Department of Computer Science and Engineering
National Sun Yat-sen University
Data Structures Quiz, Chapter 5, Dec. 7, 2015

1. Extend the array representation of a complete binary tree to the case of
complete trees whose degree is d, d> 1. Develop the formulas for the
parent and children of the node stored in position i of the array. Here,
the root of the tree is stored in position 1 of the array. (20%)

2. Write a recursive C++ function to count the number of leaf nodes in a
binary tree. (40%)
class TreeNode {

int data;

TreeNode *leftChild, *rightChild;
Y
int count(TreeNode *root)
// Return number of leaf nodes in the binary tree pointed by “root”.
// Return O if the binary tree is empty.

{

Please write the body of count ().

} // end of count ()

3. Write a C++ function to insert a new node r as the right child of node s
in a threaded binary tree. The right subtree of s becomes the right
subtree of r. (40%)

class TreeNode {

int data;

TreeNode *leftChild, *rightChild;

bool leftThread,rightThread; //leftThread, rightThread

/[* if rightThread == true, then rightChild is a thread
(pointer to inorder successor)
otherwise, rightChild is a pointer to the real right child */

Y

void insertR(TreeNode *s, TreeNode *r)

{

Please write the remaining body of insertR ().

if (! r->rightThread) {// rightChild is not a thread
treeNode *q = InorderSucc (r); // return inorder successor of r
q -> leftChild =r,

}
} // end of insertR ()

Answer:

1. parent of i: l@]

children of i: di-d+2, di-d+3, di-d+4, ..., di, di+1

2.
int count(TreeNode *root)
{
if(root == 0)
return O;
if(root->leftChild == 0 && root->rightChild == 0) //% 8 11T & (7
return 1;
else
return count(root->leftChild) + count(root->rightChild)
}

3. void InsertR(treeNode *s, treeNode *r)
{/l Insert r as the right child of s.
r -> rightChild = s -> rightChild;
r ->rightThread = s -> rightThread;
r-> leftChild =s;
r -> leftThread = True; // leftChild is a thread
s -> rightChild =r;
s -> rightThread = false;
if (! r -> rightThread) {// rightChild is not a thread
ThreadedNode <T> *q = InorderSucc (r);
/[return the inorder successor of r
g -> leftChild =r;
}
}

