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Prediction of protein structural classes using support vector machines
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Summary. The support vector machine, a machine-learning method, is

used to predict the four structural classes, i.e. mainly �, mainly �, �–� and

fss, from the topology-level of CATH protein structure database. For the

binary classification, any two structural classes which do not share any

secondary structure such as � and � elements could be classified with as

high as 90% accuracy. The accuracy, however, will decrease to less than

70% if the structural classes to be classified contain structure elements in

common. Our study also shows that the dimensions of feature space

202¼ 400 (for dipeptide) and 203¼ 8 000 (for tripeptide) give nearly the

same prediction accuracy. Among these 4 structural classes, multi-class

classification gives an overall accuracy of about 52%, indicating that the

multi-class classification technique in support of vector machines may still

need to be further improved in future investigation.

Keywords: Support vector machines – CATH – Multi-class – Protein

structural class prediction – Jackknifing

Introduction

It has been more than four decades since it had been

explicitly elucidated that the amino acid sequence of pro-

teins determined their three-dimensional (3D) structures

(Sela et al., 1957). Proteins always manifest their func-

tions through the three-dimensional structures. Chothia

(1992) estimated that there were no more than 1 000 dis-

tinct protein structure entities (called folds) in nature, with

which the whole range of diversity of functions in the

kingdoms of life could be performed. It followed, through

analysis of the protein interaction data, that the total num-

ber of protein interactions may be also quite limited,

being just in the range of 10 000 types (Aloy and Russell,

2004). Even the total exons in the universal are calculated

to be about 30 000 in size (Saxonon and Gilbert, 2003),

based on the information collected from the databases of

genomic sequences. It is therefore very important for

researchers to acquire information on the protein struc-

tures because the interactions between different proteins

or between proteins and their ligands (therefore they func-

tion through these interactions) are all determined by their

3D structures.

At present, there exists a severe ‘‘information asymme-

try’’ between the researchers who are working on the

sequencing of organism genomes and those in elucidating

the 3D structure of biomolecules. On one hand, there are

more and more genomes being sequenced, and on the

other hand, protein structure information accumulation

at Protein Data Bank (PDB) (Berman et al., 2002) is

growing very slowly, compared with the sequence’s one,

since the structural determination in PDB is heavily relied

on the experimental methods such as x-ray crystallogra-

phy and NMR. These methods are expensive and time

consuming, and many proteins such as trans-membrane

proteins or some large proteins may not be amenable to

these techniques. Because of this, protein structure pre-

diction by homology modeling or computer simulating is

therefore emerging as an alternative or complementary

approach.

The core issue for computational prediction of protein

structure is how to decipher the underlying mechanism

that link protein sequence to its structure. If we take it

for granted that protein structure entities (protein folds)

are limited to around 1 000 as estimated above, then the

sequences governing these structures should have some

regular patterns to let one trace rather easily by using

the methods of computational biology. Several compu-

tational methods have been applied in prediction of the

structural classes of proteins from their amino acid se-

quences; these include amino acid composition (Chou,

1980, 1989; Nakashima et al., 1986; Klein and Delisi,



1986; Zhang and Chou, 1992; Dubchak et al., 1993;

Metfessel et al., 1993; Rost and Sander, 1994; Chandonia

and Karplus, 1995), Artificial Neural Network (ANN)

(Rost and Sander, 1993), Hidden Markov Models

(HMM) (Hubbard and Park, 1995) and Support Vector

Machines (SVMs).

Among all protein structural class prediction methods

developed so far, amino acid composition (AAC) and

AAC with component-coupled effect are the most exten-

sively studied ones (Chou and Zhang, 1995; Chou, 2000).

Chou and colleagues pioneered an elegant work that

incorporated the component-coupled effect with AAC,

and coined this novel approach as component-coupled

algorithm (Chou and Zhang, 1994, 1995; Chou, 1995).

For the last decade, the component-coupled algorithm

has been used to predict the protein structural classes

and subcellular locations (Chou et al., 1998; Chou and

Maggiora, 1998; Chou and Elrod, 1998, 1999a, b; Zhou,

1998). Unlike neural network methods, the component-

coupled algorithm has very sound physical foundation for

explaining the possible prediction success, which is very

important to pinpoint the critical factors to be adjusted

towards prediction improvement (Bahar et al., 1997; Chou

et al., 1998; Chou, 1999; Zhou, 1998; Zhou and Assa-

Munt, 2001). Recently, the functional domain composi-

tion approach was introduced that remarkably improved

the prediction quality (Chou and Cai, 2004).

SVM is a machine learning technique that is based

on the statistical learning theory developed by Vapnik

(1995), and it is also considered to be the one of the best

computer algorithms in this field (Yang, 2004). This is

because SVMs are designed to maximize the margin to

separate two classes, so that the trained model could

generalize well on test data (Yang, 2004). Most other

computer learning algorithms such as NN and HMM

implement a classifier through minimization of error oc-

curred in training, which will lead to poorer general-

ization on unseen data (Yang and Chou, 2004). SVMs

have been widely used in the field of bioinformatics

such as, among the others, in analysis of microarray

gene data (Brown et al., 2000), in prediction of protein

subcellular locations Cai et al., 2000), in protein sec-

ondary structure prediction (Hua and Sun, 2001), and in

prediction of protein domain structure class (Cai et al.,

2002, 2003b).

According to convention (Levitt and Chothia, 1976),

a protein could be classified into one of four structural

classes, based on its secondary structure components:

all �, all �, �þ � and �=� (Levitt and Chothia, 1976;

Rechardson and Rechardson, 1989). Finding the protein

secondary structures is the first step to build its 3D struc-

ture (Creighton, 1993). If the structural class of a protein

is known, it can be used to considerably reduce the search

space of structure prediction processes, since most of the

structure alternatives could be eliminated and therefore

the structure prediction task will be simplified and whole

process will be accelerated (Isik et al., 2004).

This investigation involves the protein class prediction

based on the database of hierarchic classification of pro-

tein domain structure (CATH) developed by Thornton

group (Orengo et al., 1997). In CATH database, protein

domains can be classified into four hierarchical levels.

The first level is class (C), which consists mainly of four

secondary structures known as mainly �, mainly �, mixed

�–� and few secondary structure (Few SS). The second

level is architecture (A), which describes the gross ar-

rangement of secondary structures without taking into

account the connectivity of the secondary structure units

(�, �). The third level is topology (T-level), also called

fold families. If proteins belong to the same T-level, they

not only have the similar number and arrangement of

secondary structures, but also the same connectivity link-

ing their secondary structure elements. The fourth level is

homologous superfamily (H-level), in which proteins will

have highly similar structures and functional similarity. In

this research, 820 folds taken from T-level are used as

training data set from which four structural classes

(mainly �, mainly �, mixed �–� and Few SS) are pre-

dicted using support vector machines, specially consid-

ering the impact of relationship between amino acid

neighbors in the sequence, i.e., effects of the relative fre-

quencies of dipeptide and tripeptides on the training re-

sults. Similar research has been carried out by Markowetz

et al. (2003) and by Isik et al. (2004), but their data sets

are different from the one used here, and so far current

investigation is the first report on CATH database used for

structural prediction by SVM. Furthermore, the data set of

current research is far bigger than the both, i.e. 820

sequences against only 117þ 63 and 268 sequences re-

spectively. Leslie et al. (2002) used �-spectrum of a pro-

tein sequence to create 20� dimensions of feature map and

they used SCOP database as their training and testing

data set.

Materials and methods

Support vector machines

Support vector machines (SVMs) are based on statistical learning theory

which was first developed by Vapnik (1995) described in detail by

Cristianini and Shawe-Taylor (2000). Elaborated treatment on SVMs can
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be found in Kecman (2001) and Scholkopf and Smola (2002). The prin-

ciples underlying the SVMs have also been detailed by Chou and Cai

(2002), Cai et al. (2002a, 2003b). Here, SVMs will only be treated very

briefly. Let us consider a binary classification task with datapoints xiði ¼
1; � � � ;mÞ having corresponding labels yi ¼ �1. Each datapoint is repre-

sented in a dimensional input or attribute space. Let the classification

function be: f ðxÞ ¼ signðw � xþ bÞ. Here the vector w determines the

orientation of a discriminant plane (hyperplane). The non-vector b deter-

mines the offset of the plane from the origin. The hyperplane should

separate the data, so that w � xþ b>0 for all xi of one class, and w � xþ
b<0 for all the xj of other class. If the data are separable in this way, there

is probably more than one way to do it. Among the possible hyperplane,

SVMs select the one where the distance of the hyperplane from the closest

data points (the ‘‘margin’’) is as large as possible. How to choose the

suitable hyperplane? Scholkopf and Smola (2002) describe an intuitive

justification for the criterion: suppose the training data are good, in the

sense that every possible test vector is within some radius r of a training

vector. Then if the chosen hyperplane is at least r from any training vector

it will correctly separate all the test data, r is allowed to be correspond-

ingly large. The desired hyperplane (that maximizes the margin) is also

bisector of the line between the closest points on the convex hulls of the

data sets.

The main task for SVMs is in fact to find this hyperplane. To find it,

label the training points by yi 2�1; 1, with 1 being a positive example, �1

a negative training example.

yiðw � xþ bÞ � 0; for all points

Both w, b can be scaled without changing the hyperplane.

To remove this freedom, scale w, b so that

yiðw � xþ bÞ � 1; 8i

For non-linear data input, SVMs will resort to kernel functions to

correct the separating hyperplane (Scholkopf and Smola, 2002).

Program used in this research is Libsvm which applied simplified SVMs

algorithm to both SMO (Platt, 1999) and SVMlight (Thorsten, 2002) and

can be obtained from: http:==www.csie.ntu.edu.tw=�cjlin= libsvm=.

Data set

The training data set is taken from CATH database, which was built in

January 28, 2004 and the Version number 2.5.1. In this version of CATH,

there are 820 fold families at topology-level, representing some 48 000

domains. In each fold family the individual protein sequences should have

empirical trial score (SSAP score, or Sequence Structure Alignment Pro-

gram Score) 70 according to CATH’s classification criteria (Taylor and

Orengo, 1989), and there should be 60% of the larger protein matching the

smaller protein.

A protein sequence is manually picked up from each fold family to

build a data set with 820 samples (Table 1).

Data embedding and SVMs training

Before carrying out SVMs data training, the protein sequence information

taken from CATH database has to be represented in a way SVM program

could process. These protein sequences are embedded into a more regu-

larly defined feature space (Markowetz et al., 2003). A typical embedding

is achieved by the relative frequencies of dipeptide and tripeptide amino

acids. It is important to take dipeptide and tripeptide into account, since

the way a protein folds does not only depend on single amino acids, but

also on the relationships between neighbors in the sequence (Branden and

Tooze, 1999). For 20 amino acids, if a dipeptide is considered each time,

there would be 202¼ 400 possible dipeptides required to be treated. It is

the same as for tripeptide situation, there would be 203¼ 8 000 possible

tripeptides, which will constitute an input space with 8 000 dimensions.

Figure 1 shows the data embedding principle for running SVMs data

training, taking CATH’s small peptide sequence no. 4.10.180.10.1.1.1 as

example, which has sequence composition of ASMWERVKSIIKSSLA.

Fig. 1. Preparation of data input before SVM

processing. AThe sequence of short peptide taken

from CATH database, and it belongs to few ss

class. B The peptide is divided into tripeptides in

all possible consecutive triplets. C The tripeptides

are embedded into 8 000-dimensional vectors with

occurrence of a tripeptide designed as 1, and absent

position as zero. D The figures obtained in step C

are normalized by dividing every figure with total

number of tripeptides in this example sequence. For

instance, this peptide was divided into 14 tripep-

tides, so every figure (position) is divided by 14, and

1=14¼: 0:071

Table 1. The training data set built by taking the protein sequences from

each T-level fold family of 820 total topology families�

Classes Number of

fold families

Range of

chain length

� 227 38–740

� 139 33–574

�–� 368 36–534

fss 86 16–119

� Data from CATH version 2.5.1: http:==www.biochem.ucl.ac.uk=bsm=

cath=releases.html
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Cross validation

The evaluation of accuracy of SVMs prediction is necessary to estimate

the performance of the method. The Leave One Out Cross-Validation

(LOOCV) procedure, also known as Jackknife Test (Chou and Zhang,

1995), was carried out to test the accuracy of the prediction. In LOOCV,

data are divided into two sets: the ‘‘training set’’ which is used to train the

SVMs classifier, and the ‘‘test set’’ on which the trained classifier is tested.

In this research, 820 polypeptides were separated into 820 subsets, i.e.

each peptide represents a subset. LOOCV (Jackknife) test leaves one

peptide out, and performs the training on 819 subsets (819 peptides),

and testing was employed on the peptide that left out. This was repeated

once for each of 820 protein chains, producing 820 test results. This is

called full Jackknife Test and the accuracy is the percentage of subsets

which is correctly predicted. This method uses all of the data for testing,

but since the test data is not used for the corresponding training phase, the

testing is hence unbiased (Chou and Zhang, 1995).

Multi-class prediction methods

SVMs is normally used in binary classification, but here we are using

SVMs to do 4 classes (mainly �, mainly �, mixed �þ� and FSS)

classification. Therefore, the multi-class prediction method will be used

in this case. There are many ways to apply SVMs to n>2 classes, but all

these different ways are still using two-class classification method as the

basic building blocks. In this research, two multi-class classification

schemes are employed: one is one-against-one classifier in which six

binary classifiers are built: � vs. �, � vs. �–�, � vs. fss, � vs. �–�, �

vs. fss and �–� vs. fss; another is one-against-others in which four binary

classifiers are involved: � vs. others (including �, �–� and fss), � vs.

others (�, �–� and fss), �–� vs. others (�, �, and fss) and fss vs. others

(�, � and �–�) (Ding and Dubchak, 2001; Markowetz, 2002).

Results and discussion

One-against-one classification

As described in Materials and methods, one-against-one

classification was carried out by the different combi-

nation of four structural classes. The prediction accu-

racy of each one-against-one classification is shown in

Table 2.

From Table 2, it seems to be that the classifiers

between any distinguished different structure classes

will gain higher accuracy, comparing with the other

classifiers, especially the ‘‘mixed structure’’ classes such

as �–� vs. �, and �–� vs. �, in which they share some

structural classes. So the classifiers � vs. �, � vs. fss,

�–� vs. fss give over 80% accuracy, but SVMs give a

slightly low accuracy when they classified any two

classes which share certain similar structures. It can be

seen from Table 2 that the classifiers �–� vs. �, and �–�

vs. � give only about 70% accuracy, probably because

there are structure similarities among the classes � and

�–�, and among � and �–�. The only exception to this

tendency is classifier � vs. fss which gives only

72–74% accuracy although belongs to the clearly-cut

different structural classes. It also can be seen that there

is little difference of prediction accuracy between dipep-

tide and tripeptide embeddings in our one-against-one

classification.

One-against-others classification

There are four One-against-others classifications in our

research and the prediction accuracy is represented in

Table 3. It is quite apparent that there is little difference

between the dipeptide and tripeptide frequencies, regard-

ing to the prediction accuracy.

The classifier fss vs. others gives the highest prediction

accuracy, being about 90%. The � vs. others also gives

good accuracy, in the range of 80%–83%. It is interesting

to see that the classifiers between any class that contains �

structure and the ‘‘others’’ classes will produce consider-

ably lower prediction accuracy. The classifier � vs. others,

for example, only give about 75% accuracy, and the an-

other classifier �–� vs. other, even produces poorer result,

with only around 62% accuracy.

Table 2. Prediction accuracy of one-against-one classification

Classifiers Accuracy

of dipeptide

frequency (%)

Accuracy

of tripeptide

frequency (%)

� vs. � 81.69 80.27

� vs. �–� 71.89 68.01

� vs. fss 81.73 81.73

� vs. �–� 72.58 72.73

� vs. fss 72.77 74.11

�–� vs. fss 87.44 87.86

Average accuracy 78.02 77.45

Table 3. The binary classification accuracies of class folds (one-against-

other)

Classifier Accuracies

of dipeptide

frequency (%)

Accuracies

of tripeptide

frequency (%)

� vs. other

(including �, �–� and fss)

74.60 75.34

� vs. other

(including �, �–� and fss)

80.83 83.03

�–� vs. other

(including �, � and fss)

62.56 62.03

fss vs. other

(including �, � and �–�)

89.74 90.23

Average accuracies 76.93 77.66
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Multi-class classification

When SVMs are applied to real-world classification pro-

blems, the following optimization problem needs to be

solved:

min
w;b;�

1

2
WTW þ C

Xl

i¼1

�i

subject to yiðWT�ðxiÞ þ b� 1 � �i; �i � 0

Here, C is the penalty of parameter of error term. For

binary classification, kernel functions are often needed

to deal with nonlinear data relationship. For multi-class

classification, use of kernels is sometime imperative in

order to obtain reasonably good prediction accuracy.

Among the kernels, the best choice could be radial basis

function (RBF):

Kðxi; xjÞ ¼ expð��kxi � xjk2Þ; �>0

In order to use the RBF kernel to classify our multi-class

data, two parameters, C and �, must be known before

carrying out the training and testing. A grid search pro-

gram, grid.py, by Chang and Lin (2001), is used to choose

the suitable values of C and �. Our results are shown in

Figs. 2 and 3. In our data set, C¼ 23 and �¼ 23 are used

to train the data and conduct cross-validation testing. For

the multi-classes of �, �, �–� and fss, the overall four-

class prediction accuracy is 52.26% for dipeptide and

52.01% for tripepetide embedding respectively.

To test the power of a prediction method, it is necessary

to conduct a cross-validation test. The cross-validation test

mainly consists of three approaches, i.e., single indepen-

dent dataset test, sub-sampling test, and a jackknife test

(for a comprehensive review, see Chou and Zhang, 1995).

In this study, only the jackknife test is carried out because

it is the most rigorous and reliable one (Chou and Zhang,

1995), and has been used by more and more investigators

(see, e.g., Zhou, 1998; Zhou and Assa-Munt, 2001; Zhou

and Doctor, 2003).

In this study, CATH database was first trained and then

tested using a newly developed machine-learning method

SVMs. There are four classes of structures needed to be

predicted from the training dataset. For 820 peptides at

topology-level of CATH database, two multi-class predic-

tion methods, i.e. one-against-one and one-against-others

are used and their binary classifications are in the same

range of about 77% accuracy. For dipeptide and tripeptide

embedding, the prediction average accuracy is also nearly

the same, being 78.02% and 77.45% respectively for one-

against-one, and 76.93% and 77.66% respectively for

one-ainst-others. To our surprise, the cross-validation of

the multi-class classification gives much lower accuracy,

overall accuracy being only 52.26% for dipeptide and

52.01% for tripeptide embedding respectively. The causes

for the low accuracy need to be focused on in the next

coming study.

In this investigation, special attention is paid to the

dipeptide and tripeptide sampling. Since the amino acid

sequence governs the 3D protein structure, the data

embedding methods such as dipeptide and tripeptide sam-

pling should give very good prediction accuracy because

they have taken into account the amino acid neighboring

effect. But in fact the average performance is not as good

as the Component-Coupled Algorithm (Chou, 2000).

Fig. 3. Grid search for optimal values of C and � for tripeptide embed-

ding. See Fig. 2 for further details

Fig. 2. Grid search for optimal values of C and � for dipeptide embed-

ding. The program used is grid.py and is a module inside the LibSVM

package which can be freely downloaded from the internet. Any point,

which represents a combination of C and �, inside the areas A, B, C, D,

E, F, G, and H, will give prediction accuracy from 52% to 49%, as shown

in the graph
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Although the conclusion like this may be drawn little too

earlier without comparison of both methods on the same

dataset, it seems still quite apparent that amino acid com-

position may play a very important role in determination

of 3D structure (Du et al., 2003). Highly successful rates

for the Component-Coupled Algorithm are reminiscent of

the situation in nucleic acids. It has been long known

that GC content in DNA is always constant for a particu-

lar species, or for strains in bacteria (Chargaff, 1951,

1979). In DNA composition, GC content differed in as

few as 0.5% will probably mean a different bacterial

strain. In another word, in DNA world, changes in

GC content (expressed as %) seems to be more important

than the changes such as mutations in the DNA sequence

(Sueoka, 1961). If all facts above are combined together,

that include the moderate prediction results from SVMs

dipeptide and tripeptide sampling, high accuracy rate of

the amino acid composition method with component-

coupled effect, and the GC content sensitivity in the geno-

mic DNA (Chargaf’s GC rule), one may be able to con-

clude that just as base content is so critical in DNA com-

position, the amino acid composition probably play more

important role than any other factors else. If this is true,

then in this SVMs prediction study the dipeptide and

tripeptide samplings give nearly the same accuracy would

be easily explained. In fact, even using AAC with com-

ponent-coupled effect, the contribution from the different

samplings of di-, tri-, tetra-, penta- and hexa-peptides is

moderate (maximum 20% gain) (Luo et al., 2002), imply-

ing that the amino acid composition may be more impor-

tant factor than amino acid sequence in shaping protein

structural class.

In the field of SVM’s applications, binary classifica-

tion may still be used from time to time, but the trends

are quite apparent that main classification problems in

the real world belong to multi-class one (Nguyen and

Rajapaks, 2003). It is therefore very important for biol-

ogists to widely test multi-class classification on various

databases. It is no doubt that in the near future, there are

two active facets in the field of SVM’s application in

bioinformatics. One is to carry on the testing of multi-

class classifications on different existing databases or

newly created databases in order to accumulate more

information on the strength of this machine-learning

approach. Another is to continue on the development

of new multi-class classification algorithms (Anguita

et al., 2004). Since multi-class classification has capacity

to solve the optimization problem in one step, it should

become a hot spot in SVM’s application research in the

coming years.
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