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Genome Rearrangements Distance by
Fusion, Fission, and Transposition is Easy

Joao Meidanis� Zanoni Dias �

Abstract

Given two genomes represented as circularly ordered sequences of genes, we show a poly-
nomial time algorithm for the minimum weight series of fusion, fissions, and transpositions
(with transpositions weighing twice as much as fusions and fissions) that transforms one genome
into the other. The algorithm is based on classical results of permutation group theory and is
the first polynomial result for a genome rearrangement problem involving transpositions. It
has been observed in real biological instances that transpositions occur with about half the
frequency of reversals. Although we are not using reversals in this study, this observation mo-
tivated the double weight assigned to transpositions.

1 Introduction

With the advent of fast sequencing techniques, we are witnessing today a spectacular increase in
the quantity of molecular data (DNA and protein sequences). More than 40 complete microbial
genomes are known now, and about 170 others are in progress [6]. The great challenge we face now
is how to process this huge amount of data and extract from it relevant biological information that
could help design drugs, understand life and disease, improve crops, and so on. One way to structure
this information is by comparative genomics, where we analyze data coming from distinct species
and learn from the similarities and differences in related genomes. Among the several proposed
ways of comparing genomes, the area of genome rearrangements has received a lot of attention
recently. In this area, very large DNA molecules (usually entire chromosomes or large pieces of
chromosomes) are investigated with respect to the relative order of genes in them. The goal is to
determine a rearrangement distance, which is the minimum number of rearrangement events that
could explain the differences between two such DNA molecules.

Many different events have been considered. Reversals, transpositions and translocations are the
best studied ones from a theoretical point of view, although in practice events such as duplications
and deletions are at least as important. As far as reversals are concerned, Hannenhalli and Pevzner
presented the first polynomial time algorithm [8], subsequently improved by Kaplan, Shamir, and
Tarjan [9]. Caprara showed that the reversal problem is NP-hard if we disregard the orientation
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2 J. Meidanis and Z. Dias

of genes [3]. Hannenhalli and Pevzner also solved in polynomial time a multi-chromosomal prob-
lem involving translocation, fusion and fission [7]. Bafna and Pevzner [1] studied the transposition
distance between two linear unsigned chromosomes, presenting several approximation algorithms.
The best one has an approximation factor of ��� and runs in ����� time, but it is very complex.
Christie [5] devised an alternative ���-approximation algorithm that runs in ����� time. Christie [4]
also proposed and solved the problem of block-interchange distance. A block-interchange can be
viewed as a generalization of a transposition. (In a block-interchange two non-intersecting sub-
strings of any length are swapped in the permutation. In a transposition the substrings must be
adjacent.) Transposition distance seems to be a harder problem, that has eluded researchers for
many years now. Its computational complexity is still unknown.

We show a polynomial time algorithm for the minimum weight series of fusion, fissions, and
transpositions (with transpositions weighing twice as much as fusions and fissions) that transforms
one genome into the other. The algorithm is based on classic results of permutation group theory
and it is the first polynomial result for a genome rearrangement problem involving transpositions.
It has been observed [2] in real biological instances that transpositions occur with about half the
frequency of reversals.

In the following sections we present definitions, the main result of this work, proof sketches and
conclusions and plans for future work.

2 Definitions, Modeling, and Results

A permutation in group theory is a one-to-one mapping from a set � into itself. We will use
permutations to represent genomes with circular chromosomes. The standard notation [10] for per-
mutations is to represent in parenthesis an element followed by its successive images. For instance,
if � � ��� �� �� �� �� the permutation � such that

���� � �� ���� � �� ���� � �� ���� � �� ���� � �

is represented as
�� � � � ���

The representation is not unique since we could have started at an element other than 1: �� � � � ��,
�� � � � ��, etc. are all equivalent.

In our model, the set � is the set of genes of the genome and the permutation indicates how
genes follow each other in the chromosomes. Only circular chromosomes can be represented in this
way, but an easy translation of some results from circular to linear chromosomes exists [11].

Permutations can represent multi-chromosomal genomes. For instance, if� � ��� �� �� �� �� 	� 
�
the permutation �� � � ���� 
 	� represents the genome depicted in Figure 1.

An element � if fixed under a permutation � when ���� � �. Fixed elements can be omitted in
the parenthesized notation for permutations. For instance, if � is such that

���� � �� ���� � �� ���� � �� ���� � �� ���� � ��

then we can write � � �� � ��, or � � �� � ����� or � � ����� � ����� . The missing elements
are implicitly understood as fixed. The support of a permutation � is the set of elements not fixed
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Figure 1: A multi-chromosomal genome.

by �. In the preceding example, we have �	

��� � ��� �� ��. The identity permutation, denoted
simply by 1 (without parenthesis), fixes all elements and has empty support.

Permutations can be composed as mappings. This defines a product of permutations. For in-
stance, if � � ��� �� �� �� �� 	�, � � �� � �� and � � �� � � � 	 �� we have �� defined as
����� � ������� for all � � �, and therefore �� � �� � ���� 	�. Any two permutations over
the same set can composed in this way. The operation is associative, the identity permutation is the
identity element, and every permutation � has an inverse ��� [10].

Composition of permutations is important in the context of genome rearrangements for at least
two reasons:

� Some permutations � of small support can be viewed as re-arrangement events: �
 is then the
result of event � acting on genome 
.

� Given two genomes � and 
, the product �
��describes in some sense the “differences”
between the two genomes.

For instance, fusions and fissions can be seen as permutations of support size 2, and transposi-
tions can be seen as permutations of support size 3, as we will see shortly. In addition, our main
result establishes that the distance between two genomes can be computed as � minus the number
of cycles in �
�� (see Section 2.1 for a formal definition of cycles).

2.1 Orbits and Cycles

Any permutation can be written in a unique way as the product of cycles disjoint support (disjoint
cycles). To understand cycles we need first the definition of orbit. An orbit can be defined intuitively
as a set of the form �� ����� ������ � � � for some element �. Since we are dealing with finite sets,
orbits are always finite, that is, there is a positive integer � such that ����� � �. A more formal
definition is given below.

Definition 2.1 An orbit of a permutation � is a minimal set of elements � such that for any two
elements �� � � � there is an integer � such that ����� � �.
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For instance, if � � ��� �� �� �� �� 	� and � � �� � ���� �� then the orbits are ��� �� ��, ��� ��,
and �	�. Restricting � to one of its orbits we obtain what is called a cycle of �. Formally, we have
the following definition.

Definition 2.2 A cycle of a permutation � is a permutation � such that there is an orbit � of � with

���� �

�
���� if � � �

� if � �� �

For instance, if � � ��� �� �� �� �� 	� and � � �� � ���� �� then the cycles of � are �� � ��,
�� ��, and �	�. A permutation that is a cycle of some permutation is called simply a cycle. The size
of the cycle is the number of elements of its non-singleton orbit if there is one, or 1 if all orbits are
singletons. A cycle of size � is also called a �-cycle.

It is important to note here a potentially confusion terminology used in the literature. The term
“transposition” is used in permutation group theory meaning 2-cycle. The same term “transposi-
tion” is used in biology meaning a block move in a genome. Unfortunately, in both areas the term
“transposition” is well-established and very unlikely to change. We had to make a choice in this pa-
per, and decided to keep the biological meaning. Whenever we need to refer to the group theoretical
meaning of “transposition” we will use the term “2-cycle” instead.

2.2 Rearrangement Events

We will define now the rearrangement events that are the main subject of this paper: fusion, fission,
and transposition. Intuitively, a fusion joins two chromosomes into one; a fission breaks a chromo-
somes into two; and a transposition moves a block of consecutive genes from our place into another
in the same chromosome.

Formally, fusions and fissions correspond to 2-cycles. Given a 2-cycle � � �� �� and a permu-
tation 
, we have the following classical results:

� if � and � are in the same cycle of 
, then in �
 this cycle is broken into two cycles, one
containing � and the other � (among others elements). The remaining cycles of 
 are left
unchanged.

� if � and � are in the distinct cycle of 
, then in �
 these two cycles are joined into one. The
remaining cycles of 
 are left unchanged.

These classical results show that 2-cycles correctly model fusions and fissions, because the
cycles of a permutation correspond to circular chromosomes of a genome. However, notice that
� � �� �� can act as a fusion for some genomes and as a fission for others. Therefore, being a
fusion (or a fission) is not an intrinsic property of � but rather depends also on the genome 
 on
which � is being applied. Nevertheless, all fusions and fissions are captured by 2-cycles.

Formally, transpositions correspond to 3-cycles. Again, a 3-cycle is not intrinsically a trans-
position, but rather its transposition status depends on the particular genome on which it is being
applied. More specifically, a 3-cycle � � �� � �� is a transposition when it acts on a genome 
 where
the elements �,�,� are all in the same cycle and appear in this order in the cycle. For instance, if
� � �
 � �� and 
 � �
 � � � � 	 �� then �
 � �
 � � � 	 � �� and � models a transposition.
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In the next section we define our problem formally. Intuitively, given two genomes represented
by permutations 
 and �, we want to find a minimum weight series of events leading from 
 to �.
The main result of this paper is that this problem is solvable in polynomial time. This follows from
a classical result in permutation group theory as we will see shortly.

3 Proof Sketches

In this section we will sketch some of the proofs need in our main result. We begin with some
additional definitions, continue with a formal statement of the main result, and finish with the proof
sketches.

Definition 3.1 A permutation � is a valid event for another permutation (genome) 
 when either:

1. � is a 2-cycle, or

2. � is a transposition when applied to 
.

In case (1) the weight of �, denoted by ����, is equal to 1; in case (2), ���� � �.

Notice that if � is a valid event for 
 then ��� is a valid event for �
. In other words, valid
events can be “undone” by other valid events of the same weight.

Definition 3.2 An ordered sequence of permutations (��, ��, � � �, ��) is a series of valid events
leading from 
 to � when:

� each �� is a valid event for �������� � � � ����
, and

� ������ � � � ����
 � �

We are interested in such a series with minimum total weight ��
���

�����. The minimum value
of ��

���
����� is called the distance between 
 and �.

Definition 3.3 For a permutation �, let ���� denote the number of orbits of �. For two permutations
(genomes) 
 and �����, let ��
� �� denote the number of orbits of �
��.

For instance, ��
� 
� � � for any genome 
, where � � ��� is the number of genes.

Definition 3.4 Given two permutations (genomes) 
 and � and a valid event � for 
, denote by
����� 
� �� the value:

����� 
� �� � ���
� �� � ��
� ��

The quantity ����� 
� �� is the increase in the number of orbits of �
�� when 
 is replaced by
�
. If this number is positive, �
 is “closer” to � than 
 was.

Definition 3.5 A valid event � for 
 is good with respect to � when:

����� 
� �� � ����
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Our main result can be stated as follows.

Theorem 3.1 Given two permutations (genomes) 
 and �, the distance between them is ����
� ��.

The proof relies on the following two lemmas.

Lemma 3.1 For any series of valid events (��, ��, � � �, ��) leading from 
 to � we have:

��

�������� � �� ��
� ��

with equality if and only if each �� is good for �������� � � � ����
 with respect to �.

Proof Sketch: Suppose that

������ � � � ����
 � � (1)

Each �� is a 2-cycle or a 3-cycle, but any 3-cycle can be written as a product of two 2-cycles.
Replacing every 3-cycle of equation (1) by a product of 2-cycles, and multiplying by 
�� on the
right, we have:

�������� � � � ���� � �
��

where each �� is a 2-cycle. The number os 2-cycles involved is just:

�� � ��

��������

since 2-cycles have weight 1 and 3-cycles weigh 2. But there is a classical result that says that
if a permutation � can be written as a product of 2-cycles, the number of 2-cycles is at least � �
���� [10].

Therefore,

�� � �� ����

or

��

�������� � �� ��
� ��� (2)

To analyse the cases where there is equality in this formula, we need another classical result that
says that, with the weights we are uding, we have always the following:

���
�����
�

� � � ���
�
�� ���
�����

�
� � � ���

���� 	 ������

Adding up these inequalities in the case where (��, ��, � � �, ��) is a series of valid events leading
from 
 to � we have that equality holds in (2) only if every �� is good for �������� � � � ����
 with
respect to �.

Lemma 3.2 Given two distinct permutations (genomes) 
 and �, there is always a good event for

 with respect to �
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Proof Sketch: Since 
 �� � we have �
�� �� � and there is a �-cycle in �
�� with � � �. Choose
� and � as two distinct elements in this �-cycle. We claim that the event � � �� �� is valid for 

and is a good event with respect to �.

The event � is valid for 
 since it is a 2-cycle, and therefore is either a fusion or a fission in 
.
It is a good event with respect to � because of the following argument. By choice we know that

� splits a cycle of �
�� into two. Therefore,

���
���� � ���
��� 
 �

In addition, � is a 2-cycle so � � ���. But then:

���� 
� �� � ���
� �� � ��
� ��

� ���
������� ���
���

� ���
��� 
 �� ���
��� � � � ����

This suggests the following algorithm for finding the distance and an optimal series of events
leading from 
 to �.

FUSION, FISSION, AND TRANSPOSITION DISTANCE��

1 Input 
, �
2 �
 �

3 while 
 �� �

4 do �
 any valid event for 
 which is good with respect to �

5 output �
6 
 
 �


7 �
 �
 �

8 output �

The complexity of this algorithm is �����, because the main loop is executed at most � times
and consumes at most � steps per iteration. Lemma 3.2 guarantees that step 4 is well defined.

A word about the choice of � in step 4: Lemma 3.2 tells us that it suffices to take � � �� ��

with �, � in the same orbit of �
��. It is instructive to have a similar criterium for transpositions.
As stated in the algorithm, � � �� � �� must be valid for 
 and good for 
 with respect to �, for
the particular values of variables 
 and � at the moment. In Section 2.2 we saw that � is valid for 

when �, �, � are in the same orbit of 
 and appear in this order in the corresponding cycle of 
. To
be good for 
 with respect to �, �, �, � should be in the same orbit of �
�� and appear in this order
in the corresponding cycle of �
��.

4 Conclusions

We have shown how a classical result on permutation groups leads to a polynomial time algo-
rithm for weighted genome rearrangement distance involving fusions (with weight 1), fissions (with
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weight 1), and transpositions (with weight 2). We observe that the algorithm remains valid if trans-
positions have any weight greater than 2. This is the first complexity result for a rearrangement
problem involving transpositions. We hope this result can be extended to more general problems,
involving other events, arbitrary weights, and signed genomes.
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