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ABSTRACT

Neural networks are composed of basic units somewhat analogous to neu�
rons� These units are linked to each other by connections whose strength is
modi�able as a result of a learning process or algorithm� Each of these units
integrates independently �in parallel� the information provided by its synapses
in order to evaluate its state of activation� The unit response is then a linear
or nonlinear function of its activation� Linear algebra concepts are used	 in
general	 to analyze linear units	 with eigenvectors and eigenvalues being the
core concepts involved� This analysis makes clear the strong similarity between
linear neural networks and the general linear model developed by statisticians�
The linear models presented here are the perceptron	 and the linear associator�
The behavior of nonlinear networks can be described within the framework of
optimization and approximation techniques with dynamical systems �e�g�	 like
those used to model spin glasses�� One of the main notions used with nonlin�
ear unit networks is the notion of attractor� When the task of the network is
to associate a response with some speci�c input patterns	 the most popular
nonlinear technique consists of using hidden layers of neurons trained with
back�propagation of error� The nonlinear models presented are the Hop�eld

network	 the Boltzmann machine	 the back�propagation network	 and the radial
basis function network�

Keywords
 neural networks	 general linear model	 perceptron	 radial basis
function	 Hop�eld network	 Boltzmann machine	 back�propagation network	
eigenvector	 eigenvalue	 principal component analysis	 attractors	 optimiza�
tion�

�� Introduction

Even though research in neural modeling started circa ���� �i�e�� McCulloch � Pitts
in ���� 	�
��� there was little active development of the eld prior to the late fties
and early sixties when Rosenblatt introduced the perceptron in ���
 	���� �a close

���
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Figure �� The architecture of a typical perceptron� The percep�
tron is composed of two layers of cells connected by synapses mod�
iable through learning� The input layer is named the retina� The
cells can take only binary values �e�g�� � or ���

cousin of the perceptron was Widrow�s adaline introduced in ���� 	
���� These early
models already posess most of the essential features of more contemporary neural
networks� They are composed of simple basic units loosely comparable to neurons�
Perceptrons have essentially two layers of cells� an input layer which was called the
�articial� retina of the perceptron� and an output layer� Learning in these networks
takes place at the synaptic junctions between the neurons of the input layer and
the neurons of the output layer �in the original paper the output layer was called
the �association layer��� At rst� the performance of these early networks attracted
quite a lot of attention� However� their limitations soon became clear�

Rosenblatt 	��� and Minsky and Papert 	��� showed that these earlier neural
networks were able to learn associations between a set of inputs and a set of outputs
only if the output is a linear transformation of the input� Essentially� these networks
are equivalent to linear regression and to discriminant analysis� As a consequence�
their use as a model for human behavior was of moderate appeal� In addition� their
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Figure �� The output cell of a perceptron� The inputs are noted
xi� the synaptic weights are noted wi�j� the total activation of the
cell is noted aj� its response or output� noted oj � is equal to � if
aj � � and � if aj � ��

computational power was only mediocre when compared to the digital computers
available at the time� Considering the earlier successes of the symbolic approach
�i�e�� Articial Intelligence�� it was tempting� then� to concentrate resources on the
symbolic approach rather than on neural networks� This is� indeed� what happened
�for a more detailed history of the subject� see 	��� ���� Despite the shortcomings
of these early neural network models� they can solve important problems� and have
the additional advantage of simplicity� As a consequence� I will use them in this
paper to introduce neural networks and some of their main characteristics�

The late seventies and early eighties witnessed a renaissance of neural networks�
The many reasons for this resurgence include� ��� the general disappointment with
the performance of the symbolic approach� ��� the availability of cheap but powerful
�micro� computers� ��� the development of nonlinear models of neural networks� and
��� the �re�discovery of techniques for training hidden layers of neurons�

The purpose of this introductory paper is to present some representative members
of the main families of neural networks� I begin with the perceptron� which can be
used to introduce the general architecture of a neural net� In the years since its
introduction� several alternative architectures have been proposed to overcome the
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limitations of the perceptron� I describe two of these alternatives under the heading
of nonlinear networks� the very popular back�propagation network� and the radial
basis function network� a relative newcomer to the eld of neural networks that is
used by several papers in this volume� Most neural networks can be interpreted as
associators� their task is to associate a given input pattern with a given response� A
particular case of associators� called auto�associators� occurs when the input pattern
is the same pattern as the response� In addition to the linear auto�associator� two
nonlinear associators are described in this paper� the Hopeld network and the
Boltzmann machine�

�� The Perceptron

The perceptron can be considered as the rst important implementation of articial
neural networks� It was created in the fties by Rosenblatt 	�
� ���� As its name
indicates� the perceptron was designed to mimic or to model perceptual activities�
The main goal was to associate binary congurations �i�e�� patterns of 	�� �� values�
presented as inputs on a �articial� retina with specic binary outputs� Hence�
esssentially� the perceptron is made of two layers �see Figure ��� the input layer
�i�e�� the �retina�� and the output layer� The architecture� originally designed by
Rosenblatt in ���� 	�
�� was more complex than this� but in fact is equivalent to
the two�layer description given here �cf� also 	�� �� ����� The activation of the
cells of the input layer is transmitted to the cells of the output layer through con�
nections ��synapses�� which can change the intensity of the signal �by multiplying
the incoming signal by a �weight� or �synaptic e�cacy�� see Figure ��� Hence�
the response of the perceptron is a function of the stimulus applied to the cells
of the input layer and of the weights of the connections� The cells of the output
layer compute their state of activation as a function of the stimulation they receive
through the synapses� and then give a �binary� response as a function of their state
of activation�

More formally� the response of the output cells depends upon their level of acti�
vation which is computed as the sum of the weights coming from active input cells�
The response is then obtained by thresholding the activation �i�e�� the cell will be
in the active state only if its activation level is larger than a given threshold��

Specically� the activation of the j�th output cell is computed as

aj �
IX
i

xiwi�j � ���

with�

� aj � activation of the j�th output cell�
� xi� state of the i�th cell of the retina �� or ���
� wi�j� value of the weight connecting the i�th cell of the retina to the j�th
output cell�

The output cells will then take either the active state �i�e�� give the response ��
or the inactive state �i�e�� give the response �� if their level of activation is greater
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or less than their threshold noted �j �quite often �j is set to ��� Precisely� the
response of the j�th output cell is given as

oj �

�
� for aj � �j

� for aj � �j
� ���

The threshold �j is modiable by learning �like the weights�� as a consequence
its function is almost equivalent to a weight� Actually� thresholding is often im�
plemented by setting an input cell always active �the ��th input cell� so that the
weight w��j is equal to ��j� The term of response bias is often used as a synonym
for threshold� This works because Equation � is then rewritten as �with w��j being
equal to ��j��

oj �

�
� for aj �w��j � �

� for aj � w��j � �
� ���

Equivalently� �j can be computed as w��j if cell � is �clamped� to the value ���

���� Learning rule

The main problem for the perceptron is to learn how to adjust the synaptic weights
in order to give the desired response for a given stimulus� For example� a perceptron
with two input cells and one output cell can be used to implement logical functions
if the stimuli given as input consist of the set

� �

� �

� �

� �

���

and the output is constituted by the � binary responses corresponding to the func�
tion to be implemented� For example� the logical or function is given by this
pattern of association

� � ��� �

� � ��� �

� � ��� �

� � ��� � �

Learning in perceptrons takes place at the synaptic level by changing the weights
of the connections between the cells of the retina and the output cells� There are
several possible procedures that a perceptron can use in order to change iteratively
the synaptic weights to produce a set of desired responses to a particular set of
inputs� The most famous one is known under several names� the Widrow�Ho�
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learning rule �cf� 	
�� ��� ��� ����� the Delta rule 	���� or more simply the perceptron
learning rule 	����

In order to use the Widrow�Ho� learning rule� the output cells of the perceptron
must be provided with the correct response so that they can compute an error

signal� This type of learning is referred to as supervised learning� The output cells
must also know the state of the input cells �i�e�� they need to know what synapses
are activated by the current stimulation�� The output cells� however� do not need
to know the response of the other output cells� Hence this learning rule can be seen
as purely local� because the cells need to know only the local information in order
to learn�

For a perceptron� the Widrow�Ho� learning rule is very simple� First� a cell will
learn only if it makes a mistake �i�e�� the error signal is not zero�� Because the
output is binary� there are only two possible mistakes� Either the cell should be
o� and it is on� or the cell is o� when it should be on� If the cell is on instead
of o�� this means that the cell�s activation is too high� and therefore� that it has
assigned too much importance �i�e�� too large a weight� to the cells from the retina
that are in the on state� An obvious solution to this problem is to decrease the
weights associated with these cells from the retina� Likewise� if the cell is o� when
it should be on� its activation is too low� and so� the weights of the retinal cells that
are on should be increased to correct the problem�

Learning for a set of stimuli is implemented by �presenting� �i�e�� computing
the output associated with a given input pattern� the individual stimuli to the
perceptron several times in a random order� The weights are adjusted as described
previously and the learning procedure terminates as soon as the perceptron makes
no error� The synaptic weights will stop changing as soon as the perceptron performs
perfectly� because the perceptron learns only when making a mistake�

More formally� the Widrow�Ho� learning rule is written as�

w
�t���
i�j � w

�t�
i�j � ��tj � oj�xi � w

�t�
i�j ��wi�j � ���

with

� �wi�j� correction to add to the weight wi�j�
� xi� value �� or �� of the i�th retinal cell�
� oj � response or output of the j�th output cell�
� tj � target response �or correct desired response��

� w
�t�
i�j � weight of the synapse between the i�th retinal cell and the j�th output

cell at time �t� 	i�e�� the exponent �t� give the number of the current iteration��

The values of w���
i�j are generally initialized to small random values�

� �� a small positive constant generally referred to as the learning constant� Its
function is examined in greater detail in the discussion of linear associative
memory� It should be noted� however� that choosing � is a delicate problem
in training a neural network� In several cases� the value of � is dependent
upon the learning history� Learning will start with relatively large values
of � which will be decreased as learning progresses� So� at rst the system
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makes important corrections to the synaptic weights� When the values of � get
relatively small this amounts to making ne changes to the synaptic weights�

���� An example� learning the logical function or

The purpose of this section is to provide a demonstration of the ability of the
perceptron to resolve a linearly separable function� Let�s suppose that we want to
teach a perceptron the logical function or� whose truth table is�

� � ��� �

� � ��� �

� � ��� �

� � ��� � �

This perceptron is composed of three input cells� two cells for the values of the
argument of the logical function� plus one cell �i�e�� x�� to implement threshold�
ing �cf� Equation ��� and one output cell �see Figure ��� This is equivalent to
implementing the following ternary truth table�

� � � ��� �

� � � ��� �

� � � ��� �

� � � ��� � �

Supposing that the synaptic weights �i�e�� the wi�s� are initialized to zero values�
they can be represented by a �� � matrixW�

W �

��w� � ��
w�

w�

�� �

����
�

�� � ���

Suppose� now� that the rst randomly chosen association is the ��th one �i�e��
the perceptron should produce the value � when its retinal cells are presented with
the stimulus 	�� �� ���� The activation of the output cell is given by�

a �
X
i

xiwi � ��� �� � ��� �� � ��� �� � � ���

�because there is just one output cell in this example� the notation is somewhat
simpler� for example aj becomes a� wi�j becomes wi� and so on�� The �incorrect�
response of the perceptron is

o � �

�cf� Equation ���
The error is the di�erence between the target value ��� and the response of the

output cell ���� Suppose that the learning constant � is set to the value � � ��� and
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the Widrow�Ho� learning rule is used� Then� from Equation �� the correction for
the synapses from the retinal cells to the output cell is�

�w� ���t� o�x� � ��� ��� ��� � � ��

�w� ���t� o�x� � ��� ��� ��� � � ��

�w� ���t� o�x� � ��� ��� ��� � � �� �

�
�

When the correction is applied� W becomes���w� � ��
w� � ��
w� � ��

�� �

Suppose� now� that the rst stimulus �i�e�� 	�� �� ��� is presented to the percep�
tron� The activation of the output cell is given by�

a �
X
i

xiwi � ��� ��� � �� � ��� � ��� ��� � �� �

and the response of the output cell is

o � � �

The correction to apply to the synaptic weights is

�w� ���t� o�x� � ��� ��� ��� � � ���
�w� ���t� o�x� � ��� ��� ��� � � �

�w� ���t� o�x� � ��� ��� ��� � � �

���

When the error correction rule is applied� W becomes���w� � �
w� � ��
w� � ��

�� �

With this set of weights� the perceptron is now able to give perfect answers for the
or problem�

���� Evaluation of the perceptron

As the previous example makes clear� the perceptron is able to learn� The question
addressed in this section is �What is it able to learn�� Because the activation of
the output cell is a linear combination of the retinal input cells� the perceptron
can learn only to discriminate linearly separable categories �this is illustrated in
Figure ��� If the categories are linearly separable� then if the learning constant �
is small enough� convergence is guaranteed �cf� 	�� ��� for a �modern� proof of the
perceptron convergence theorem��

As Minsky and Papert showed in their famous book 	���� it is quite easy to nd
examples of interesting nonlinearly separable functions� Probably the most well
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Figure �� The logical function xor is not linearly separable�
There is no way to draw a line separating the white circles from
the dark ones�

known of these is the xor function �the �exclusive or��� This problem is illustrated
in Figure �� and corresponds to the following truth table�

� � ��� �

� � ��� �

� � ��� �

� � ��� � �
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Figure �� A perceptron with a hidden layer is able to solve the
xor problem�

In order to show that the logical function xor is not linearly separable� suppose
that we have a perceptron with � retinal cells and one output cell� The synaptic
weights are noted w� and w� �to make the argument easy to follow� the threshold is
supposed� without loss of generality� to be ��� The association of the input pattern
	�� �� to the response � implies that

w� � � � ����

Similarily� the association of the input pattern 	�� �� to the response � implies that

w� � � � ����

Adding together Equations �� and �� gives

w� � w� � � � ����

Now if the perceptron gives the response � to the input pattern 	�� ��� this implies
that

w� �w� � � � ����

Clearly� the Equations �� and �� contradict each other� hence no set of weights can
solve the xor problem�

���� Linearly separable or not� Is it really a problem�

In the early days of neural networks� much was made of the perceptron�s inability
to solve such a seemingly simple nonlinear transformation as the xor problem�
More recently� however� several algorithms �the most popular of which is back�

propagation� make it possible for a perceptron with at least one hidden layer to
implement the xor logical function� This is illustrated in Figure �� and in Table ��
However� in the years following Rosenblatt�s introduction of the perceptron� there
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�o is the response of the hidden cell after �thresholding��

Table �� Responses of the cells of the perceptron described in
Figure � showing how to solve the xor problem

were no algorithms available to train the hidden layer� In fact� Minsky and Papert
	���� mistakenly believed that no such algorithm could exist�

In addition to training a perceptron with hidden layers to make nonlinear trans�
formations between input and output stimuli� another simpler way of coping with a
nonlinearly separable problem is to recode it in order to make it linearly separable�
For example� the xor problem can be solved if a third input cell is added and pro�
vided with the product of the two remaining cells� transforming learning the binary
xor into learning the ternary relation�

� � � ��� �

� � � ��� �

� � � ��� �

� � � ��� � �

The following set of weights�

w� � �� w� � �� w� � ��
will then solve the xor problem�

It has often been claimed that Minsky and Papert�s 	��� highly critical analysis
of the perceptron�s failure to cope with nonlinearly separable categorizations was
responsible for supressing interest in neural network research until the late seventies�
As Anderson and Rosenfeld 	��� point out in their introductory comments to some
classic papers in neural modeling� this claim is somewhat exaggerated� Several other
factors that may account for the lack of interest in neural networks include� the
relatively clumsy nature of the networks� and the fact that the numerical algorithms
they applied were better implemented and analyzed as numerical techniques on
standard computers� Also� the Zeitgeist at that time favored modeling memory
storage as creating new proteins rather than synaptic modication �because of the
success of dna�rna for the genetic code�� So� at best �or at worst� Minsky and
Papert gave the nal blow to an already moribund eld�
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�� Linear associators

The models presented in this section are known as linear associators� They come
in two forms� hetero� and auto�associators� The hetero�associators can be used
to learn associations between input and output patterns� The auto�associator is
a special case of the hetero�associator in which the association between an input
pattern and itself is learned� This special case of associator is used widely as a
pattern recognition and pattern completion devices in an auto�associator is able
to reconstruct learned patterns when noisy or incomplete versions of the learned
patterns are used as �memory keys� 	��� ��� �this property is true also for non�
linear auto�associators� the linear asociator has� in addition� the advantage of being
easy to analyze mathematically as well as being very e�cient computationally��

In what follows� matrix notation is used� A good introduction oriented toward
neural modeling can be found in 	��� and 	���

���� Notation

Stimuli are represented by I�� vectors fk where the index k indicates the stimulus
number� The components of fk specify the stimulus to be applied to the cells of
the input layer for the k�th stimulus� In general� input vectors are normalized so
that fTk fk � �� The responses of the network are given by J � � vectors denoted
gk� The complete set of K stimuli is represented by a K � I matrix denoted F in
which the k�th row is fTk � The set of the K responses is represented by a K � J
matrix denoted G in which the k�th row is gTk � The J � I synaptic weight matrix
is denoted W�

The Hebbian learning rule 	��� in linear associators sets the change in the synaptic
weights to be proportional to the product of the input and the output� For example�
if the association considered is between the k�th input and the k�th response� the
weight wi�j corresponding to the connection between the i�th input cell and the j�th
output cell should be proportional to fk�i � gk�j� If the proportionality constant is
set to �� the association between the k�th stimulus and the k�th response leads to
the creation of the weight matrix

Wk � gkf
T
k �

The response of the network is obtained by postmultiplication of Wk by the
stimulus fk� The response of the associator is denoted bgk and can be considered as
the associator estimation of gk� With just one association stored� it is easy to show
that the associator estimates gk perfectly�

bgk �Wkfk � gkf
T
k fk � gk

To implement several associations� the Wk matrices are summed in order to give
W�

W �
X

Wk �
X

gkf
T
k � GTF �
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The estimation of the k�th response by the associator is obtained as�

bgk �Wfk �
KX
�	�

g�f
T
� fk � gk �

X
��	k

cos�f�� fk�g� � ����

From this last equation� it is clear that the response of the associator involves
some cross�talk or interference between the stored patterns that may result in less
than perfect recall of the learned associations� In general� the quality of the asso�
ciator estimation is evaluated by comparing bgk with gk� A popular estimator is
the cosine between bgk and gk� cos�bgk�gk�� However� if the stimuli are pairwise
orthogonal �i�e�� if fTk fk� � �� for all k �� k�� then cos�fk� fk�� � � and bgk � gk� and
consequently� the responses of the associator estimate perfectly the target responses�

������ Linear auto�associator

As noted� the linear auto�associator �cf� Valentin et al� in this volume� is a particular
case of the linear�associator� The goal of this network is to associate a set of stimuli
to itself� �i�e�� G is equal to F�� The weight matrixW is now equal to FTF� and is
the familiar �cross�product� matrix of standard linear multivariate analysis�

When the stimulus set is composed of non�orthogonal stimuli� the associator will
fail to reconstruct perfectly the stimuli that were stored �cf� Equation ���� On the
other hand� some new patterns will be perfectly reconstructed by the associator�
creating in a way� the equivalent of a �false alarm� or �false recognition�� These
patterns are dened by the equation�

Wuk � �kuk with� uTkuk � � �

They are the eigenvectors of W and �k is the eigenvalue associated with the k�th
eigenvector� Within a multivariate analysis framework� the eigenvectors of W are
the principal components of a Q�principal component analysis of the stimuli 	�
�� In
general� principal component analysis is used to analyze the variables describing the
stimuli� Q�analysis is obtained by transposing the data matrix which is equivalent
to switching the r�ole of the variables and the stimuli� These eigenvectors can be
interpreted as prototypes� macro�characteristics� or� even� hidden dimensions 	�� 
�
��� ��� �
��

������ Back to the general case

In order to improve the performance of linear associators �i�e�� in order to increase
the cosine between the bgk�s and gk�s�� several learning rules have been proposed�
The most popular one is clearly the Widrow�Ho� learning rule �alias Delta learning
rule� previously described for the perceptron� This is an iterative procedure correct�
ing the error between the target response and the actual response of the network�
In matrix notation� the Widrow�Ho� rule is�

W�t��� �W�t� � ��gk �W�t�fk�f
T
k � ����

with W�t� being the weight matrix at step t� � being a �small� positive constant�
and k being randomly chosen�
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This algorithm will �eventually� converge if � is properly chosen� Actually� the
analysis of the Widrow�Ho� learning rule involves only the matrix of eigenvectors
of FTF denoted U� the diagonal matrix of their eigenvalues denoted �� and the
matrix of eigenvectors of FFT denoted V� as well as � and t �cf� 	���� The analysis
is facilitated by using the singular value decomposition of F which expresses the
matrix F as�

F � V�
�

�UT �

With these notations� W�t� can be computed as�

W�t� � GU
n
�� �

�

h
I � �I � ���t

io
VT � ����

From Equation ��� it can be seen that convergence is assured if

� � � � ����max �with �max being the largest eigenvalue of ���

When convergence is reached� the weight matrix is then �cf� 	�����fW � GF�

with�

F� � V��
�

�UT

denoting the Moore�Penrose pseudo inverse of F�
For an auto�associative memory� the Widrow�Ho� learning rule will converge to�fW � FF� �UUT with� U being the matrix of eigenvectors of W�

The matrixW is said to have been sphericized �i�e�� all its non�zero eigenvalues are
now equal to one��

�� Non�linear systems �auto�associator�

As its name indicates� a linear associator �cf� also Equation ���� will give a re�
sponse that is a linear combination of all the input values� This property can be
undesirable sometimes� As with the perceptron� several nonlinear extensions of the
auto�associator that can remedy this problem have been developed� These models
include the Hopeld net 	��� ���� and Anderson�s Brain�State�in�a�Box �abreviated
as BSB� 	
��� While these models originated within very di�erent traditions� they
are in fact quite similar 	���� Introduced from a physics perspective� the popularity
of the Hopeld model� was perhaps one impetus of the current resurgence of interest
in neural networks 	
� ��� Acting as content�addressable memories� these nonlinear
auto�associators try to nd� among the patterns stored� the one closest to the stimu�
lus� In the present paper� I will describe Hopeld nets in some detail as an example
of a nonlinear auto�associator� It is worth noting� however� that the BSB model�
published prior to the Hopeld model� was proposed as a psychological model of
memory and shares many of the essential features of the Hopeld model� Readers
interested in this perspective on neural networks will nd a detailed presentation in
the Anderson and Rosenfeld collection of papers 	
��
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���� Hop�eld Nets

The Hopeld net is an asynchronous nonlinear auto�associator� This network is
named for J�J� Hopeld �a physicist from Caltech� who gave a detailed analysis
of these types of networks in two papers which have since become classic papers
�	��� ����� The k�th stimulus to be stored is represented by an I � � binary vector
denoted fk� taking values � or �� The set of the thresholds for the I units is denoted
��� � 	�i�� with �i being the threshold of the i�th unit� From the fk vectors� new
�recoded� vectors denoted hk are created�

hk � �fk � �I�� �i�e�� the � values are replaced by ����
with �I�� being an I � � vector of ones�

The weight matrix is obtained as

W �
X
k

hkh
T
k �

A stimulus is �recalled� by presenting a �cue� to the matrix� and letting the
memory stabilize to an estimation� More formally� when fk is used as a cue� recall
from the memory is obtained through the following steps�

� �� Initialization� Let t � � �t is the number of the current iteration�� Set
�f
�t�
k � �f

���
k � fk�

� �� Let bfk�t� �W�f
�t���
k �

� �� Let

�f �t�k � 	 �f �t�i�k � fi � � � � � Ig� with

�
�f
�t�
i�k � � i�  f

�t�
i�k � �i

�f �t�i�k � � i�  f �t�i�k � �i
�

This amounts to setting the cells whose activation level is larger than or equal
to their threshold to the value �� and to setting the cells whose activation level
is smaller than their threshold to the value of ��

� �� Compare
�f
�t���
k and �f

�t�
k �

If
�f
�t���
k �� �f

�t�
k �

then change t to t� � and re�iterate the procedure from step �� If

�f
�t���
k � �f

�t�
k

�or �f �t���k � �f
�t�
k � if an approximation is judged su�cient� then a stable re�

sponse has been found and the procedure can stop�

The stable responses constitute the attractors of the system �	��� ���� for the BSB
models cf� 	����� This algorithm is equivalent to searching for the binary vector s
minimizing the energy values Es computed as�

Es � �sTWs� ���T s
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using a steepest descent algorithm with starting point fk� It can be shown that Es
is decreasing �or stays constant� at each iteration� This property is often expressed
by saying that Es is a Lyapounov function of the dynamical system implemented
by the network 	��� ��� ��� ��� ����

In general� the minimum reached by the network is a local minimum� In order
to improve the chances of reaching a global minimum several equivalent techniques
can be used� the Boltzmann machines 	�� ���� Markov random �elds 	�� ��� ���� or
simulated annealing 	�� ��� �
��

���� Boltzmann machines

Boltzmann machines can be seen as a variation on the theme of Hopeld networks�
The essential idea is to used the activation of the cell as a probability� and to use it
to switch the state of a cell to the on �i�e�� to the value �� or o� �i�e�� to the value
�� state� The unique aspect of the Boltzmann machine is that it can be seen as
analogous to a physical system in which the probabilities of changing the states of
cells in the network can be a�ected by a global �temperature� parameter� When
the temperature is high� neurons change states with higher probability than when
the temperature is low� During the stabilization process� the temperature of the
network is gradually lowered� �a process known as �annealing� due to its similarity
to the annealing of metals�� resulting in a system that becomes progressively more
stable over time�

Formally� the local energy di�erence at the i�th unit for the conguration s is
dened as

�Ei � wT
i s� �j �with wi� i�th column of W� �

This is equivalent to computing for the i�th unit the di�erence of energy between
the conguration with the unit being on and the conguration with the unit being
o��

In the previous algorithm describing the Hopeld network� step � will be modied

by deciding to set �f
�t�
i�k equal to � with the probability

Pi �
�

� � e�
Ei�T
����

where T is a real positive value corresponding to the temperature of the system
�this is known as the logistic� or Boltzmann� or Fermi equation�� As mentioned
at the beginning of this section� at high temperatures� the system tends to be less
in!uenced by the value of �Ei� When T tends towards �� the logistic function
degenerates into the step function and the Boltzmann machine becomes a Hopeld
net� When T tends towards innity� Pi tends towards �� no matter what the value
of �Ei is� and� as a consequence� the Boltzmann machine tends to behave randomly
�i�e�� it ignores the information given by the system��

The probability of transiting from one state to the other can be expressed as
a ratio of probabilities� For example� to evaluate the probability of reaching the
state s from the state s� with energy Es and Es� respectively� compute the ratio of
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probabilities which is�

Ps
Ps�

�
e�Es�T

e�Es
��T

� e��Es�Es
� ��T �

As the temperature rises� this ratio gets closer to the value �� indicating that it is
easier at high temperature to go from one state to the other� It should be possible�
therefore� to escape local minima �but at the price of increasing the risk of reaching
a solution far from a minimum�� In practice� the strategy is to start the process
at a relatively high temperature and then to reduce the temperature progressively
very slowly� It is relatively fair to say that nding the proper annealing schedule
for a given problem can be considered as an intuitive art more than anything else�

This procedure can also be analyzed with reference to spin glasses and mean eld
theories� which are domains relatively well studied in physics 	��� ���� This may
explain the popularity of these neural networks among physicists and the strong im�
pact Hopeld�s paper has had on the multidisciplinary nature of the neural networks
eld�

�� Hidden layer networks and back�propagation

As noted previously in the perceptron section� it can be shown that if one or more
�hidden layers� are added between the input and output cell layers� several of
the limitations of perceptrons can be overcome� The main problem that plagued
early neural network researchers was the absence of a learning rule to adjust the
weights of the hidden layer�s� based on the set of stimuli to be learned� In other
words� while it was easy to note when the activation of an output cell was incorrect�
assigning �blame� to individual connections within multi�layered networks was a
di�cult problem� Since then� several rules have been proposed� the most popular
of which is error back�propagation� discovered in the late sixties by Bryson and Ho
	���� and rediscovered by Werbos in ���� 	
��� It was� once again� independently
rediscovered and popularized in the early eighties by several authors �Le Cun� 	����
Parker� 	���� Rumelhart� Hinton and Williams 	���� with these latter authors being
its most ardent proselytes��

An error back�propagation network is composed of at least three layers of cells�
an input layer� one or more hidden layers� and an output layer� In this introduction�
I assume for simplicity� but without loss of generality� that the networks have only
one hidden layer� A back�propagation network is described in Figure ��

The essential idea behind back�propagation is actually quite simple and straigh�
forward� Like the perceptron� back�propagation networks use supervised learning�
they need to know what response they should give for a given stimulus� The cells
of the output layer compute the error as the di�erence between the actual response
of the network and the intended response� The synaptic weights on these cells will
be adjusted using the standard Widrow�Ho� learning rule for nonlinear units� In
other words� the connection weights will be adjusted in order to decrease the error
signal if the same stimulus is presented again� The error is propagated backward

through the same connections and synaptic weights to the cells of the hidden layer�
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Figure �� The architecture of a typical error back�propagation
network� It is composed of �at least� three layers� one input layer�
one �or several� hidden layer�s�� and one output layer� The input
layer is made of I cells or neurons� the hidden layer of L cells or
neurons� the output layer of J cells or neurons� The weights w��i of
the connections from the input layer to the hidden layer are stored
in the L � I matrix W� The weights zj�� of the connections from
the hidden layer to the output layer are stored in the J �L matrix
Z� The k�th stimulus is denoted fk� the corresponding response of
the hidden layer is denoted hk� the response of the output layer is
denoted  gk� and the corresponding target response is denoted gk�

Next� the error at the hidden cells is estimated as the weighted average of the error
of the output cells� The values of the connections zj�� are used as the weights for
computing the weighted average� So� for example� if an output cell has a large
positive error� and if the synaptic weight between a given hidden cell and the out�
put cell is large� it implies that the hidden cell has a large part in the output cell
error� Thus� the error signal for the hidden cell should show a large component of
error coming from this output cell� After the error signal of each hidden cell has
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Figure �� Graph of the logistic function�

been estimated� its synaptic weights are adjusted appropriately using the standard
Widrow�Ho� learning rule� exactly as for the output cells�

More precisely� for a network with one input layer� one hidden layer� and one
output layer� the following notations are dened�

� fk� the I � � vector representing the k�th stimulus �i�e�� the input layer is
made of I cells��

� hk� the L�� vector representing the response of the hidden layer for the k�th
stimulus �i�e�� the hidden layer is made of L cells��

�  gk� the J �� vector representing the response of the output layer for the k�th
stimulus �i�e�� the output layer is made of J cells��

� gk� the J�� vector representing the target �or desired� response of the output
layer for the k�th stimulus�

� W� the L � I matrix of synaptic weights of the connections between the I
cells of the input layer and the L cells of the hidden layer� w��i gives the weight
of the connection between the i�th input cell and the ��th cell of the hidden
layer�

� Z� the J�L matrix storing the weights of the connections between the hidden
layer and the output layer� zj�� gives the weight of the connection between the
��th cell of the hidden layer and the j�th cell of the output layer�

In order to use error back�propagation� the response of a cell should be a nonlinear
function of the cell activation �technically speaking� the nonlinearity is necessary
only for the hidden layer cells�� Denoting the activation of cell n by an� its response
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will be

on � f�an� � ��
�

While there are several acceptable functions� the most widely used is the logistic
function drawn in Figure �� It is given by the following Equation �cf�� also Equa�
tion ����

f�x� �
�

� � e�x
�

The logistic function maps the activation into the continous interval 	�� ��� One
reason for its popularity is the ease of computing its derivative�

f ��x� �
e�x

�� � e�x��
� f�x�	�� f�x�� � ����

The answer of the network to an input stimulus is given by a forward transmission
of the stimulus� First� the signal is forwarded from the input layer to the hidden
layer� The activation of the hidden layer cells is computed and then tranformed
or ltered using a nonlinear function �e�g�� the logistic function�� So� if the k�th
stimulus� noted fk� is presented� the response of the hidden layer will be�

hk � f�Wfk� �

Next� the hidden layer response is forwarded to the output layer cells� The activation
and transformation of these cells is computed in a manner similar to that used for
the hidden layer cells� So� the response of the output layer to the k�th stimulus will
be �assuming for convenience that the same nonlinear function is used for all the
cells��

 gk � f�Zhk� �

Since back�propagation is a supervised learning technique� the output layer cells
must be provided with the expected answer� Once the error signal at the output
cells has been determined� the process of correcting the synaptic weights in order
to minimize the error signal �actually� the mean square error signal� begins� The
correction procedure is the same for all the cells� the only di�erence is that the
procedure used to evaluate the error signal di�ers between the hidden layer cells
and the output layer cells�

For the cells of the output layer� the error is evaluated by comparing the actual
response of the cell with its expected response� So� the error for output cell j is

ej � gj �  gj �

Using vector notation� the J�� error vector of the output cells for the k�th stimulus
is�

ek � �gk �  gk� �

The error signal� combines the cell error with its activation� Specically� the
error signal is weighted by the derivative of the output activation �e�g�� as given in
Equation ���� Precisely�

���output�k � f ��Zhk�� �ek� �  gk � ���  gk�� �gk �  gk� �
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where � denotes the Hadamar product �i�e�� the elementwise product� cf� 	��� ����
and � denotes a unitary vector of the appropriate order� The function f is assumed
to be the logistic function for the second term of the previous Equation to be
simplied as it is�

The learning rule has the form of the learning rule described previously for the
perceptron or for the linear associator� It corrects the matrix Z iteratively� At step
�t� ��� the weights stored in matrix Z become�

Z�t��� � Z�t� � ����output�kh
T
k � Z�t� ��tZ ����

�with k randomly chosen� and � being a small positive constant��
For the cells of the hidden layer� the error signal cannot be evaluated by direct

comparison with the target since the target is not dened at that level� The error
signal is estimated as a function of the output error� of the synaptic weights� and of
the �derivative of the� response of the hidden layer cells� Precisely� the error signal
vector for the hidden layer cells is computed as

���hidden�k � f ��Wfk� � �ZT���output� k� � hk � ��� hk� � �ZT���output� k� � ����

So the error signal from the output layer is backpropagated to the hidden layer
through the weights of the connections between the output layer and the hidden
layer �this is the term ZT���output� k in Equation ���� This amounts to computing
the hidden layer cell�s error component as the weighted average of the error signal
of the output layer cells� Then� the error component for each cell is weighted by
the derivative of its response in order to create the error signal 	this is the term
f ��Wfk� in Equation ����

When the error signal for the cells in the hidden layer has been computed� learn�
ing is implemented as for the output layer cells� During the learning process� the
matrixW is corrected iteratively� At step �t� ��� the weights stored in matrixW
become�

W�t��� �W�t� � ����hidden�kf
T
k �W�t� ��tW � ����

In the next section� I show that back�propagation converges �if � is appropriately
chosen� toward a local minimumof the mean square of the error for the output layer�
Specically� back�propagation implements gradient descent� a well�known procedure
in numerical analysis�

���� Error back�propagation and gradient descent

The gradient descent method is a relatively well�known method of numerical anal�
ysis 	��� ��� ��� 
�� used to locate iteratively a minimum of a nonlinear derivable
function�

The gradient of a function is dened as the matrix of the �rst� derivative of that
function� Suppose that the parameters of a function are stored in a matrix denoted
Z and that the function under consideration is

y � g�Z�
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�i�e�� the problem is to nd the matrix Z so that y reaches its minimumvalue�� The
algorithm proceeds as follows�

� �� Chose arbitrarily the initial values of Z�t	��� In general� these values will
be chosen randomly� but a rst good guess can also be used if any can be
made�

� �� Compute the �local� gradient of g denoted by rg as�

rg �
	g�Z�t��

	Z�t�
�

� �� Change the values of Z�t� in the inverse direction of its gradient �this is
because the gradient indicates the direction in which the function increases� so
going in the inverse direction indicates the direction of a possible minimum��
If � denotes a small positive constant� the correction to apply to Z�t� is�

Z�t��� � Z�t� ��tZ � Z�t� � �rg � Z�t� � �
	g�Z�t��

	Z�t�
�

� �� If
Z�t� � Z�t��� �or Z�t� � Z�t��� if an approximation is su�cient�

then stop the procedure� otherwise reiterate steps � and ��

For an error back�propagation network� the error function is dened as the sum
of squares of the di�erences between the expected values gk and the responses of
the network  gk� Specically� the error function for the k�th response is dened as�

Ek � �
��gk �  gk�

T �gk �  gk� �
�
��g

T
k gk �  gTk  gk � � gTk gk� � ����

������ Gradient correction for the output layer

For the output layer� the matrix of parameters is the weight matrix Z� The gradient
of Ek relative to Z is computed using the chain rule adapted to matrices �cf� 	���
�����

rZEk �
	Ek

	Z
�

	Ek

	 gk

	 gk
	Zhk

	Zhk
	Z

� ����

Evaluating each of the terms of Equation �� gives�

	Ek

	 gk
� ��gk �  gk�

T �

assuming f is the logistic function� and with  gk � f�Zhk��

	 gk
	Zhk

�  gTk � ���  gk�
T �

and
	Zhk
	Z

� hk �

The correction for Z at step t is then proportional to

�rZEk � �gk �  gk�
T
�  gTk � ���  gk�

Thk � ���Toutput�khk �
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Using � as a small constant� this is equivalent to dening the change at step t as�

�tZ � ����output�kh
T
k

as indicated in Equation ���

������ Gradient correction for the hidden layer

For the hidden layer� the matrix of parameters is the weight matrixW� The gradient
of Ek relative to W is computed using� once again� the chain rule adapted to
matrices�

rWEk �
	Ek

	W
�

	Ek

	 gk

	 gk
	Zhk

	Zhk
	hk

	hk
	Wfk

	Wfk

	W
� ����

The rst two terms of Equation �� have been dened previously �cf� Equation ���

and correspond to ����Toutput� k� Evaluating the other terms gives�

	Zhk
	hk

� ZT �

assuming f is the logistic function� and with hk � f�Wfk��

	hk
	Wfk

� hTk � ��� hk�T �

and� nally�
	Wfk

	W
� fk �

Hence� the correction for W at step t is proportional to�

�rWEk � ���output�kZ
T
� hTk � ��� hk�T fk � ���Thidden�kfk �

Using � as a small constant and transposing fk is equivalent to dening the change
at step t as�

�tW � ����hidden�kf
T
k

as indicated in Equation ���

������ Gradient and linear associators

The Widrow�Ho� learning rule used for linear associators can be interpreted also as
a gradient descent technique� With the notation dened in the previous sections�
the function f used by the cell to transform the activation in a response is now
very simple �it is a linear transformation of the activation� hence the name linear
associator� cf� Equations �� and �
��

on � f�an� � an �

The response of the associator becomes �cf� Equation ����bgk �Wfk �

The error function is as previously dened �cf� Equation ����

Ek � �
��gk �  gk�

T �gk �  gk� �
�
��g

T
k gk �  gTk  gk � � gTk gk� �
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Since a linear associator has only one set of weights� the problem is to nd the
values ofW minimizingEk for all k� The gradient of Ek relative toW is evaluated�
as usual� using the chain rule rewritten for matrices�

rWEk �
	Ek

	W
�

	Ek

	 gk

	 gk
	W

� ����

As noted previously �cf� Equation ���� the rst term on the right of Equation �� is�

	Ek

	 gk
� ��gk �  gk�

T �

and with  gk � f�Wfk� �Wfk� the second term of Equation �� becomes

	 gk
	W

�
	Wfk

	W
� fk �

The correction for W at step t should be proportional to�

�rWEk � �	Ek

	W
� �gk �  gk�

T fk �

Using � as the proportionality constant� the correction for W at step t becomes�

�tW � ��gk �  gk�fk � ��gk �W�t�fk�f
T
k

as indicated in Equations � and ���

���� Evaluation of Back�propagation

It is probably fair to say that the �rediscovery� of back�propagation in the mid�
eighties was a pivotal factor in the renaissance of neural networks� With this new
technique� neural networks were now able to overcome the primary weaknesses of
the perceptron that became clear in the sixties� In particular� neural networks were
now able to solve nonlinear mappings such as those required to solve the xor and
parity problems� as well as most of the so�called hard problems that Minsky and
Papert 	��� noted as failures of the perceptron�

Cognitive scientists� in addition� found back�propagation a useful tool for explor�
ing issues concerning the representation of knowledge� In this case� the hidden layer
acts as the internal knowledge representation a network uses to make the transfor�
mation from input to output� The interest for cognitive scientists� therefore� is to
nd how the hidden layer develops weights that solve the problem� For example�
netalk was designed by Rosenberg and Sejnowski 	��� for the task of converting
written English into spoken English� They found that the hidden layers developed
a representation somewhat analogous to the phonemes of English �e�g�� consonants
versus vowels� voiced versus unvoiced phonemes��

Taking into account its popularity and the number of its applications� it is tempt�
ing to trumpet back�propagation as a panacea for computational models of cogni�
tion and biological signal processing� Some dedicated proselytes have� in fact� had
di�culty resisting such a temptation� There are� however� a number of serious
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drawbacks to the technique� The rst one is obvious� In order to implement back�
propagation� the network needs to be provided with the correct answer �i�e�� back�
propagation is a supervised technique�� That� by itself� eliminates all applications
for which the task is to nd stimulus classes a posteriori or without supervision�
A second problem comes from the number of iterations needed for the network to
converge� The empirical evidence of the last ve years or so has indicated that
even for a simple problem like learning the xor function� the number of iterations
required for convergence can reach into the thousands� when a perceptron will solve
it as a ternary relation in less than �� iterations �cf� 	���� Finally� and perhaps
most problematic� it is always di�cult to determine� for a given problem� the best
architecture in terms of number of hidden layers as well as number of cells per layer�

Despite these problems� back�propagation is still widely used� Several alternative
models� that attempt to overcome its limitations� are currently under development�
One of these is the radial basis function network described in the next section�

�� Radial basis function networks

Radial basis function networks are a recent addition to the neural�modeler toolbox
	��� ��� ��� ��� ���� The architecture of a typical radial basis function network is
shown in Figure 
�

These networks are used for nding an approximation of a nonlinear function as
well as for nding interpolating values of a function dened only on a nite subset
of real numbers� The essential idea is to implement a complex nonlinear mapping
from the input pattern space to the output pattern space as a two�step process� The
rst step is a simple nonlinear mapping from the input layer to the hidden layer�
The second step implements a linear transformation from the hidden layer to the
output layer� Learning occurs only at the level of the synapses between the hidden
layer and the output layer� Because these connections are linear� learning can be
very fast�

Specically� the general problem is to approximate an arbitrary function f from
R
I to RJ �i�e�� f associates a J � � dimensional vector gk in response to a I � �

dimensional vector fk� dened on K observations such that

gk � f�fk� for k � f�� � � � �Kg � ����

The general idea is to approximate f by a weighted sum of �in general nonlinear�
functions 
 �named the basis functions� such that Equation �� is approximated by

gk 	
X
�

w�
�fk� � ��
�

This technique is called radial basis function approximation when instead of
using the values fk directly� several �centers� are chosen �either arbitrarily or in
some specic way� and the distance from the vectors fk to these centers is used in
Equation �
 instead of the fk values�

A center can be any I�dimensional vector �so that the distance between the
centers and the fk is always dened�� Specically� if a set of L centers c� is chosen
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Figure 	� The architecture of a typical radial basis function net�
work� The hidden layer computes the distance from the input to
each of the centers �each center corresponds to a cell of the hidden
layer�� The cells of the hidden layer transform their activation �i�e��
the distance from the input� in response using a nonlinear trans�
formation �typically a Gaussian function�� The cells of the output
layer behave like a standard linear hetero�associator�

�with each center being an I dimensional vector�� Equation �� is approximated as

gk 	
X
�

w�
�kfk � c�k� � ����

When the set of centers �the c��s� is the same set as the input set �i�e�� the fk�s��
the radial basis function network is used for nding an interpolation function valid
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for new values of fk� and tting f perfectly for the K observations fk� When the set
of centers di�ers from the input set �i�e�� the fk�� it contains� in general� a smaller
number of elements �i�e�� L � K�� The problem� then� can be seen as a problem
of approximating the function f by a set of simpler functions 
� In both cases� the
objective is close to some rather well�known techniques in numerical analysis �e�g��
spline interpolations� with the di�erence that a distance to the centers is used in
the process rather than the raw data�

Equation �� can be rewritten in a more compact form with the notations dened
in the section on the hetero�associator� Denote by C the L�I matrix of the centers
�i�e�� cT� is the ��th row of C�� The distances of the K observations to the L centers
are gathered in a L �K matrix D with the generic term d��k giving the Euclidean
distance from observation k to center ��

D � 	d��k� �

�q
cT� fk

�
�
q

�C �C� � �I�K � �L�I�FT � FT �� ��CFT

with �I�K being a I � K matrix of ��s� the square root function being applied
element�wise to the matrix� and F being the K � I matrix of the K input patterns
applied to the I input cells�

Then� the problem is to nd a L� J matrixW such that�

G 	 	
�DT ��W

with the function 
 being applied element�wise to the elements of D� and G being
the K � J matrix of the K output patterns�

If the matrix 
�D� is squared� and non�singular� the solution for the matrix W
is obviously�

W � 	
�D����G �

If 
�D� is singular or rectangular� a least�squares approximation is given by

W � 	
�D���G with 	
�D��� being the Moore�Penrose inverse of 	
�D���

If the testing set is di�erent from the learning set� then the distance from the
elements of the testing set to the centers needs to be computed for each of the
elements of the testing set� This distance is then transformed by the 
 function
before being multiplied by the matrixW to give the estimation of the response to
the testing set by the radial basis function network�

Several choices are possible for the 
 functions� One of the most popular choices
is the Gaussian function�


�x� �
�p
����

expf�x����g

with �� being the variance of the Gaussian distribution� The variance can also be
approximated for each center separately if necessary�

One reason for the popularity of the Gaussian transformation is that it insures
that when D is squared� and when the centers are not redundant �i�e�� no center
is present twice�� then the matrix 
�D� is not only non�singular but also positive
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RBF approximation with 7 centers, σ=1

Figure 
� Radial basis function approximation example�

denite 	��� �even though as D is a distance matrix� it is in general not full rank
and even not positive semi�denite��

In terms of neural networks� this is equivalent to having a rst hidden layer whose
purpose is to compute the distance from the input to each of the centers� Each cell
of the hidden layer represents a center� Then� the cells of the hidden layer transform
their activation �i�e�� the distance from the input to the centers� into a response
using the 
 function� The cells of the output layer behave exactly like the cells of
a standard linear hetero�associator using the Widrow�Ho� learning rule�
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RBF approximation with 5 centers, σ=.75

Figure ��� Radial basis function approximation example� the ef�
fect of di�erent values of sigma� Notice how the rst approximation
with � � � gives a much better t to the data than the approxi�
mation with � � ����

���� Radial basis function networks� An example

To illustrate a simple radial basis function network� suppose that the function to
be approximated associates the following one�dimensional �i�e�� I � J � �� set of
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Figure ��� The e�ect of di�erent centers�

K � � stimuli to their response�

f� � � ��� g� � �

f� � � ��� g� � �

f� � � ��� g� � �

f� � � ��� g� � �

f� � � ��� g� � �

f � � ��� g � �

f� � 
 ��� g� � �
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Or� using a matrix notation� the set of stimuli is stored in the K � I � ��� matrix
F� and the set of responses is stored in the K � J � �� � matrix G�

F � 	�� �� �� �� �� �� 
�T and G � 	�� �� �� �� �� �� ��T �

Suppose that the set of L centers is the same as the set of inputs�

C � F � 	�� �� �� �� �� �� 
�T �

the matrix D is then

D �

����������

� � � � � � 

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

 � � � � � �

����������
�

Using the Gaussian transformation with �� � � the matrix D is transformed in�


�D� � 	
�di�j�� �

�
�p
��

expf�d�i�j�g
�

which gives�


�D� �

����������

����
� ������ ������ ������ � � �
������ ����
� ������ ������ ������ ������ �
������ ������ ����
� ������ ������ ������ �
������ ������ ������ ����
� ������ ������ ������

� ������ ������ ������ ����
� ������ ������
� ������ ������ ������ ������ ����
� ������
� � � ������ ������ ������ ����
�

����������
�

The optimummatrix of weights which would be found by a hetero�associator can
be computed directly by inversion of the matrix 	
�D��

	
�D���� �

��������

���� ������ ������ ������� ������ ������ ������
������ ������ ������� ������ ����� ������ ������
������ ������� ������ ������� ������ ����� ������
������� ������ ������� ������ ������� ������ �������
������ ����� ������ ������� ������ ������� ������
������ ������ ����� ������ ������� ������ ������
������ ������ ������ ������� ������ ������ ����

��������
and

W � 	
�D����G � 	������� ������� �������� ������� �������� ������� �������T �

To calculate the answer of the radial basis function network to a stimulus �old
or new�� it su�ces to compute the distance from that stimulus to the � centers� to
transform the distance matrix with the Gaussian function and to multiply it by the
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matrix W� For example� the response of the network to the new stimulus f � �
will be

o � 
�	dc��f ��W � 


	







�







�

����������
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�







�
�W �

����������

������
������
������
������
������
������
������

����������
�W � ���
�

where dc��f denotes the distance from the input f to the ��th center�
The approximation given by the radial basis function network is illustrated in

Figure ��b for the set of input patterns belonging to the interval 	�� ��� When com�
pared with a straight line approximation �in Figure ��a� the network approximation
appears quite smooth� Note� also� that� as required� the approximation is perfect
for the elements of the training set�

������ The choice of centers and ��s for an approximation radial basis function

network

When a radial basis function network is used for approximating a function �i�e��
when the set of centers is smaller than the set of training stimuli�� the choice of
values for � becomes very important� This is illustrated in Figure ��a and ��b� in
which the approximation of the previous data set are displayed� The set of centers
is now composed of the � values�

C � 	��� �� �� �� ��T

Figure ���a displays the results of the approximation for � � �� and Figure ��b
displays the results of the approximation for � � ���� As the comparison makes
clear� the choice of � strongly in!uences the quality of the approximation�

The choice of the centers �as well as their number� is also important as illustrated
by Figure ���a and ���b in which the approximation with the set of centers C �
	�� �� �� �� 
�T is compared with the set of centers C � 	�� �� �� �� 
�T �

The set of centers is sometimes learned using an unsupervised learning technique
like� for example� k�means� The variance of the 
 function can� similarly be ap�
proximated from the sample� However� in both cases choosing these two sets of
parameters can be a very delicate operation�

�� Conclusion

In this introductory paper� I have presented some basic tools from the connectionist
modeling toolbox� Obviously� this is only an overview of the eld� Some examples
of practical applications and theoretical developments are presented in the following
papers of this volume�

The reader seeking a more detailed introduction to connectionist modeling can
consult� among other references� the following recent sources� Aleksander � Morton
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	��� Hecht�Nielsen 	���� Kampf � Hasler 	���� Khanna 	���� M"uller � Reinhardt 	����
Perez 	���� Simpson 	���� Zeidenberg 	
��� Anderson et al�	��� Bechtel � Abrahmson
	���� Freeman � Skapura 	���� Hertz� Krogh � Palmer 	���� Levine 	���� Quilian 	����
and Abdi 	��� More specialized source of reference can be found in elds as varied
as physics of complex systems �e�g�� Fogelman�Souli�e 	���� Serra � Zanarini 	����
Goles � Martinez 	�
�� Weisbuch 	
���� engineering sciences or signal processing
�e�g�� Widrow � Stearns 	
��� Catlin 	�
�� Sou#cek 	
��� Garner 	���� Kosko 	��������
and neuro�sciences �e�g�� Mac Gregor 	���� Amit 	����
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