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Department of Computer Science and Engineering 

National Sun Yat-sen University 

Design and Analysis of Algorithms - Final Exam., Dec. 26, 2023 

 

1. Explain each of the following terms. (20%) 

(a) NP-hard, NP-complete (b) quadratic nonresidue problem 

(c) skew heap (d) Euler circuit of a graph 

(e) pairwise independent property of move-to-the-front in sequential search 

2. In the 0/1 knapsack problem, there are n objects with knapsack capacity M, where 

the profit of each object i is denoted by pi and the weight is denoted by wi, 1  i  

n. Please present the dynamic programming formula for solving the 0/1 knapsack 

problem. In the formula, let fi(Q) be the maximum profit obtained by objects 

1,2,3,…,i with capacity Q. (10%) 

3. Given two sets A and B, each consisting of n integers, design an efficient algorithm 

to check whether A is equal to B or not. And analyze the time complexity of your 

algorithm. Note that your algorithm should be in O(nlogn) time. (10%) 

4. Explain the searching strategies: depth-first search, breadth-first search and best-

first search. What data structures are used in these strategies? (12%) 

5. Explain the common properties among the following problems: convex hull, one-

center, constrained one-center, rectilinear m-center. And give the differences 

between them. (12%) 

6. Present an algorithm for solving the shortest path (from a single source) problem 

on a graph. Analyze the time complexity of your algorithm. (12%) 

7. In the bottleneck traveling salesperson problem, the goal is to minimize the longest 

edge in the solution. Assume that h(G) can determine whether a graph G has a 

Hamiltonian cycle or not. Please present a greedy method for solving this problem 

utilizing h(G). Note that there is no need to design h(G); you can directly call h(G). 

(12%) 

8. Prove that the sum of subset decision problem polynomially reduces to the 

partition problem. (12%) 
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Answers 

1. 

(a) 

NP-hard: the class of problems to which every NP problem reduces. 

NP-complete (NPC): the class of problems which are NP-hard and belong to NP. 

(b) 

GCD(x, y) = 1, y is a quadratic residue mod x if z2 = y mod x for some z, 0 < z < x, 

GCD(x, z) = 1, and y is a quadratic nonresidue mod x if otherwise. 

(c) 

Skew heaps may be described with the following recursive definition: 

 A heap with only one element is a skew heap. 

 The result of skew merging two skew heaps sh1 and sh2 is also a skew heap. 

(d) 

A circuit that uses every edge of a graph exactly once. 

(e) 

For any sequence S and all pairs P and Q, # of interword comparisons of P and Q is 

exactly # of interword comparisons made for the subsequence of S consisting of 

only P’s and Q’s. 

 

2. 

fi(Q) = max{ fi-1(Q), fi-1(Q-Wi)+Pi } 

f0(0) = fi(0) = f0(Q) = 0 for 1≤i≤n, 0<Q≤M 

 

3. 

分別將 set A和 set B裡面的整數由小到大做排序，set A = {a1, a2, ..., an} 且 set 

B = {b1, b2, ..., bn}，接著進行比較，若 a1= b1, a2 = b2, ..., an = bn，則 set A等

於 set B，排序需要 O(nlogn)的時間，而比較每一項是否相等需要 O(n)的時間，

Time complexity為 O(nlogn) + O(n) = O(nlogn) 

 

4.  

Depth-first search: DFS is a traversal approach in which the traverse begins at the 

root and explores as far as possible along each branch before backtracking.. DFS 

uses Stack data structure.  

 

Breadth-first search: BFS is a traversal approach , which explores all the neighboring 

nodes at the same level before moving to the next level.. BFS uses Queue data 

structure. 

  

Best-first search: The idea of Best-first search is to use an evaluation function to 

decide which adjacent is most promising and then explore. Best-first search uses 

priority queue (heap) data structure. 
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5. 

Common properties: 以最小的範圍，將全部的點包圍起來。 

不同之處： 

Convex Hull:  

以凸多邊形，包含全部的點。沒有中心點的概念。 

One-center :  

以一個最小的圓，包含全部的點。圓心是中心點。 

Constrain one-center :  

以一個最小的圓，包含全部的點。圓心是中心點，但圓心須在所給定的一條

直線上。 

Rectilinear m-center: 

以 m個正方形(邊為垂直於 x與 y軸)，包含全部的點，邊長為最小。正方形

正中間為是中心點。 

 

6. 

Dijkstra’s Algorithm: 

Input:  點集合 V, 起點 S, cost matrix E 

Step1:  設計一個一維矩陣 dis[]用來記錄 S到各個點當前的最短路徑，若無路

徑則設無窮大。 

Step2:  從 dis[]挑選沒被選過的點中與 S 距離最小的點(i)，找出與該點相連接

的點(j)，並進行鬆弛操作更新 dis[] : dis[j] = min{dis[j], dis[i]+E[i][j]} 

 

Step3: 重覆做 step2 直到所有點都走過就結束。 

 

Time Complexity: 

在 Step2進行 dis[]更新時會花 O(n)時間，總共會進行 n輪更新，因此時間複

雜度維 O(n2), 其中 n=|V| 

 

7. 

G = (V, E)，若 G中的 Hamiltonian cycle有解，則此 cycle中的 longest edge可

能為 E中的最長邊(u,v)，因此當 h(G)為 true，從 G中刪除(u,v)，G’=(V,E’), E’=E-

(u,v)，重新判斷 h(G’)是否為 true，重複上述步驟直到 Hamiltonian cycle無解，

最後一個有解的 G的 Hamiltonian cycle的 longest edge最小 

 

8. 

An instance of the Subset Sum Problem (SSP) is given with a set of integers A = { a1, 

a2, ..., an } and a target sum C. The SSP problem is to decide whether there exists a 

subset of A whose sum is exactly equal to C. 
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Given a set of integers S, the Partition Problem (PP) problem is to decide whether B 

can be partitioned into two disjoint subsets B1 and B2 such that the sum of the elements 

in B1 is equal to the sum of the elements in B2. 

 

Reduce SSP to PP: 

1. Given an instance of SSP with a set of integers A = { a1, a2, ..., an } and a target 

sum C. 

2. For PP, construct an instance of with a new set B = { b1, b2, ...,bn, bn+1 bn+2 },  

where each bi = ai for 1 ≤ i ≤ n, and bn+1 = C+1 and bn+2 = (Σ from i=1 to n ai ) + 1 - C. 

 

The sum of all elements in B is (Σ from i=1 to n bi )+ bn+1 + bn+2 = (Σ from i=1 to n 

ai )*2 + 2. 

 

We want to prove that there exists a solution of SSP (a subset S ⊆ A such that Σ for 

ai in S ai )= C if and only if there exists a partition in PP (B can be partitioned into 

two subsets whose sums are equal). 

 

Subset Sum Problem (SSP) => Partition Problem (PP) 

If there is a subset S ⊆ A whose sum is equal to C, then there exists a partition of B 

into B1={ bi | ai ∈ S } ∪ { bn+2 } and B2={ bi | ai ∉ S } ∪ { bn+1 }. The sum of 

elements in B1 will be (Σ for ai in S ai ) + bn+2 = C + (Σ from i=1 to n ai ) + 1 - C = (Σ 

from i=1 to n ai )+ 1, which is equal to the sum of B2, (Σ for ai ∉ S ai ) + bn+1 = (Σ 

from i=1 to n ai) - C + C + 1 = (Σ from i=1 to n ai )+ 1. 

 

Partition Problem (PP) => Subset Sum Problem (SSP) 

Conversely, if there exists a partition of set B into two subsets with equal sums, 

because bn+1 and bn+2 cannot be in the same subset (since their sum is greater than the 

sum of all other elements), one of them must be in subset B1 and the other in B2. 

Without loss of generality, assume bn+1 ∈ B2 and bn+2 ∈ B1. As the sum of all elements 

in B is (Σ from i=1 to n ai )*2 + 2, and the sums of B1 and B2 are equal, the sum of the 

elements is B1 is (Σ from i=1 to n ai ) + 1. 

   We have bn+2 = (Σ from i=1 to n ai ) + 1 - C. So the sum of the other elements from 

A in B1 must be C, proving the existence of a solution to the SSP. 

 


