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Abstract 
 
Biological information has grown explosively with the 
accomplishment of Human Genome Project and Next-
generation sequencing. Annotating protein function 
with wet lab experiment is time-consuming, so many 
proteins’ functions are still unknown. Fortunately, 
computational function prediction can help wet lab 
formulate biological hypotheses and prioritize 
experiments. Gene Ontology (GO) is the framework 
for unifying the representation of gene function and 
classifying these functions into three domains namely, 
Biological Process Ontology, Cellular Component 
Ontology, and Molecular Function Ontology. Each 
domain is a hierarchical tree composed of labels 
known as GO terms. Protein function prediction can 
be considered as a multiple label classification 
problem, i.e., given a protein sequence, predict its GO 
terms. We proposed a protein function prediction 
framework based on its homology sequence structure, 
which is believed to contain protein family 
information and designed various voting mechanisms 
to resolve the multiple label prediction problem. 
  
1  Introduction 
 
1.1 Background 

Proteins are biological macromolecules which are 
composed of one or more long chains of amino acids. 
They play a central role in our cell, tissues, organs, and 
bodies as they perform vital functions within 
organisms and take up more than 50% of the dry 
weight of cells. Examples of important functions of 
protein include catalytic activity, regulation of 
metabolism, muscle contraction, structural support, 
antibacterial and antiviral defense, transporting 
molecules, and storage. If we know what function a 
protein carried, we can understand life at the 
molecular level as well as the molecular mechanisms 
of disease. But the speed of annotating protein 
function from wet lab experiments is too slow 
compared with the growth of protein sequence data as 
illustrated in Fig. 1. Fortunately, computational 
function prediction can help wet lab formulate 
biological hypotheses and prioritize experiments.  

Gene Ontology (GO) is the main framework for 
unifying the representation of gene function. It is a 

large project initiated by Gene Ontology Consortium 
in 1998. The Gene Ontology project is composed of 
the annotations, which represent the function terms, 
and Gene Ontology, which models biological aspects 
in a structured way. 

Gene Ontology classify functions into three 
different domains, namely, Biological Process 
Ontology (BPO), Cellular Component Ontology 
(CCO), and Molecular Function Ontology (MFO). 
BPO describes the biological process where gene 
product participates in, for example, transporting 
oxygen. CCO describes the location of the gene 
product, for example, inner membrane, periplasmic, 
or extracellular space.  MFO defines what the gene 
product can do or its ability. Terms are linked to each 
other with a hierarchical structure. The relationships 
are graphed as directed edges and the terms are 
graphed as nodes. Fig. 2 depicts an example of BPO. 
 

Figure 1: The growth of protein database, adopted from 
[2][p. 11] 

Figure 2: Example of Gene Ontology, adopted from [1] 
[p. 26] 



1.2 Challenges 
  In this research, we focus on protein function 
prediction problem. We want to utilize information 
from protein sequence to predict its functions. This 
problem can be considered as a multiple label 
classification problem, because we can treat these 
gene ontology terms as labels and information from 
protein as input data. However, it differs from 
traditional multiple label classification problem in that 
these labels are hierarchical. Fig. 3 gives an 
illustration of the protein function prediction problem. 
 

1.3 Out contributions 
  We proposed a new protein function prediction 
framework extended from PSLDoc [3] and PSLDoc2 
[4], which have been employed to predict protein 
subcellular localization with superior performance. 
We designed three voting mechanisms to resolve the 
multiple label predict problem. One of them 
incorporates global features from homologous protein 
and local features from protein family. The 
performance of these voting strategies has been 
evaluated using benchmark database. All methods 
demonstrated better results than the baseline models. 
 
2  Materials and Methods 
 

We propose a framework composed of three stages 
to predict Gene Ontology with protein sequence 
information. Firstly, we extract gapped-dipeptides 
from PSIBLAST position-specific scoring matrix 
result. Secondly, Principal Component Analysis (PCA) 
is employed to reduce gapped-dipeptides features to 
lower dimension. Finally, we use different weighted 
voting strategies and other pertinent information to 
predict Gene Ontology annotations. The details of 
feature representation, feature reduction, CATH 
information, Gene Ontology prediction, data sets, 
evaluation measures, and baseline models are 
described in the following sections. 
 
2.1 Feature representation by gapped-dipeptides 
  We apply the feature representation scheme from 
PSLDoc and use the same efficient homology 
extension approach adopted by PSLDoc2. Each 
protein is represented by a feature vector based on 
gapped-dipeptides and position-specific scoring 
matrix TFPSSM weighting scheme, called TFPSSM 
vector. TFPSSM vector is generated by the 

evolutionary information from PSSM, which is 
obtained from PSI-BLAST. Fig. 4 shows an example 
of TFPSSM vector. The default parameter settings 
with PSI-BLAST on PSLDoc will take a considerable 
amount of time. Instead, we use the fast parameter 
settings with PSIBLAST in this research. 
 

2.2 Feature reduction by Principal Component 
Analysis 
  Both PSLDoc and PSLDoc2 perform feature 
reduction on TFPSSM. PSLDoc utilized probabilistic 
latent semantic analysis (PLSA) [5] and PSLDoc2 
employed correspondence analysis (CA), which is a 
generalized principal component analysis. In this 
study, we use PCA to reduce TFPSSM's feature 
dimensions, which explain 95% of the variance. 
 
2.3 CATH information 
  CATH-Gene3D [6] is a database that stores protein 
information of known proteins sequences based on 
CATH [7] protein structure classification schemes. 
CATH-Gene3D data are clustered into functional 
families, and those proteins having the same 
functional family (FunFam) will possess similar 
sequences, structures, and functions. 
  We adopt the HMMer model of FunFam released 
on CATH Gene3D web server to predict the FunFam 
of query protein and protein in training data. In our 
experiment, we set best domain E -value threshold as 
10-5. That is, when HMM scan reports a FunFam best 
domain E-value smaller than 10-5, we will consider 
this protein as one of this FunFam. 
 
2.4 Gene Ontology prediction by weighted vote and 
nearest neighbor algorithm 
  We designed three approaches to utilize TFPSSM 
vector and nearest-neighbor algorithm to predict 
protein function. 

2.4.1 TFPSSM-1NN 
  The first method is TFPSSM with one nearest 
neighbor. We will find query protein's nearest 
neighbor in the training data. Distance metric is the 
Euclidean distance. Then, the query protein will be 
predicted as the same GO terms of its nearest neighbor. 

Figure 3: Protein Function Prediction Problem, adopted 
from [2][p. 8] 

Figure 4: TFPSSM, adopted from [3][p. 6] 



Because we want all proteins to be predicted and 
simplify the method, the confidence score of 
prediction is simply set to one.  

2.4.2 TFPSSM-25% 
  The second method is TFPSSM with K nearest 
neighbors and weighted voting based on Euclidean 
distance. The number K is dynamically selected based 
on the third quartile of 1-nearest neighbor distance in 
the training data. After selecting K nearest neighbors, 
we use the inverse of distance as the weight to vote 
GO terms. In the end, these voting results will be 
normalized to the range 0 to 1. 

2.4.3 TFPSSM-CATH 
  The third method is TFPSSM with K nearest 
neighbors and weighted voting based on CATH 
FunFams intersection amount. K is chosen in the same 
way described in TFPSSM-25%, but a different voting 
system is employed. With CATH FunFam HMMer 
model, we can obtain information regarding each 
proteins' FunFams, so we use the intersection amount 
of query protein and K nearest neighbor proteins as 
voting weight. Similarly, these voting results will be 
normalized to 0 to 1. 
 
2.5 System architecture 
  In this study, we propose a protein function 
prediction framework based on homology extension 
and protein family. Fig. 5 illustrates our current 
system architecture. 
 
2.6 Data sets 
  We use data from the second and the third Critical 
Assessment of Functional Annotation (CAFA) in our 
experiments. CAFA is established by Function 
Special Interest Group (Function-SIG), whose aim is 
to advance the protein function prediction research by 
comparing all published computational methods in an 
unbiased evaluation. At the end of CAFA2, 
FunctionSIG released the training data, the testing 
data, and the evaluation metrics of each method that 

have been evaluated. We use the CAFA2 training data 
to train our model and predict the CAFA2 benchmark 
dataset, in order to compare our framework with other 
methods. Additionally, we include the training data 
from CAFA3. Because the CAFA3 is still in the 
evaluation phase, there are no ground truth labels of 
the testing data. Still, we can use CAFA3 training data 
to verify the robustness of our proposed methods 
using cross-validation. Table 1 gives a short summary 
of each dataset, including the number of protein 

Figure 5: System architecture of proposed method for 
prediction of protein functions. 

 

 
Table 1: Statistics of the Datasets. The number of protein sequence, number of GO term, and median annotation number of each 
protein in BPO, CCO, and MFO of each dataset.	



sequence, the number of GO term, and the median 
annotation number of each protein in BPO, CCO, and 
MFO. 
 
2.7 Evaluation measures 
  There are two major evaluation types of protein 
function prediction, namely, protein-centric, and 
term-centric [9]. In this research, we focus on protein-
centric evaluation. The prediction result for each term 
will have a predicted score between 0 and 1, which is 
considered as a confidence score. Precision (pr), recall 
(rc), and the resulting 𝐹"#$ are defined as follows: 

where 𝑃&(𝜏) is the set of terms that have predicted 
scores greater than or equal to τ for a protein i, 𝑇& is 
the experimentally determined set of terms for that 
protein, 𝕝(∙) is the indicator function, 𝑚(𝜏) is the 
number of protein with at least one predicted score 
greater than or equal to 𝜏, and N is the protein number 
of the entire testing set. 
 
2.8 Baseline models 
  Two baseline models, namely, Naïve and BLAST 
are selected for comparative performance evaluation 
in our experiments. Sources for these two baseline 
models are adopted from the Matlab evaluation codes 
for the second CAFA experiment [8]. 
  The Naïve method predicts terms based on the 
frequency in the training data, and the normalized 
frequency will be the score of the predicted term. As 
a result, in Naïve method, each query protein will be 
predicted to the same result. The BLAST method 

predicts terms based on Basic Local Alignment Search 
Tool (BLAST) searching result against the training 
data. BLAST will first return the high local alignment 
identity proteins of the query protein, it will then 
predict term based on these hits proteins, and convert 
e value to score. 
 
 3  Results and discussion 
  Table 2 summarizes our performance on training 
dataset (five-fold validation) and CAFA2 testing 
dataset using the three approaches we discussed 
earlier, respectively. The threshold of TFPSSM-25% 
and TFPSSM-CATH to dynamically selecting K 
nearest neighbors is the third quartile of 1-nearest 
neighbor distance from non-redundant training data 
protein. 
 
3.1 CAFA2 and CAFA3 training dataset five-fold 
validation 
  TFPSSM-1NN demonstrated superior performance 
than the two baseline models on both CAFA2 and 
CAFA3 datasets, a clear indication that TFPSSM 
vector representation is effective in addressing protein 
function prediction problem. Both TFPSSM-25% and 
TFPSSM-CATH (derived from TFPSSM-1NN) 
achieve better performance than TFPSSM-1NN. 
 
3.2 CAFA2 testing dataset 
  The performance on CAFA2 testing dataset is 
worse than those of CAFA2 and CAFA3 training 
dataset in five-fold validation. In addition, our 
performance is worse than that of the Naïve method in 
CCO category. The paper detailing CAFA2 results [9] 
provides some explanations for this observation. One 
reason is that the GO terms annotated on CAFA2 
testing protein are more general than terms annotated 
on training data protein. The phenomenon is more 
prominent the CCO domain, thereby giving Naïve 
method more competitive advantages. 
 

Table 2: The performance of CAFA3 training, CAFA2 training and CAFA2 testing. 



4  Conclusions 
  The framework we proposed exhibited superior 
performance compared with baseline models: BLAST 
and Naïve, in CAFA2 and CAFA3 training data with 
fivefold validation. However, there is still a lot of 
room for improvement if we compared our results 
with leading methodologies. Fig. 6 contrasts the 
performance of top-10 entries, baseline models, and 
our method. Even so, our framework still is 
competitive in the CCO category. 
  The third method (TFPSSM-CATH) combined 
protein family information and sequence structure, so 
it should demonstrate better performance than others. 
On average, the performance of TFPSSM-CATH is 
better than the other two voting schemes, but the 
difference is marginal. 
  In the future, we will design better voting strategies 
for TFPSSM-CATH and incorporate other machine 
learning techniques to achieve better performance. 
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Figure 6: Performance compared with top-ten and baseline models on CAFA2 testing dataset 


