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| Give the best, worst and average numbers of exchanges needed in ||
! bubble sort, whose definition can be found in almost any textbook ||
f on algorithms. The best case and worst case analyses are trivial.

The average case analysis can be done by the following process:

(1) Define inversion of a permutation. Let a, a,, ...,a, be a |}
permutation of the set (1, 2, ... .n). If i <J and a@; < a;, then '
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|
i (a;, a;) is called an inversion of this permutation. For instance, | E \/2,7 sh |
‘ (3.2)(3, 1) (2, 1) (4, 1) are all inversions of the permutation | ; oWzl
{ By 24, 13
; (2) Find out the relationship between the probability that a given (1) =
f permutation has exactly k inversions and the number of
; permutations of n elements having exactly k inversions. ' 1 \ /
‘ (3) Using induction, prove that the average number of exchanges ; g 5 G Showit
needed for bubble sort is n(n — 1)/4.
2.2 Write a program for bubble sort. Run an experiment to convince _ T(n)=
yourself that the average performance of it is indeed om). 1 2.9 ReadTl
2.3 Find the algorithm of Ford-Johnson algorithm for sorting, which is . - theorem
reproduced in many textbooks in algorithms. It was shown that this | 2.10 Show t
algorithm is optimal for n <12. Implement this algorithm on a . perform
computer and compare it with any other sorting algorithm. Do you i \/2_“ Givanee
like this algorithm? If not, try to determine what is wrong with the _ e
analysis. '. (a) 27,
2.4 Show that to sort five numbers, we need at least seven comparisons. 3 (b) n'?
Then demonstrate that the Ford-Johnson algorithm does achieve b (c) n’,
this lower bound. E 2.12 Is Qn
2.5 Show that to find the largest number in a list of n numbers requires ‘ : integers
| at least n — 1 comparisons. ]

2.6 Show that to find the second largest one of a list of n numbers, we
i need at least n — 2 + [log n] comparisons.
Hint: We cannot determine the second largest element without
having determined the largest element. Thus,the analysis can be
done by the following:

(1) Show that at least n — 1 comparisons are necessary (o find the _
largest element. 1

(2) Show that there is always some sequence of comparisons which 3
forces the second largest one to be found in [log n] — 1
additional comparisons.
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Show that if T(n) = (:T(i)-f-n‘. then for n a power of b and ||
h i

‘f (e I“!—'b" ):

(1) =k, T(n) = ka'®®" +n° *}— ((_f =]
a—b' b

Show that if T(n)=+nT( \."'n)+n. T(m) = k and m:n”z‘. then
T(n):kn'z‘ 2! + in.

Read Theorem 10.5 of Horowitz and Sahni 1978. The proof of this
theorem gives a good method to find a lower bound.

Show that binary search is optimal for all searching algorithm
performing comparisons only.

Given the following pairs of functions, what is the smallest value
of n such that the first function is larger than the second one.

2
(a) 2", 2n".

1.5
(b) n'~, 2nlog, n.
3 < 2.8
(S} w2, B

2 Is Qnlog n) time a lower bound for the problem of sorting n

integers ranging from 1 to C, where C is a constant? Why?
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