Department of Computer Science and Engineering
National Sun Yat-sen University
Data Structures - Final Exam., Jan. 10, 2022

. Let b, denote the number of distinct binary trees with n nodes. Please present the
recurrence formula for computing b,. (10%)

. Explain the radix sort method with radix=10 by the input 13, 2, 16, 31, 8, 28, 4, 21,
6, 18. You should give the explanation of the radix sort method, and then present
the list at the end of each pass. If you do not give the explanation, then you will get
no point. (10%)

. In the hash method, suppose that a rehash function 4,(x)=(5i+x) mod 13,7 >0, is
applied sequentially when a new element is inserted into the hash table, and a hash
collision occurs. In other words, In other words, 4() is applied for the first time;
hi() is applied if a hash collision occurs (first collision); /() is applied if a hash
collision occurs again (second collision); and so on. What is the content of the hash
table after the elements 48, 22, 74, 11, 29, 32, 16, are inserted sequentially into an
empty hash table of size 13, indexed as 0 through 12?7 (10%)

. (a) Please give the definition of an AVL binary search tree. (5%)

(b) Assume that the initial AVL tree is empty. Please draw the AVL tree after the
numbers 11, 13, 8, 4 and 2 are inserted into the tree sequentially. (5%)

(c) Please draw the AVL tree after the number 6 is inserted into the above AVL
obtained in (b). (5%)

. (a) For a B-tree of order m (m-way), how many children are there for each non-root
node? How many children are there for the root node? (6%)
(b) What is difference between a B-tree and B+-tree? (4%)

. Please draw the tree after 120 is deleted from the following B-tree of order 5. (5%)

80 126 150
(68 73) (0120) (335 142) :

. Explain each of the following terms. (16%)
(@) threaded binary Tree

(b) internal sorting

(c) dynamic hashing

(d) splay tree

. Write a recursive C/C++ function to count the number of positive numbers (greater

than zero) in a binary tree, where each node stores one integer number (not a binary
search tree). (12%)

class TreeNode {
int data; // the number stored in the node
TreeNode *leftChild, *rightChild,

¥

int Positive(...) or void Positive(...)

{

Please write the body of the function.

} // end of Positive()

9. Please write a recursive C/C++ function to perform the recursive merge sort. To
implement your merge sort, you can call the following 2-way merge function as a
basic function, which merges two sorted arrays into a single one. In other words,
you need not write the body of the 2-way merge function. (12%)

void twoway(int a[|, int b[], int c[], int na, int nb)

//"a[] and b[] are input sorted arrays

// c[] 1s the output sorted array after a[| and b[] are merged
// na and nb are the lengths of a[] and b[], respectively
/IYou can call twoway(...) directly.

int merge_sort(...) or void merge sort(...)
//complete the parameters by yourself
// merge sort(...) 1s a recursive function.

{

Please write the body of the function.

}+ // end of merge sort ()

1.
n-1

b,=>bb_,, n=l,andb,=1hb =1
i=0

2.
[1] 2] [3] [4] [51 [6] [7] [8] 91 [10]
[13 {2 {16 {31 [8 {28 [4 {21 {6 {18]
e[0] e[l] e[2] e[3] e[4] e[5] e[6] e[7] e[8 e[9]
6]
Pass 1
|3T1||%||13||?| 8 |
flo] f{1] fl2] f31 f4] fI5] fle] f[7] 8] f]9]
[1] 21 [3] [4] [51 [6] [7] [8] [91 [10]
|31 21 2 {13} 4 =16 6 | 8 28 18]
e[0] e[1] e[2] e[3] e[4] e[5S] e[6] e[7] e[8] e[9]
| 8 |
| 6 |
Pass2] [g] [28]
1) 1
2] [13] [21] [31]
f f

T
ffo] fl1] fl2] 73] f4] fI5] fle] f7] 8] f]9]

[1] [2] [3] [4] [5] [6] [7] [8] [91 [10]
|2 4 6 | 8 13— 16 F—{ 18 =] 21 | 28 }—{ 31 |

Radix sort: & i Ff 7 &2 B is Al s g B2 P e SR B 4o 2
> 5 1R *x?bucket] ~ 3= 5 2 P2 % bucket2 ~ ... &+ =87 =#d 3
Bl F 01 array EJE 0 i B R

W BE F 1 array RJZ G & S se R F e linked list PR 0 se R Al e B S PR
¥

-3-

pF A48 2 & O((ntr)log, k) » k % input ®» & % ehfic > r 5 A He(radix) » log, k = =
i B oo

3. hash table

0 1 2 3 4 5 6 7 & 9 10 |11 |12
16 |22 29 74 32 148 11
4. AVL tree

(a) 5 node » E left subtree £ right subtree Y EEE 2% 5 1 - i AFTER
SHBREDRHRT » F58d 4 = S22 1 AYIEIE - AI{E M rotation JHERILIFE -
(b)

5.B-tree
(a) # of children of non-root node: [%] < # children of non-root < m

of children of root node: 2 < # children of root < m
(b) Btree 3% — i# node(s 7 internal node ¥ leafnode)3=F &5 75 T » & &
Bttree e k% 53t leaf node(internal node X 3 &% 7 F L) o 4t #b > Btree
i1 leafnode ¥ 2 linked list 8 3 A — 42 ©

6. B-tree

90 126 135 142
7

(a) # leftChild 5 % - Fldp+ # inorder predecessor ; % rightChild 5 % » Rldp e
H inorder successor ° &tk eF LS ﬁiﬁ?i’é 7 inorder traversal fF > ¥ 11 A & i *

stack °

(b) #TF R/ NFHR - oA e o A EF R SR o

(c) Hashtable cra= /] » 7 e 3 FEm 4e = o F 40 » ATFHLPF @ 3 4 collision
PF > ¥ #-hashtable v < » it & F #-° 33 fihnF 230E AT rehash(F 3 /| B
rehash) o

(d) X F 73 * nobalanced information ¥ binary searchtree - & FHF pF > € #-
W AEEF e node A K S root o M I A{EV U RE-FF 3% node o

8.
class TreeNode {
int data; // the number stored in the node
TreeNode *left, *right;
IR

int Positive(TreeNode *root)

{

int leftP, rightP;
if(root==0)
return 0; // Return O if the binary tree is empty.
leftP = Positive(root->left);
rightP = Positive(root->right);
if (root->data > 0) // the root is positive
return leftP + rightP +1;
else // the root is not positive
return leftP + rightP

} // end of Positive ()

9. another solution: https://par.cse.nsysu.edu.tw/~cbyang/course/ds/merge_sort.txt

int merge_sort(int a[], int left, int right){ // sorting between left and right
if(left < right){
int mid = (left + right)/2; //or left + (right — left)/2;
merge sort(a, left, mid);
merge_sort(a, mid+1, right);

https://par.cse.nsysu.edu.tw/~cbyang/course/ds/merge_sort.txt

int c[right — left + 1]; // or int *c = new int[right-left+1];
twoway(atleft, atmid+1, ¢, mid-left+1, right-mid);
for(int i=0 ; 1 <right — left + 1 ; ++1)
// This step is needed; otherwise, array a[] remains unsorted,
// since the sorted result is stored in ¢[]
a[i+ left] = c[i];
j

return 1; // end of conquer

int merge sort(int a[], int n){ //nis the length of a[]

if(n==1) return 1; // stop dividing
merge_sort(a, n/2);
merge sort(a + n/2, n — n/2);
int c[n]; /' or 1int *c =new int[n];
twoway(a, a + n/2, ¢, n/2, n — n/2);
for(int i=0 ; 1 <n ; ++1)

a[i] = c[i];

return 1; // end of conquer

/* Wrong answer, ™ T 38 ¥ k€ o £IUHETR F/
int merge_sort(int *a, int left, int right, int n){ // n is the length of a[]

j
/*

int mid = n/2;
int *tmp =new int[n]; //or (int*)malloc(sizeof(int)*n));
if(left <right){
merge_sort(a, left, mid, mid+1);
merge sort(a, mid+1, right, n — mid — 1);
twoway(atleft, at+right, tmp, mid, n — mid);
telse{
return 1; // stop dividing
h

return 1; // end of conquer

Suppose the input is given as follows. Then you will get a wrong answer.
inta[10]={...};
merge sort(a, 0, 9, 10);

AR

mid = 10/2 =5 — merge sort(a, 0, 5, 6);
mid = 6/2 =3 — merge sort(a, 0, 3, 4);
mid =4/2 =2 — merge sort(a, 0, 2, 3);
mid =3/2=1 — merge sort(a, 0, 1, 2);
mid =2/2 =1 — infinite loop

