Department of Computer Science and Engineering National Sun Yat-sen University Data Structures Quiz, Chapter 5, Dec. 7, 2015

- 1. Extend the array representation of a *complete binary tree* to the case of *complete trees* whose degree is d, d> 1. Develop the formulas for the parent and children of the node stored in position i of the array. Here, the root of the tree is stored in position 1 of the array. (20%)
- 2. Write a recursive C++ function to count the number of leaf nodes in a binary tree. (40%)

```
class TreeNode {
    int data;
    TreeNode *leftChild, *rightChild;
};
int count( TreeNode *root)

// Return number of leaf nodes in the binary tree pointed by "root".

// Return 0 if the binary tree is empty.
{

Please write the body of count ( ).
```

3. Write a C++ function to insert a new node r as the right child of node s in a threaded binary tree. The right subtree of s becomes the right subtree of r. (40%)

Please write the remaining body of insertR ().

```
Answer:
1. parent of i: \left\lfloor \frac{i+(d-2)}{d} \right\rfloor
children of i: di-d+2, di-d+3, di-d+4, ..., di, di+1
2.
int count( TreeNode *root)
{
     if(root == 0)
          return 0;
     if(root->leftChild == 0 && root->rightChild == 0) //必須寫以下這兩行
          return 1;
     else
          return count(root->leftChild) + count(root->rightChild)
}
3. void InsertR(treeNode *s, treeNode *r)
{// Insert r as the right child of s.
  r -> rightChild = s -> rightChild;
  r -> rightThread = s -> rightThread;
  r \rightarrow leftChild = s;
  r -> leftThread = True; // leftChild is a thread
  s -> rightChild = r;
  s -> rightThread = false;
  if (! r -> rightThread) {// rightChild is not a thread
     ThreadedNode <T> *q = InorderSucc (r);
     // return the inorder successor of r
     q \rightarrow leftChild = r;
  }
```

}