Department of Computer Science and Engineering National Sun Yat-sen University

Advanced Programming and Practice - Final Exam., June 6, 2024

- 1. Explain each of the following terms. (20%)
 - (a) Euler circuit in a graph
 - (b) best first search
 - (c) sum of subset problem
 - (d) coloring problem in a graph
 - (e) Huffman codes
- 2. (a) What is the *knapsack* problem? (5%)
 - (b) Design a *greedy* algorithm for solving the above problem. (10%)
- 3. (a) Present an algorithm for finding all 2-D maxima in a set of 2-D points. (10%)
 - (b) Analyze the time complexity of your algorithm. (5%)
- 4. (a) Explain the *longest common subsequence* problem. Please give an example to describe your answer. (5%)
 - (b) Present a *dynamic programming* method for solving the above problem. And analyze the time complexity of your algorithm. (10%)
- 5. (a) Let C(*n*,*m*) denote *m*-combinations selected from {1,2,...,*n*} without repetition. Each *m*-combination is represented with *lexicographic order*. For example, the two combinations 251 and 512 are the same, and they are represented with 125. These *m*-combinations in C(*n*,*m*) are represented with the *lexicographic order*. For example, all 3-combinations selected from {1,2,3,4} in lexicographical order are 123, 124, 134, 234. What is the next one of 13589 in C(9,5)? (5%)
 - (b) Let P(n,m) denote *m*-permutations selected from $\{1,2,...,n\}$ without repetition. The *m*-permutations in P(n,m) are represented with the *lexicographic order*. What is the next one of 81397in P(9,5)? (5%)
- 6. The logic-OR and logic-AND operations can be implemented by the linear constraints. For example, the implementation of w = x OR y is

```
w \ge x

w \ge y

w \le x + y (+: integer addition)

w, x, y \in \{0,1\}.
```

With the similar concept, please present the implementation of w = x AND y. (10%)

7. In the *range minimum query* (RMQ) problem, we are given a list of integers $T = \langle t_1, t_2, ..., t_n \rangle$, where the elements in T are not sorted. The goal of the problem is to build

a data structure during the preprocessing stage so that the minimum value of a specified range can be determined efficiently during the query stage. For example, consider T=<5, 3, 10, 7, 8, 5, 9, 4> and n=8. The answer of RMQ for the range [2, 5] is 3, which is the minimum of 3, 10, 7, 8 (i.e. t_2 , t_3 , t_4 , t_5). As more examples, the answers of RMQ for [1, 5], [3, 5] and [5, 7] are 3, 7 and 5, respectively. Please design an algorithm for solving this problem such that the preprocessing stage requires O(n) time and each query requires $O(\log n)$ time. You have to analyze the time complexity of your algorithm. (15%)

Answers:

- 5. (a) 13678
 - (b) 81423
- 6. logic-AND

```
w \le x

w \le y

w \ge x + y - 1 (+: integer addition)

w, x, y \in \{0, 1\}.
```

7. 採用 segment tree (線段樹)。細節請查詢 網路說明。