Metagenomic information provides deeper un-
derstanding of the ecological role, metabolism,
and evolutionary history of microbes in a given
ecosystem by analyzing environmental DNA di-
rectly without prior cultivation. In this paper,
we propose data visualization methods and imple-
ment tools to facilitate the bioinformatics analysis
of metagenomic data. The open-source metage-
nomic sequences data analysis softwares were
integrated to construct accessible platforms for
metagenomic data analysis. Microbial ecologists
can now start digging into the accumulating moun-
tains of metagenomic data to uncover the occur-
rence of functional genes and their correlations to
microbial community members. Limitations and
biases in DNA extraction and sequencing technolo-
gies impact sequence distributions, and therefore,
have to be considered.

1 Introduction

The NGS (next generation sequencing)-based
metagenomic data analysis is becoming the main-
stream for the study of microbial communities.
Metagenomics is the study of genomes of multiple
species from environmental samples, such as soil
sea water, and the human gut [4, 8, 31, 2, 12]. The
link with human body environments generated
many studies of microbial community composi-
tion designed to assess its role in various metabolic
pathway and to determine whether it is involved in
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inducing and preventing specific pathological con-
ditions. Such investigations could help to clarify
the pathogenesis of specific diseases and could also
lead to novel disease-markers and to the develop-
ment of novel therapeutic strategies.

Faced with a large amount of data in metage-
nomic research, effective data visualization is im-
portant for scientists to effectively explore, inter-
pret and manipulate such rich information. The
visualization of the metagenomic data, especially
multi-sample data, is one of the most critical chal-
lenges. Visualization has thus been a prominent
aspect of the field, beginning with the analysis
package MEGAN [1,2]. Distilling metagenomic
data into graphical representations, however, is
not a trivial task [28, 22, 33, 16, 17]. The foun-
dation of most metagenomic studies is the assign-
ment of observed nucleic acids to taxonomic or
functional hierarchies. The various levels of gran-
ularity (e.g. ranks) inherent in these classifications
pose a challenge for visualization.

Due to technological improvements in sequenc-
ing methods and sample extraction techniques,
virtually all the microbes from a given environ-
ment can be analyzed in an efficient run, avoid-
ing cultivation steps. In particular, procedures
based on 16S rRNA next-generation sequencing,
which allow the high throughput microbial iden-
tification within a specific metagenome, represent
a powerful means to investigate the composition
and the biodiversity of microbial communities [18].
The enormous amount of next-generation metage-
nomic data generated by such procedures neces-
sitates bioinformatic tools and platforms able to
analyze them. In fact, an accurate taxonomic as-
signment of each microbe in a target environment



is required to evaluate the structure, the biodiver-
sity, the richness and the role of the community
resident in a given environment [25, 9].

In this paper, we provide metagenomic anal-
ysis platforms constructed by integrating QIIME
[6], PEAR [32], UCHIME [11], UPARSE [10], and
other open-source tools. The system is integrated
with Hadoop cloud platform and provides efficient
and reliable solutions. We also introduce feature
selection algorithms for SVMs. The method was
based on correlation coefficient between microor-
ganism and healthy state associated with peri-
odontal disease. Bioinformatic analysis of human
oral metagenomic data are conducted on the plat-
form to identify the microbiome composition. As
a result, the characteristics of human oral environ-
ment and analysis of the diversity and richness of
the microbial community is reported in the paper.

2 Materials and Methods

2.1 16S rRNA Sequence Dataset

We analyze the efficiency of our refined metage-
nomics analysis by performing several sets of ex-
periment on the dataset which are subgingival
plague. The next generation sequencing evalua-
tion of their oral microbial communities was car-
ried out by using Illumina MiSeq after perform-
ing amplicon sequencing on 16S rRNA V1-V2 re-
gion and PCR reaction of 10 to 18 cycles to enrich
the adapter-modified DNA fragments. The mini-
mum length = 35 and error probability < 0.05 was
adopted as the criteria for quality trim processing.

2.2 Bioinformatics Analysis

2.2.1 Pre-analysis Step

The 16S rRNA next-generation sequencing run en-
viroment and oral microbiome to produce biom file
in the pre-processing step which called bioinfor-
matic analysis in Figure 1. The pre-analysis step
includes paired-end reads assembly, barcodes fil-
tering and trimming, and chimeras removing. The
goal of this step is to filtering out noise sequences;
and then, once denoising and additional qual-
ity control processes are completed, chimeric se-
quences should be removed from the dataset. The
following parameters were set for our experiments:
(1) a minimum average quality Phred score of 25
allowed in reads ; (2) 10 bases minimum overlap
required in assembly processing; (3) a minimum

and maximum sequence length in the range of 50-
1000 bases; and (4) a maximum number of am-
biguous bases and length of homopolymers equal
to 6. In addition, to be as stringent as possible, no
any primer mismatches was allowed in our experi-
ments and only a 1.5 maximum number of errors in
barcodes was allowed. The “Gold” database which
is a FASTA file containing the ChimeraSlayer ref-
erence database in the Broad Microbiome Utilities
[14] (http://microbiomeutil.sourceforge.net/) was
used for chimeras detection and removing.

2.2.2 16S rRNAs Detection, Clustering,
and Identification

The method of UPARSE-OTU is used to gen-
erate clusters from NGS. OTU clustering is an
indispensable process in classification analysis.
Dereplication, abundance sort, discard singletons
and OTU clustering compose the OTU picking
procedure. Reads that are singletons after qual-
ity filtering and global trimming are discarded af-
ter the removal of duplicated sequences. Then,
reads with abundances of two or more are sorted
by decreasing abundance and are used as input for
OTU clustering. In OTU clustering precess, reads
are assigned to OTUs by clustering the reads that
match the OTU with ≥ 97% identity. A sequence
is taken in a sequence collection that represents
the presence of a taxonomic unit when it shows a
similarity level above the required threshold (97%
identity). After the OTU picking step, the rep-
resentative sequence for each OTU, namely, the
most abundant sequences in that OTU, is cho-
sen for subsequent analyses in order to reduce the
computational power and the analysis time, with-
out losing the frequency information.

2.2.3 Taxonomic Classification

QIIME can perform the taxonomy assignment us-
ing different methods such as BLAST, RDP [30],
UCLUST, Rtax and Mothur [26]. We adopted
the BLAST against the Human Oral Microbiome
Database [7] (available at http://www.homd.org/)
and Greengenes Database, setting the Maximum
e-Value Cutoff to 0.001 in this study. Reads as-
signed to the Bacteria root but not attaining the
threshold at the chosen taxonomic level fell in the
category “Unclassified”, while sequences not as-
signed to the Bacteria root were classified as “No
Hits”. After taxonomic assignment, QIIME gener-
ates a Biological Observation Matrix (BIOM) file
useful to transfer the obtained data to other tools
for analysis purposes.
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Figure 1: The diversity and abundance analysis of Oral microbiome with two types in phynotype.
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Figure 2: The pie chart of top 10 taxonomic com-
position at genus level.

2.3 Visualization and Relevant Mi-
crobes Analysis

Visualization is an intuitive way to analyze large-
scale alignment data in genomic studies. There are
many visualization tools available. Some are web
browser-based such as UCSC genome browser [13],
LookSeq [19] and JBrowse [27]. Some are stan-
dalone programs such as Tablet [20], GenomeView
[1], MapView [5], IGB [21], IGV [29], SamScope
[24] and so on.

2.3.1 Taxonomic Composition Analysis

Figure 2 shows dominant composition at genus
level with Oral microbiome.

2.3.2 Alpha-diversity Analysis

Alpha-diversity estimates are methods for describ-
ing of the number of types of organisms in a single
sample. These measures can also take into account
the evenness of taxa in a sample. Alpha-diversity
analyses are useful for examining patterns of dom-
inance, rarity and community complexity. We use
open-source software phyloseq package in R to per-
form alpha diversity analysis according to (Case,
Control) and (Health-HH, moderate patients-MP,
severe patients-SP) paired in phenotype with the
observed species, ACE, and Chao 1 metric [15].

Figure 3 and Figure 4 show difference in bacte-
rial abundance and diversity.

2.3.3 Beta-diversity Analysis

Beta-diversity approaches provide a way for com-
paring the microbial community composition be-
tween two samples. With these methods we are
able to simultaneously compare changes in the
presence/absence or abundance of thousands of
taxa in a microbiome dataset and summarize these
into how similar or dissimilar two samples are.
We use cumulative sum scaling (CSS) normaliza-
tion [23], which corrects the bias in the assessment
of differential abundance introduced by total-sum
normalization (TSS) [23]. Figure 5 shows orig-
inal BIOM compared to normalized BIOM by
CSS in CCA, NMDS, PCoA, RDA scaling meth-
ods, where CSS normalization is able to best
separate samples based on different phynotypes
while controlling within-group variance. How-
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Figure 3: The diversity and abundance analysis of
Oral microbiome with two types in phenotype.
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Figure 4: The diversity and abundance analysis of
Oral microbiome with three types in phynotype.
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Figure 5: The comparison of original and normal-
ized BIOMs through CSS in different scaling meth-
ods.

ever, we propose scale normalize approach about
PCA through selected significant taxonomy with
Kruskal-Willis test and scale distance matrix. Fig-
ure 6 shows scale normalization is better than CSS
and original scaling.

2.3.4 Phylogenetic Tree

GraPhlAn [3] is a software tool for producing
high-quality circular representations of taxonomic
and phylogenetic trees. GraPhlAn focuses on
concise, integrative, informative, and publication-
ready representations of phylogenetically- and
taxonomically-driven investigation. We use open-
source GraPhlAn to perform high-quality phyloge-
netic tree with Oral microbiome. Figure 7 shows
annotations of phylum and Class at left legend and



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

g__Staphylococcus

g_
_

[P
re

vo
te

lla
]

g__Odoribacter

g__Porphyromonas g__Filifactor

g_
_Cam

py
lob

ac
ter

g__Actinomyces

g_
_TG5●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5000

0

5000

10000

−20000 −10000 0 10000
PC1 (78.7% explained var.)

P
C

2 
(1

0.
3%

 e
xp

la
in

ed
 v

ar
.)

Type
●●

●●

●●

HH

MP

SP

Original

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

g__Treponema

g_
_

P
al

ud
ib

ac
te

r
g_

_
[P

re
vo

te
lla

]

g__Filifactor g_
_Cam

py
lob

ac
te

r

g__Aggregatibacterg__Actinomyces

g_
_Cor

yn
eb

ac
te

riu
m

g__TG5

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

−8

−4

0

4

8

−5 0 5
PC1 (32.9% explained var.)

P
C

2 
(1

9.
6%

 e
xp

la
in

ed
 v

ar
.)

Type
●●

●●

●●

HH

MP

SP

CSS_normalize

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

g_
_Stap

hylococcu
s

g__[Prevotella]

g__Odoribacter
g__Porphyromonas

g_
_

Fi
lif

ac
to

r

g__Campylobacter

g_
_Acti

nom
yc

es

g_
_

T
G

5

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

0

2

−3 −2 −1 0 1 2 3
PC1 (30.1% explained var.)

P
C

2 
(1

9.
5%

 e
xp

la
in

ed
 v

ar
.)

Type
●●

●●

●●

HH

MP

SP

Scale_normalize

Figure 6: The PCA of Original, CSS normalize
and Scale normalize approach.

Taxonomy p-value
Staphylococcus 0.0000239
Filifactor 0.000125
Campylobacter 0.000513
Odoribacter 0.00425[
Prevotella

]
0.00504

Actinomyces 0.00618
Porphyromonas 0.0064
TG5 0.007

Table 1: Greater than 0.5% abundance taxanomy
with p-value less than 0.01 at genus level.

genus and species in phylogenetic tree.

2.3.5 Bacterial Community Composition

We select taxonomy greater than 0.5% abundance
in each sample at genus level and find out sig-
nificant taxonomy through p-value less than 0.01
with Kruskal-Willis test. Figure 8 shows bacteria
composition of different phynotype and significant
taxonomy among HH, MP, and SP.

2.3.6 Heatmap

We select taxonomy greater than 0.5% abundance
in each sample at genus level and find out signifi-
cant taxonomy through p-value less than 0.01 with
Kruskal-Willis test and cluster samples and genera
to generate phylogenetic. Figure 9 is the heat map
of taxonomic composition at genus level, Porphy-
romonas is the most rich genus in severe samples,
Campylobacterand [Provotella] are the most rich
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Figure 9: The heatmap of taxonomic composition
at genus level.

genus in health samples. Through automatically
cluster samples in x-axis with eight bacteria at
genus level in Table 1, health sample and severe
sample are seperated to different group obviously,
moreover the ambiguous moderate samples are as-
signed to closely severe or health sample clearly.

2.3.7 Correlation Matrix

In order to have deeper understanding of relation-
ship among significant bacteria, we calculated the
correlation coefficients with Pearson. Here, posi-
tive correlation is 1, negative correlation is -1 , and
no correlation is 0 between two bacteria. Table 1
shows the top eight features with lower p-value.
The correlation coefficient between this features
were analyzed, Figure 10 shows the correlation be-
tween the top 8 informative features. It can find
that, Porphyromonas, Fillifactor and TG5 have
more symbiotic relationship.

3 Experimental Results

In this experiment, alpha-diversity analysis of
data mining in Figure 1, Figure 3, and Figure 4
shows that diversity of SP is greater than HH,
but abundance of HH is greater than SP. Beta-
diversity analysis can use CSS normalize approach
to optimal scaling for filtering biases in raw data.
Furthermore, we propose scale approach in PCA
can also optimal scaling among significant bac-
teria. GraphlAn provide high-quality phyloge-
netic tree annotation. We draw pie chart to find
out dominant composition of bacteria community.
Bacterial composition shows taxonomy composi-
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Figure 10: The correlation between the 8 informa-
tion feature with p-value less than 0.01.

tion of each sample and we use Kruskal-Willis
test for performing significant taxonomy. The
heatmap shown in Figure 9 reveals the follow-
ing significant genera Campylobacter, [Prevotella],
Porphyromonas, Staphylococcus, TG5, Fillifactor,
Actinomyces and Odoribacter ; the assoicated p-
values of these genera is summarized in Table 1.
For deeper understanding of relationship among
bacteria, we can calculate correlation coefficient
between significant bacteria .

4 Future Works and Conclusions

For the past few years, metagenomics data have
been growing explosively. The problem is how
to find clue in these datasets. In this paper, we
integrate many open source software system of
metagenomic analysis and use visual analysis tool
for data mining, we use alpha-diversity analysis,
beta-diversity analysis, phylogenetic tree, domi-
nant composition, significant test, heat map, cor-
relatiom matrix. Moreover, in order to filter biases
from analysis data sets, we use CSS normalize ap-
proach and propose our approach to analyze beta-
diversity. Furthermore, we construct several tai-
lored VM (virtual machine) images by OpenStack
hypervisor [15] that can be download from our web
site service to provide services for metagenomics
analysis researchers and interested biologists.
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