Department of Computer Science and Engineering
National Sun Yat-sen University
Data Structures - Final Exam., Dec. 18, 2023

1. Let b, denote the number of distinct binary trees with n nodes, where bo=1, and b1=1.
Please present the recurrence formula for computing b,. (10%)

2. Suppose that an input file contains positive integers between p and g, with many
numbers repeated several times. A distribution sort proceeds as follows. Declare an
array af] of size ¢ — p + 1, and set a[i — p] to the number of times that integer i
appears in the file after you scan the input file. And then write the integers to the
output file accordingly. Use the following input file to explain how this algorithm
works: 9,5,7,5,8,9, 10, 12, 5, 8. (10%)

3. Suppose that there are 10 elements, each £ with a hashing function 4(k) provided in
the left table. The dynamic hash table with a directory is used to insert these
elements, where there are two slots in each bucket. Assume that some elements have
been inserted into the hash table, as shown in the right figure.

d h® k h(k) Directory of

A0 | 100000 | B5 | 101101 pointers to buckets

Al 100 001 Cl1 | 110001 00
BO 101000 | C2 | 110010 01
Bl | 101001 | C3 | 110011 10
B4 101100 | C5 | 110101 1 el

(@) Please draw the hash table after the next element C5 is inserted. (5%)
(b) Please draw the hash table after the next elements C5 and C1 are inserted. (5%)

4. (a) Assume that an initial red-black tree is empty. Please draw the tree after the
numbers 25, 15, 10, 50, 70 are inserted into the tree sequentially, and indicate

the node colors (R for red, and B for black). (5%)
(b) Please draw the tree after the numbers 90, 6 are inserted into the above red-

black tree obtained in (a), and indicate the node colors. (5%)

5. Please draw the tree after 173 is deleted from the following B-tree of order 5. (6%)

1

o5 180 395>

-

p— I - Jp———
(/30 50.) (150 1703 (1220 280,

A B Ccp | v E F
[-
6. [32857146]isapermutation of [1 2345 6 7 8], meaning that position 3 has to

move to position 1, and so on. Please give the two nontrivial permutation cycles in

-1-

[32857146]. (6%)

. Explain each of the following terms. (24%)
(@) optimal binary search tree

(b) stable sorting

(c) hash collision

(d) inorder successor

(e) B+tree

(F) external path length

. An AVL tree is a height-balanced tree, where the height difference of the left and
right subtrees in each node is at most one. Write a recursive C/C++ function to
decide whether a binary tree, pointed by a root, is height-balanced. (12%)
class TreeNode {
int data; // the number stored in the node
TreeNode *leftChild, *rightChild;
K
int HBal(TreeNode *root, ...) or void HBal(TreeNode *root, ...)
//complete the parameters by yourself
// HBal 1s a recursive function

{

Please write the body of the function.

}+ // end of HBal()

. Write a recursive C++ function to perform the recursive merge sort. To implement
your merge sort, you can call the following 2-way merge function as a basic function,
which merges two sorted arrays into a single one. In other words, you need not write
the body of the 2-way merge function. (12%)

void twoway(int a[], int b[], int c[], int na, int nb)

/* a]] and b[] are input sorted arrays */

/* c[] is the output sorted array after a[] and b[| are merged */

/* na and nb are the lengths of a[] and b[], respectively */

//You can call twoway(...) directly.

int merge sort(....) //complete the parameters by yourself
// merge sort(....) is a recursive function.

{

Please write the body of the function.

} // end of merge sort ()

Answer:
1.

n-1
b,=>bb,_,, nxl,andby=1b =1
i=0

2. distribution sort
pLFHMLE|E 5qsFHIEABI2o
a[i-p] 3% i D ezt B o F > a[5-5]=a[0] 7 3c 5 2 = Kk
a[l] 3% 6 M1z =c#c> ... > a[7] 3% 12 DRz =t #Hc o
al |44t pF > 238325 0o
Fh* BERERE AT R ROEEH
FHME 5 9,57,58,9,10,12,5,8
Step 1: ﬁi-;?l > TG 9 ali-p] =a[9-5] = a[4] > #-a[4] H 4 1
Step 2: ﬁ%l% T % 5 ali-p] =a[5-5] =a[0] » #-a[0] 3 4 1

Step 10:45 » 74+ % 8 - a[i-p] = a[8-5] =a[3] » #-a[3] #f 4 |

SEFRE a4

1 5 7 8 9 10 11 12
1-p 0 1 2 3 4 5 6 7
ali-p] 3 0 | 2 2 1 0 1

ali-p] ™ & M3z S fice R > & A K a[i-p]i Tk es 4 o a[5-5]=a[0]=3 £ >
53K o i EEdE o
]t output=5,5,5,7,8,8,9,9, 10, 12

¢-—\

3. hash table

(a)
000 LAO0 | BO |
001
010 [C2] |
011 [(C3]]
100
101 LGS |
110
111
(b)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

. %[A0 [BO |

4. Red-black tree

(a)

1. Insert 25

2. Insert 15

3. Insert 10

4. |Insert 50

5. Insert 70

(b)
6. Insert 90

/. lnsert 6

5. B tree

6. permutation cycle
(1,3, 8,6) 4,5,7)

7.

(@) optimal binary search tree: a binary search tree that minimizes the total cost.

(b) stable sorting: the records with the same key have the same relative order as they
have before sorting.

(c) hash collision: %d hash function 3+ % > & £ FHR I AR =8 > @ 3%
=% e mz > B A2 s (collision)

(d) inorder successor: the node that would be visited after node p when traversing
the tree in inorder.

(e) B+tree: BtreeHYSE - - internal node i e 147 L EL » 1fjexternal nodei T A

FIEEL - A A double linked listE3 L7k

(f) external path length: sum of the distances of all external nodes from the root.

// For each node of a height-balanced tree, the left subtree and the right subtree are
// both height-balanced trees. The height difference of the left subtree
// and the right subtree is no more than one.
int HBal(TreeNode *root, int &height){
// return 1 for height-balanced; return 0 for not
int leftHeight, rightHeight; // heights of left subtree and right subtree
if(root == NULL) {
height=0;
return 1;
b
int leftResult = HBal(root—leftChild, leftHeight);
if(leftResult == 0) return 0;
// left subtree is not height-balanced, need not calculate height
int rightResult = HBal (root—rightChild, rightHeight);
if(rightResult == 0) return 0;
// right subtree is not height-balanced, need not calculate height
int diff = leftHeight — rightHeight;
if(diff >=2 || diff <=-2) return 0;
// not height-balanced, need not calculate height
height= max(leftHeight, rightHeight) + 1; // calculate height
return 1;

9.
another solution: https://par.cse.nsysu.edu.tw/~cbyang/course/ds/merge sort.txt

int merge sort(int a[], int left, int right){ // sorting between left and right
if(left < right){
int mid = (left + right)/2; //or left + (right — left)/2;
merge_sort(a, left, mid);
merge sort(a, mid+1, right);
int c[right — left + 1]; /' or int *c = new int[right-left+1];
twoway(atleft, atmid+1, ¢, mid-left+1, right-mid);
for(int i=0 ; i <right — left + 1 ; ++1)
// This step is needed; otherwise, array a[| remains unsorted,
// since the sorted result is stored in ¢[]
a[i+ left] = c[i];
b

return 1; // end of conquer

https://par.cse.nsysu.edu.tw/~cbyang/course/ds/merge_sort.txt

int merge sort(int a[], int n){ //nis the length of a[]

if(n==1) return 1; // stop dividing

merge sort(a, n/2);

merge_sort(a + n/2, n —n/2);

int c[n]; //'or int *c = new int[n];

twoway(a, a + n/2, ¢, n/2, n — n/2);

for(int i=0 ; 1 <n ; ++1)
// This step 1s needed; otherwise, array a[] remains unsorted,
// since the sorted result 1s stored in ¢[]

a[i] = c[i];

return 1; // end of conquer

/* Wrong answer, ™ § 380 E R € R £ Y/
int merge sort(int *a, int left, int right, intn){ // n is the length of a[]

b
/¥

int mid = n/2;
int *tmp =new int[n]; //or (int*)malloc(sizeof(int)*n));
if(left < right){
merge_sort(a, left, mid, mid+1);
merge sort(a, mid+1, right, n — mid — 1);
twoway(atleft, a+right, tmp, mid, n — mid);
telse{
return 1; // stop dividing
b

return 1; // 'end of conquer

Suppose the input is given as follows. Then you will get a wrong answer.
mta[l0]={...};
merge sort(a, 0, 9, 10);

2000

mid =10/2 =5 — merge sort(a, 0, 5, 6);
mid = 6/2 =3 — merge sort(a, 0, 3, 4);
mid =4/2 =2 — merge sort(a, 0, 2, 3);
mid =3/2=1 — merge sort(a, 0, 1, 2);
mid =2/2 =1 — infinite loop

