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Abstract 
 

Most evolutionary analyses or structure modeling 
are based upon pre-estimated multiple sequence 
alignment (MSA) models. From a computational point 
of view, it is too complex to estimate a correct 
alignment. Hence, increasing or identifying signal 
inside sequence alignment has intensified over the last 
few years. In this work, we show how this problem can 
be partly overcome using the transitive consistency 
score (TCS), an extended version of the T-Coffee 
scoring scheme. Using this local evaluation function, 
we show that one can identify the most reliable 
portions of an MSA, as judged from BAliBASE and 
PREFAB structure-based reference alignments. We 
compared TCS with Heads-or-Tails, GUIDANCE, 
Gblocks, and trimAl and found it to lead to 
significantly better estimates of structural accuracy 
and more accurate phylogenetic trees. 

 
 

1  Introduction 
 

Multiple sequence alignment (MSA) is an 
important initial step for many applications in biology, 
the main applications being phylogenetic 
reconstruction, structural homology modeling and 
functional inference through domain profile 
comparisons. More than 100 publications describing 
novel MSA methods have been published over the last 
30 years [1], and the MSA Wikipedia page lists 47 
available MSA packages 
(http://en.wikipedia.org/wiki/Sequence_alignment_so
ftware). Over the last years, new fronts have started 
emerging in the MSA research. Departing from the 
canonical attempt at generating more accurate 
algorithms and aligners, several groups have started 
exploring the issue of reliability and the feasibility of 
using approximate models along with some index 
indicating the trustworthy parts of the MSA.  

The main reason why MSA reliability fluctuates lies 
in our limited capacity to describe sequence homology, 
especially when dealing with distantly related 
sequences having less than 20% similarity. At this 
level of identity, the homology signal is nearly 

saturated and lower than background noise. When 
doing so, one uses the Needleman and Wunsch 
algorithm in order to estimate the relationship between 
two sequences. NW estimates the optimal edit score 
of two sequences and delivers a pairwise alignment 
having an optimal score. Under most formulations, 
there often exist more than one optimal alignment. In 
most implementations, the algorithm arbitrarily 
resolves the ties that may arise and always returns the 
same alignment. The order in which ties are resolved 
is sometimes referred to as “low-road/high-road”. 
Given two sequences, these arbitrary tiebreaks have 
little consequence. It is worth mentioning that the 
order in which the ties are resolved depends on the 
order of the sequences themselves. By swapping them, 
one may get a different alignment with the same 
optimal score. This issue is important when dealing 
with multiple sequence datasets. 

More recently, a method, named Heads-or-Tails 
(HoT) [2] was reported, based on the observation that 
MSAs may vary when aligning a set of sequences after 
flipping them from left to right. As discussed in 
subsequent publications this effect is due to a 
systematic inversion of the tiebreak order resulting 
from the inversion of the sequences. At the pairwise 
level, this only affects the alignment and not its score, 
but when dealing with an MSA in a progressive 
alignment framework, these effects usually add up and 
may result in significant differences across replicates. 

The main motivation of HoT is not so much to 
reveal MSA instability, but rather to determine to 
which extent this instability can be used to estimate 
model reliability. In this case the authors used the 
estimate in order to show that phylogenetic 
reconstruction can be significantly increased when 
filtering out unstable positions. This concept was 
recently taken a bit further by the GUIDANCE 
approach [7]. In GUIDANCE, the authors showed 
how random guide trees could help identify the less 
trustworthy positions in an alignment, thereby 
increasing its phylogenetic reconstruction potential. 

Our accuracy evaluation method uses consistency 
in order to estimate the reliability of every pair of 
aligned residue in an MSA. We show that this score 
correlates better than HoT or GUIDANCE with 



structural correctness on BAliBASE3 [3] or 
PREFAB4  [4] reference MSAs. We also show that 
this accuracy estimation can be used to weight a 
standard bootstrap procedure in order to significantly 
increase the accuracy of the estimated trees. The result 
is that using that same methods we find the TCS score 
able to outperform all alternative filtering methods for 
the reconstruction of accurate phylogenetic trees, 
either on simulated or empirical datasets. We find this 
effect to be significant on simulated data and even 
more pronounced on real empirical datasets. 
 
 
2  Method 
 

The transitive consistency score (TCS) measure 
presented here is an extended version of the T-Coffee 
scoring scheme. Given a library of pairwise 
alignments, this score is used to estimate the score of 
aligning two residues Ax and By from two sequences A 
and B of the MSA, by identifying all intermediate 
residues Iz from a third sequence I that may be part of 
two pairs AxIz and IzBy. Given the entire pairwise 
library, the reliability score is then calculated as a ratio 
between the sum of the weight of all AxBy pairs linked 
through an Iz residue defined as TCS(Ax,By|Iz), divided 
by the sum of the score of all possible pair 
combinations involving Ax or/and By through an 
intermediate Iz. This formulation, shown below, 
amounts to estimating the fraction of all compatible 
pairs that support the alignment of Ax and By. 

𝑇𝐶𝑆 𝐴%, 𝐵( = 2
𝑇𝐶𝑆 𝐴%, 𝐵(|𝐼-.

/

𝑇𝐶𝑆 𝐴%, 𝐵∗|𝐼-.
/ + 𝑇𝐶𝑆 𝐴∗, 𝐵(|𝐼-.

/
 

Two datasets were used in order to estimate 
structural correctness: BAliBASE3 [3] that contains 
218 sets classified in 5 categories. BAliBASE datasets 
contain several sequences having a known structure 
and have annotated blocks in which the structural 
superposition is considered reliable and fit for 
benchmarking. We also used PREFAB4 [4], a much 
more extensive collection where each set is made of 
about 50 sequences embedding 2 sequences with a 
known structure. The reference alignments come 
along with block indication suggesting the reliable 
positions for benchmark. PREFAB4 is classified into 
four groups: 0~20, 20~40, 40~70 and 70~100 
according to the pairwise identity of reference 
sequence. RV11 of BAliBASE3 and 0~20 of 
PREFAB4 are the most challenging sets because their 
sequence identity falls in the Twilight Zone [5]. RV11 
has been shown to the most informative subset across 
all these categories [1]. 

In order to compare alternative evaluation methods, 
like HoT and GUIDANCE, the score of every aligned 
pair was estimated using TCS, HoT or GUIDANCE. 

Pairs containing residues that are part of the reference 
block were then extracted, labeled as either Proven 
Positives (when they corresponded to the reference) or 
Proven Negatives otherwise. The list of ordered pairs 
was then used to do a Receiver Operator Curve (ROC) 
and the Area Under Curve (AUC) was estimated in 
order to compare performances with the ROCR R 
package [6]. Subgroups of BAliBASE3 and 
PREFAB4 reflect different protein properties. 
Average AUC was computed for each BAliBASE and 
PREFAB subgroup. We also used the provided 
packages to estimate the BAliScore and the PREFAB 
score on all the considered MSAs. 
 
 
3  Results 
 

We first computed the BAliBASE MSAs using 
ClustalW, MAFFT and Muscle (Table 1). We found 
the Sum-of-Pairs (SPs) accuracy to be in broad 
agreement with reported figures in the literature. We 
then used the ROC approach described in the methods 
section to test the capacity of our scoring schemes 
(HoT, GUIDANCE and TCS) to separate between 
accurate and inaccurate pairs of aligned residues (as 
judged from comparison). By this criterion, we found 
the TCS to outperform both GUIDANCE and HoT on 
BAliBASE. We also found the TCS to be much more 
robust across aligners, and being little affected by the 
overall method accuracy. We then refined the analysis 
by only considering the behavior of the best method 
(MAFFT) on the extreme datasets, ‘easy’ and 
‘difficult’, of BAliBASE and PREFAB (Table 2). This 
analysis confirmed the superiority of the TCS scoring 
scheme, which is much less affected than its 
counterparts by variations in accuracy. 

Table 1. AUC/average AUC analysis of different 
confidence schemes for different alignments on 
BAliBASE 3 set. 

 ClustalW MAFFT Muscle 
SPs 0.714 0.807 0.793 
TCS 96.46/98.80 94.44/95.81 94.51/96.37 
HoT 90.95/96.72 82.66/89.87 -* 

GUIDANCE 87.69/95.11 90.28/93.95 94.51/95.16 
*HoT does not support the Muscle aligner. 

Table 2. The average AUC of easy and difficult 
protein families from BAliBASE and PREFAB by 
MAFFT. 

 difficult easy 
 RV11 0~20 RV12 70~100 

SPs 0.536 0.465 0.888 0.942 
TCS 91.11 87.16 96.83 78.98 
HoT 72.63 81.35 78.79 57.96 

GUIDANCE 83.51 86.03 92.64 62.01 

Establishing the relative accuracy of individual 



pairs of residues within an MSA has limited practical 
applications. In reality, one is often more interested in 
deciding objectively between 2 or more alternative 
MSAs. We therefore asked if TCS is a suitable method 
to compare alternative MSAs of the same sequences. 
In order to estimate this capacity, we did a non-
parametric analysis by estimating how often the 
relative accuracy of two alternative MSAs could be 
inferred from the relative TCS (or GUIDANCE) score 
of these same sequences. Such analyses typically yield 
plots like the ones in Figure 1. Given an ideal method, 
such plots should only contain points in the top right 
and the bottom left quadrant, which correspond to 
situations where the two differences have the same 
sign. We used the three alignments (ClustalW, 
MAFFT and Muscle) of each dataset as well as the 
reference, which was treated as a fourth method. For 
each alignment, we estimated the BAliBASE and 
PREFAB score on the one hand, and the TCS (or 
GUIDANCE) score on the other hand. We then 
estimated for each combination dataset/evaluation 
method the proportion of points for which the relation 
of order between the structural evaluation and the 
sequence evaluation were in agreement.  

Figure 1.  Comparison of ∆ SPS and ∆ confidences 
by GUIDANCE (upper) and TCS (bottom) on 
BAliBASE3 using alignments produced by MAFFT, 
MUSCLE and ClustalW as well as the reference 
alignment. All points that have the same algebraic sign 
are correctly classified. 
 

4  Conclusion 
 

In this work, the TCS, a score that is based on a 
library of pairwise alignments is shown to have a high 
discriminative power regarding alignment accuracy. 
An additional advantage is that the library can be 
constructed in many ways (e.g. from structural 
alignments), so that the transitive consistency of the 
input alignment can be judged according to the criteria 
of interest. The library platform is so flexible to 
integrate different information that it can meet a 
variety of different needs. 

The web server is available at                   
http://tcoffee.crg.cat/tcs. 
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