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Abstract

This letter presents a formal stochastic convergence analysis of the standard particle swarm optimization (PSO) algorithm, which
involves with randomness. By regarding each particle’s position on each evolutionary step as a stochastic vector, the standard PSO
algorithm determined by non-negative real parameter tuple {ω,c1, c2} is analyzed using stochastic process theory. The stochastic
convergent condition of the particle swarm system and corresponding parameter selection guidelines are derived.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The particle swarm optimization (PSO) is an algo-
rithm for finding optimal regions of complex search
spaces through the interaction of individuals in a pop-
ulation of particles [2]. It was developed by Kennedy
and Eberhart [3] based on the social behavior metaphor.
The algorithm searches a solution space by adjusting
the trajectories of individual vectors, called “particles”
as they are conceptualized as moving points in multidi-
mensional space. Each particle is assigned a randomized
velocity. The individual particles are attracted stochas-
tically toward the positions of their own best fitness
achieved so far and the best fitness achieved so far by
any of their neighbors.
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Since the first formal analysis of a simple particle
swarm system presented by Ozcan and Mohan [4,5],
the PSO algorithm has been theoretically analyzed by
van den Bergh [8], Clerc and Kennedy [2], Yasuda et
al. [9], and Trelea [7]. Although those results provide in-
sights into how particle swarm system works, all those
analysis discard the randomness in the standard PSO al-
gorithm, and are all based on a simplified deterministic
algorithm. Obviously, those analytical results more or
less deviate from the real particle swarm system due to
the loss of randomness.

By regarding each particle’s position on each evo-
lutionary step as a stochastic vector, the standard PSO
algorithm can be analyzed using stochastic process the-
ory. The expectation and variance of the particle’s posi-
tion in a simplified one-particle one-dimensional parti-
cle swarm system is calculated, and corresponding con-
vergence property is analyzed. After that, the present
work gives convergence analysis to the standard par-
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ticle swarm system, considering the random influence
thoroughly. As far to the authors’ knowledge, this is the
first contribution to analyze the stochastic standard PSO
algorithm, instead of a simplified deterministic one.

The term Convergence is widely used in this letter,
with different meanings. If it is used to describe a de-
terministic sequence {A(t)}, t = 0,1, . . . , Convergence
refers to the property that the limit

lim
t→∞A(t) = A

exists, where A is the convergent value (a constant), and
both A(t) and A are scalars or vectors.

When dealing with a particle swarm system, because
particles’ positions involve randomness, thus no deter-
ministic convergent result can be obtained. In this let-
ter, Convergence of a particle swarm is defined as the
property that for ∀i ∈ {1,2, . . . ,M}, �Xi(t) converges
in mean square to �P (i.e. limt→∞ E| �Xi(t) − �P |2 = 0),
where M is the population size of the swarm, �P is a po-
sition in the search space, and �Xi(t) is the position of
the ith particle in the swarm at time t . Under this situa-
tion, it is said that the particle swarm system converges
to �P . Given E �Xi(t) as the expectation of �Xi(t) and
D �Xi(t) the variance, obviously the condition that �Xi(t)

converges in mean square to �P equals to that E �Xi(t)

converges to �P and D �Xi(t) converges to 0 simultane-
ously.

Generally speaking, this work can be seen as an ex-
tension of van den Bergh’s work [8], though the per-
spectives are different. The result derived in this letter
extends all above mentioned theoretical analysis results.
A stochastic convergent condition of the standard parti-
cle swarm system is derived. Guidelines for parameter
selection are directly given by the analysis result, both
in formular and graphical form.

2. Particle swarm optimization algorithm

2.1. Standard algorithm

The standard PSO algorithm maintains a popula-
tion of M particles, the PSO formulae define each
particle as a potential solution to a problem in D-di-
mensional space, with particle i represented �Xi = (Xi1,

Xi2, . . . ,XiD), where i = 1,2, . . . ,M . Each particle
also maintains a memory of its previous best position,
�Pi = (Pi1,Pi2, . . . ,PiD), and a velocity along each di-

mension, represented as �Vi = (Vi1,Vi2, . . . , ViD). The
�P vector of the particle with the best fitness in the neigh-

borhood is designated �Pg . At each iteration, �Pg and the
�P vector of the current particle are combined to adjust

the velocity of the particle along each dimension, and
that velocity is then used to compute a new position for
the particle. The portion of the adjustment to the veloc-
ity influenced by the individual’s previous best position
is considered the cognition component, and the portion
influenced by the best in the neighborhood is the social
component [3].

Without loss of generality, consider a minimization
task and use symbol f to denote the objective function
that is being minimized. The update equation for the d th
dimension of the personal best position �Pi is presented
in Eq. (1), with the dependence on the time step t made
explicit.

P d
i (t + 1) =

{
P d

i (t) if f ( �Xi(t + 1)) � f ( �Pi(t)),

Xd
i (t + 1) if f ( �Xi(t + 1)) < f ( �Pi(t)).

(1)

In standard PSO algorithm [6], at iteration t , the d th
dimension of particle i’s velocity and position are up-
dated using Eqs. (2) and (3) separately, where ω,c1 and
c2 are non-negative constant real parameters, rd

1,i (t) and

rd
2,i (t) are two independent uniform random numbers

distributed in the range [0,1].
V d

i (t + 1) = ωV d
i (t) + c1r

d
1,i (t)

(
P d

i (t) − Xd
i (t)

)
+ c2r

d
2,i (t)

(
P d

g (t) − Xd
i (t)

)
, (2)

Xd
i (t + 1) = Xd

i (t) + V d
i (t + 1). (3)

The velocity update equation can also be described us-
ing Eq. (4), where χ,ϕ1 and ϕ2 are non-negative con-
stant real parameters [2]. Obviously, by choosing ap-
propriate parameters, Eqs. (2) and (4) are identical. In
this letter, Eqs. (1)–(3) are used as standard PSO update
equations.

V d
i (t + 1) = χ

(
V d

i (t) + ϕ1r
d
1,i (t)

(
P d

i (t) − Xd
i (t)

)
+ ϕ2r

d
2,i (t)

(
P d

g (t) − Xd
i (t)

))
. (4)

There exist many factors that would influence the
convergence property and performance of PSO algo-
rithm, including selection of ω,c1 and c2, velocity
clamping, position clamping, topology of neighbor-
hood, etc. This letter focuses on analyzing the rela-
tionship between convergence property of the standard
PSO algorithm and the parameter range of ω,c1 and c2.
Factors such as velocity clamping, position clamping,
topology of neighborhood do may influence the conver-
gence property and performance of the standard PSO
algorithm, but the discussion of those factors is beyond
the scope of this letter. At the same time, the situation
with variable parameter values during evolution is also
not discussed here. That means, the standard PSO algo-
rithm studied here is only determined by fixed parame-
ter tuple {ω,c1, c2}. Velocity and position clamping are
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not considered, and star topology is investigated, i.e.,
the neighborhood of any particle is the whole swarm.

2.2. One-dimensional algorithm

When the particle swarm operates on an optimiza-
tion problem, the values of �Pi and �Pg are constantly
updated, as the system evolves toward an optimum.
For analysis purpose, consider the situation that �Pi

and �Pg keep constant during a period of time, then
all particles evolve independently. Thus, only parti-
cle i needs to be studied. For i is chosen arbitrarily,
the result can be applied to all other particles. At the
same time, it appears from Eqs. (2) and (3) that each
dimension is updated independently from the others.
Thus, without loss of generality, the algorithm descrip-
tion can be reduced to the one-dimensional case. By
omitting particle and dimension notations, and con-
sidering discrete time situation, update equations be-
come:

Vt+1 = ωVt + c1r1,t (Pi − Xt) + c2r2,t (Pg − Xt), (5)

Xt+1 = Xt + Vt+1. (6)

It should be noticed that the above simplification is only
for analysis purpose, the original standard algorithm
will be recalled after the analysis is finished.

According to [8], by substituting Eq. (5) into Eq. (6),
the following non-homogeneous recurrence relation is
obtained:

Xt+1 = (
1 + ω − (c1r1,t + c2r2,t )

)
Xt

− ωXt−1 + c1r1,tPi + c2r2,tPg. (7)

Notice that there exist random numbers in Eq. (7), and
that X0,X1 are also random numbers, thus each Xt

should be regarded as a random variable, and the iter-
ative process {Xt } should be regarded as a stochastic
process. The expectation and variance of each random
variable Xt can then be calculated, and the convergence
property of the iterative process can be analyzed.

3. Convergence analysis

As stated in last section, considering the one-particle
one-dimensional PSO algorithm with fixed Pi and Pg ,
the particle’s position at iteration t , i.e., Xt is a random
variable, thus particle’s trajectory can be regarded as
a stochastic process. In this section, particle position’s
expectation and variance will be calculated, which are
deterministic processes rather than stochastic processes,
thus the corresponding guaranteed convergence proper-
ties can be directly analyzed. The analysis is based on
Eq. (7) instead of Eqs. (5) and (6). After that, the as-
sumption of fixed Pi is removed, and the convergence
property of particle’s cognition is analyzed. Remem-
ber that those analysis are based on the simplified one-
particle one-dimensional PSO system. In Section 3.4,
the original standard M-particle D-dimensional PSO
system will be recalled, and the result obtained from
one-particle one-dimensional PSO system can be ap-
plied to analyze the convergent condition of the standard
PSO system.

3.1. Convergence analysis of the expectation of
particle’s position

In this subsection, the iteration equation of EXt is
obtained, where EXt is the expectation of random vari-
able Xt . Based on the iteration equation, the convergent
condition of sequence {EXt } is analyzed.

According to Eq. (7), iteration equation of sequence
{EXt } can be obtained.

EXt+1 =
(

1 + ω − c1 + c2

2

)
EXt

− ωEXt−1 + c1Pi + c2Pg

2
. (8)

The characteristic equation of the iterative process
shown in Eq. (8) is

λ2 −
(

1 + ω − c1 + c2

2

)
λ + ω = 0. (9)

Theorem 1. Given ω,c1, c2 � 0, if and only if 0 � ω <

1 and 0 < c1 + c2 < 4(1 + ω), iterative process {EXt }
is guaranteed to converge to (c1Pi + c2Pg)/(c1 + c2).

Proof. The convergent condition of iterative process
{EXt } is that the absolute values (or complex modulus)
of both eigenvalues λ1, λ2 are less than 1. That is,

1

2

∣∣∣∣
(

1 + ω − c1 + c2

2

)
±

√(
1 + ω − c1 + c2

2

)2

− 4ω

∣∣∣∣
< 1.

Consider two cases.
(1) (1 + ω − c1+c2

2 )2 < 4ω.
Here, both eigenvalues are complex numbers. |λ1|2 =

|λ2|2 = 1
4 (1+ω− c1+c2

2 )2 + 1
4 [4ω−(1+ω− c1+c2

2 )2] =
ω, so max{|λ1|, |λ2|} < 1 requires only ω < 1. Condi-
tion (1) itself requires ω > 0 and 2(1 + ω − 2

√
ω) <

c1 + c2 < 2(1 + ω + 2
√

ω).
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(2) (1 + ω − c1+c2
2 )2 � 4ω.

Here, both eigenvalues are real numbers. Remember
that ω,c1, c2 are all non-negative real numbers, condi-
tion (2) is equal to ω � 0, and c1 +c2 � 2(1+ω−2

√
ω)

or c1 + c2 � 2(1 + ω + 2
√

ω).
If c1 + c2 � 2(1 + ω − 2

√
ω), max{|λ1|, |λ2|} < 1

requires only

1

2

[(
1 + ω − c1 + c2

2

)
+

√(
1 + ω − c1 + c2

2

)2

− 4ω

]

< 1.

Thus it leads to ω < 1 and 0 < c1 + c2 � 2(1 + ω −
2
√

ω).
If c1 + c2 � 2(1 + ω + 2

√
ω), max{|λ1|, |λ2|} < 1

requires only

1

2

[(
1 + ω − c1 + c2

2

)
−

√(
1 + ω − c1 + c2

2

)2

− 4ω

]

> −1.

Thus it leads to ω < 1 and 2(1 +ω + 2
√

ω) � c1 + c2 <

4(1 + ω).
Synthesize cases (1) and (2), the guaranteed conver-

gent condition of iterative process {EXt } is

0 � ω < 1 and 0 < c1 + c2 < 4(1 + ω). (10)

When iterative process {EXt } is convergent, the con-
vergent value EX can be calculated using EX = (1 +
ω − c1+c2

2 )EX − ωEX + c1Pi+c2Pg

2 . That gets EX =
(c1Pi + c2Pg)/(c1 + c2). �

As a matter of fact, if 0 � ω < 1 and c1 = c2 = 0,
then Xt = X0 + ω(1−ωt )

1−ω
V0. That is not an interesting

case, and is not considered convergent in this letter. Sim-
ilar results can be found in [7–9], but none of those
results explicitly takes particle’s position as a stochastic
variable, so those results are somewhat vague in con-
cept, and a reasonable explanation is hard to be given.
From above analysis, it is now clear what those results
actually mean.

3.2. Convergence analysis of the variance of particle’s
position

As we know, a sequence of stochastic variables
may not converge even if corresponding expectation
sequence converges. To further study the convergence
property, the variance sequence should be studied. In
this subsection, the iteration equation of DXt is ob-
tained, where DXt is the variance of random variable
Xt . Based on the iteration equation, the convergent con-
dition of sequence {DXt } is analyzed.
In order to make the procedure of calculating DXt

clear, some symbols should be introduced firstly. Let
ν = (c1 + c2)/2, μ = (c1Pi + c2Pg)/(c1 + c2), ψ =
1 +ω − ν, Rt = c1r1,t + c2r2,t − ν, Qt = ((c1c2)/(c1 +
c2))(r2,t − r1,t )(Pg − Pi), and Yt = Xt − μ, then from
Eq. (7), it gets

Yt+1 = (ψ − Rt)Yt − ωYt−1 + Qt. (11)

Obviously, Yt is also a random variable, and DYt =
DXt , EYt = EXt − μ. Since r1,t , r2,t are two inde-
pendent uniform random numbers ranged in [0,1], it is
obvious that ERt = EQt = 0, DRt = ER2

t = 1
12 (c2

1 +
c2

2), DQt = EQ2
t = 1

6 (c1c2/(c1 + c2))
2(Pg − Pi)

2, and
E(RtQt ) = (c1c2(c2 − c1)/12(c1 + c2))(Pg − Pi). No-
tice that DRt , DQt and E(RtQt ) are constants, let
R = DRt , Q = DQt , and T = E(RtQt ).

Notice that Yt , Yt−1 are both independent on Rt,Qt ,
but Yt and Yt−1 are dependent. Thus EY 2

t+1,EY 2
t+2, and

E(Yt+1Yt ) can be calculated as follows:

EY 2
t+1 = (ψ2 + R)EY 2

t + ω2EY 2
t−1 + Q

− 2ωψE(YtYt−1) − 2T EYt , (12)

EY 2
t+2 = (ψ2 + R)EY 2

t+1 + ω2EY 2
t + Q

− 2ωψE(Yt+1Yt ) − 2T EYt+1, (13)

E(Yt+1Yt ) = ψEY 2
t − ωE(YtYt−1). (14)

Then, (12) ∗ ω + (13) is calculated to eliminate items
E(Yt+1Yt ) and E(YtYt−1), get

EY 2
t+2 + ωEY 2

t+1

= (ψ2 + R)
(
EY 2

t+1 + ωEY 2
t

)
+ ω2(EY 2

t + ωEY 2
t−1

)
+ Q(1 + ω) − 2ωψ2EY 2

t − 2T (EYt+1 + ωEYt).

(15)

Substitute DYt = EY 2
t − (EYt )

2, EYt+2 = ψEYt+1 −
ωEYt , and ωEYt−1 = ψEYt −EYt+1 into Eq. (15), the
iteration equation of DYt is obtained.

DYt+2 = (ψ2 + R − ω)DYt+1 − ω(ψ2 − R − ω)DYt

+ ω3DYt−1 + R
[
(EYt+1)

2 + ω(EYt )
2]

− 2T (EYt+1 + ωEYt) + Q(1 + ω). (16)

Remember that DYt = DXt , EYt = EXt − μ, the iter-
ation equation of DXt can be obtained.

DXt+2 = (ψ2 + R − ω)DXt+1

− ω(ψ2 − R − ω)DXt + ω3DXt−1

+ R
[
(EXt+1 − μ)2 + ω(EXt − μ)2]

− 2T
[
EXt+1 − μ + ω(EXt − μ)

]
+ Q(1 + ω). (17)
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The characteristic equation of the iterative process
shown in Eq. (17) is

λ3 − (ψ2 + R − ω)λ2 + ω(ψ2 − R − ω)λ − ω3 = 0.

(18)

The iteration equation and characteristic equation of it-
erative process {DXt } are both quite complex, and it
is hard to analyze these two equations directly. Fortu-
nately, the convergent condition of the iterative process
{DXt } defined in Eq. (17) is comparatively simple.
Before discussing convergence property of iterative
process {DXt }, an auxiliary theorem is introduced. Let
f (λ) = λ3 − (ψ2 +R −ω)λ2 +ω(ψ2 −R −ω)λ−ω3,
and λ1, λ2, λ3 are three roots of the characteristic equa-
tion (18).

Theorem 2. Given 0 � ω < 1 and c1 + c2 > 0, then
f (1) > 0 is the necessary and sufficient condition of
max{|λ1|, |λ2|, |λ3|} < 1.

Proof. If ω = 0, then two among three eigenvalues are
zeros. Without loss of generality, let λ2 = λ3 = 0, then
λ1 = ψ2 + R > 0. It also can be easily obtained that
f (1) = 1 − λ1. Thus |λ1| < 1 is equal to f (1) > 0.

Consider another special case. If ψ = 0, i.e., c1 +
c2 = 2(1 + ω), then λ1 = −ω and λ2, λ3 are roots of
equation λ2 − Rλ − ω2 = 0. Obviously, |λ1| = ω < 1.
Since R > 0 and ω2 � 0, it gets max{|λ2|, |λ3|} =
1
2 (R + √

R2 + 4ω2). Thus, the convergent condition is
1
2 (R + √

R2 + 4ω2) < 1. This leads to 1 − R − ω2 > 0.
At this point, f (1) = (1 − R − ω2)(1 + ω). Obvi-
ously, 1 − R − ω2 > 0 and f (1) > 0 are equal, so
max{|λ2|, |λ3|} < 1 is equal to f (1) > 0.

Now consider general situations when 0 < ω < 1,
c1 + c2 > 0 and c1 + c2 	= 2(1 + ω). In order to go on
with the proof, some function values should be evalu-
ated firstly.

f (0) = −ω3 < 0; f (ω) = −2ω2R < 0;
f (−ω) = −2ψ2ω2 < 0.

Based on property of cubic equation with one unknown,
it is known that λ1λ2λ3 = ω3 > 0. This means that the
characteristic equation (18) has three positive roots, or
one positive root and two negative roots.

To prove the necessity, reduction to absurdity is
adopted. f (1) should not equal to zero, otherwise 1 is
the eigenvalue, violating condition max{|λ1|, |λ2|, |λ3|}
< 1. Then assume f (1) < 0. According to conclusions
in elementary mathematics, because f (−ω),f (0), f (ω)

and f (1) have the same sign, the number of roots in the
interval (−ω,0), (0,ω), and (ω,1) must all be even.
Thus there must be at least one root located in interval
(1,∞) to satisfy λ1λ2λ3 = ω3 > 0, violating condition
max{|λ1|, |λ2|, |λ3|} < 1.

Now the sufficiency. Since f (1) > 0 and f (ω) < 0,
so the number of the characteristic equation’s roots
in the interval (ω,1) should be odd. The number of
roots in the interval (ω,1) could not be 3, for this will
cause λ1λ2λ3 > ω3, so the number could only be 1.
Without loss of generality, let the root be λ1. Because
f (−ω),f (0) and f (ω) have the same sign, the num-
ber of roots in the interval (−ω,0), (0,ω) must all be
even. Thus, the other two roots λ2, λ3 can both be lo-
cated in the interval (−ω,0) or (0,ω); or be located in
interval (−∞,−ω) or (1,∞). Obviously, λ2, λ3 can-
not be located in interval (−∞,−ω) or (1,∞), for
that cause |λ1λ2λ3| > ω3. Thus, λ2, λ3 can only be
located in the interval (−ω,0) or (0,ω). Apparently,
max{|λ1|, |λ2|, |λ3|} < 1 is satisfied. �

Now the parameter range to guarantee the con-
vergence of sequence {DXt } can be calculated using
f (1) > 0, where

f (1) = −(c1 + c2)ω
2 +

(
1

6
c2

1 + 1

6
c2

2 + 1

2
c1c2

)
ω

+ c1 + c2 − 1

3
c2

1 − 1

3
c2

2 − 1

2
c1c2.

Let A = c1 +c2, B = −( 1
6c2

1 + 1
6c2

2 + 1
2c1c2), C = 1

3c2
1 +

1
3c2

2 + 1
2c1c2 − c1 − c2. Knowing that f (1) > 0 and ω

is a real number, it is easy to get that both Aω2 + Bω +
C < 0 and B2 − 4AC � 0 should be satisfied. That is,

g(c1, c2) = (c1 + c2)
4 − 48(c1 + c2)

3

+ 2(c1c2 + 72)(c1 + c2)
2

+ 24c1c2(c1 + c2) + c2
1c

2
2

� 0, (19)

c2
1 + c2

2 + 3c1c2 − √
g(c1, c2)

12(c1 + c2)

< ω <
c2

1 + c2
2 + 3c1c2 + √

g(c1, c2)

12(c1 + c2)
. (20)

As a matter of fact, Eqs. (19) and (20) implies that
c1 +c2 < 4(1+ω); or, in other words, f (1) > 0 implies
that c1 + c2 < 4(1 + ω). This is because√

g(c1, c2) <

√
g(c1, c2) + 3(c1 + c2)2(c2

1 + c2
2)

= ∣∣2(c1 + c2)
2 − 12(c1 + c2) − c1c2

∣∣
and 2(c1 + c2)

2 − 12(c1 + c2) − c1c2 < 0 holds in the
parameter range determined by Eq. (19). Thus,



M. Jiang et al. / Information Processing Letters 102 (2007) 8–16 13
c2
1 + c2

2 + 3c1c2 − √
g(c1, c2)

12(c1 + c2)

>
c2

1 + c2
2 +3c1c2 +2(c1 + c2)

2 −12(c1 + c2)− c1c2

12(c1 + c2)

= 1

4
(c1 + c2) − 1

and (c2
1 + c2

2 + 3c1c2 − √
g(c1, c2))/12(c1 + c2) < ω

implies that c1 + c2 < 4(1 + ω).

Theorem 3. Given ω,c1, c2 � 0, if and only if 0 �
ω < 1, c1 + c2 > 0 and f (1) > 0 are all satisfied to-
gether, iterative process {DXt } is guaranteed to con-
verge to 1

6 (c1c2/(c1 + c2))
2(Pg − Pi)

2(1 + ω)/f (1),

where f (1) = −(c1 + c2)ω
2 + ( 1

6c2
1 + 1

6c2
2 + 1

2c1c2)ω +
c1 + c2 − 1

3c2
1 − 1

3c2
2 − 1

2c1c2.

Proof. The iteration equation of DXt , Eq. (17), con-
tains items related to EXt , thus the condition shown in
Theorem 1 should be satisfied firstly to make DXt con-
vergent. As stated above, f (1) > 0 implies that c1 +
c2 < 4(1 + ω). Thus conditions 0 � ω < 1, c1 + c2 > 0,
and f (1) > 0 together make sure that the conditions
stated in Theorem 1 are satisfied.

After EXt is convergent, the convergent condition
of iterative process {DXt } is that the absolute values(or
complex modulus) of the three eigenvalues λ1, λ2, λ3
are all less than 1. Theorem 2 proves that, given 0 �
ω < 1 and c1 + c2 > 0, f (1) > 0 is the necessary and
sufficient condition of max{|λ1|, |λ2|, |λ3|} < 1.

Thus, 0 � ω < 1, c1 + c2 > 0, and f (1) > 0 together
give the necessary and sufficient condition to guarantee
iterative process {DXt } convergent. If iterative process
{DXt } is convergent, the convergent value can be cal-
culated using

DX = (ψ2 + R − ω)DX − ω(ψ2 − R − ω)DX

+ ω3DX + Q(1 + ω)

+ R
[
(EX − μ)2 + ω(EX − μ)2]

− 2T
[
EX − μ + ω(EX − μ)

]
.

That gets DX = 1
6 (c1c2/(c1 + c2))

2(Pg − Pi)
2(1 +

ω)/f (1). �
3.3. Convergence analysis of particle’s cognition

In above analysis, it is supposed that the values of �Pi

and �Pg keep constant, which is not the case in real prob-
lem solving. Here, the assumption that �Pi keeps con-
stant is removed. That is, during the evolution process,
�Pi is constantly updated according to Eq. (1). But the
value of �Pg is still supposed to keep constant and be the
best position found so far. As a matter of fact, this as-
sumption is reasonable, because the value of �Pg only
influences the final convergent position, and it does not
influence the convergence property at all.

Here we still focus on the one-dimensional one-par-
ticle simplified PSO system. The relationship between
Pi and Pg is given in the following theorem.

Theorem 4. Given ω,c1, c2 � 0, if iterative process

{DXt } is guaranteed to converge and f (1) <
c2

2(1+ω)

6 ,
then iterative process {Pi(t)} will converge to Pg with
probability 1.

Proof. If the iterative process {DXt } is guaranteed to
converge, then iterative process {EXt } is also guaran-
teed to converge. So Xt will converge to a random distri-
bution with expectation EX = (c1Pi + c2Pg)/(c1 + c2)

and variance DX = 1
6 (c1c2/(c1 + c2))

2(Pg − Pi)
2(1 +

ω)/f (1). No matter what the value of Pi is, if f (1) <
c2

2(1+ω)

6 , then (Pg − EX)2 = (c1/(c1 + c2))
2(Pg − Pi)

2

< DX. Hence it is obvious that Prob(Xt = Pg) > 0,
which directly leads to Prob(limt→∞ Pi(t) = Pg) = 1
due to the update equation of Pi . And if Pi(t) = Pg ,
it will be stable there. Thus it is evident that itera-
tive process {Pi(t)} will converge to Pg with probabil-
ity 1. �

It should be noticed that the condition f (1) <
c2

2(1+ω)

6 is only a sufficient condition to ensure the con-
vergence, but not a necessary one. As a matter of fact,
this condition is to be relaxed in future.

3.4. Convergence analysis of standard particle swarm
system

The above analysis in this section are all based on the
one-particle one-dimensional simplified PSO system.
Here, the original standard M-particle D-dimensional
stochastic PSO system is recalled.

When the particle swarm operates on an optimization
problem, the value of �Pi and �Pg are constantly updated,
as the system evolves toward an optimum. As we can
see from above analysis, when �Pg is fixed, under cer-
tain conditions, �Pi will evolve toward �Pg . And if �Pg

changes, �Pi will evolve to the new �Pg . Regarding the
convergence property of the standard PSO system, The-
orem 5 can be obtained.

Theorem 5. Given ω,c1, c2 � 0, if 0 � ω < 1, c1 +
c2 > 0, and 0 < f (1) <

c2
2(1+ω)

are all satisfied to-
6
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gether, the standard particle swarm system determined
by parameter tuple {ω,c1, c2} will converge in mean
square to �Pg .

Proof. From the results of Theorems 1 and 3, given
ω,c1, c2 � 0, if �Pi and �Pg keep constant during a pe-
riod of time, then if 0 � ω < 1, c1 + c2 > 0, and
f (1) > 0 are all satisfied together, for each dimension
d of particle i, the conclusion is that {EXd

i (t)} con-
verges to (c1P

d
i + c2P

d
g )/(c1 + c2), and {DXd

i (t)} con-

verges to 1
6 (c1c2/(c1 + c2))

2(P d
g − P d

i )2(1 + ω)/f (1).
It appears from Eqs. (2) and (3) that each dimension
of particle i is updated independently from the others.
Thus, it can be concluded that {E �Xi(t)} converges to
(c1 �Pi + c2 �Pg)/(c1 + c2), and {D �Xi(t)} converges to
1
6 (c1c2/(c1 + c2))

2( �Pg − �Pi)
2(1 + ω)/f (1). And from

the result of Theorem 4, if f (1) <
c2

2(1+ω)

6 , each �Pi

converges to �Pg with probability 1, thus it can be imme-
diately obtained that {E �Xi(t)} will finally converge to
�Pg , and {D �Xi(t)} will finally converge to 0. That means,

each sequence { �Xi(t)} will stochastically evolve toward
�Pg until it converges in mean square to �Pg . This con-

clusion applies to each particle, thus the whole particle
swarm system will converge to �Pg . �

It should be noticed that Theorem 5 only declares
that each particle in the standard particle swarm would
converge in mean square to the best position found so
far by the swarm, i.e., �Pg . It does not mean that the con-
vergent position is an optimal one, or even a local opti-
mal one. If a local optimal position is desired, the idea
from Guaranteed Locally Convergence Particle Swarm
Optimiser (GCPSO) proposed in van den Bergh [8] can
be adopted, which would not influence the analysis re-
sults derived in this letter.

4. Parameter selection guidelines

The convergence analysis of the expectation and
variance of particle’s position, and convergence analy-
sis of particle’s cognition in Section 3 lead to some
limitation on the relationship among the parameter tu-
ple used in standard PSO algorithm, that is, 0 � ω < 1,

c1 + c2 > 0, and 0 < f (1) <
c2

2(1+ω)

6 . These conditions
can be used to effectively guide the parameter selec-
tion of PSO algorithm. Although this parameter area
is quite restricted, the suggested and widely used pa-
rameters in literatures all fall into this area, such as
ω = 0.729, c1 = 2.8 ∗ ω, c2 = 1.3 ∗ ω [1], ω = 0.729,
c1 = c2 = 1.49 [2], and ω = 0.6, c1 = c2 = 1.7 [7].
Fig. 1. Parameter range to guarantee the convergence of iterative
process {EXt }. The cyan (light) area corresponds to case with com-
plex eigenvalues, the blue (dark) area corresponds to case with real
eigenvalues. (For interpretation of the references to color in this fig-
ure legend, the reader is referred to the web version of this article.)

Fig. 2. Relationship between c1 and c2 to guarantee the convergence
of iterative process {DXt }.

Maybe the analysis result presented in this work can
help to explain why those parameters work well.

The corresponding graphical illustrations of parame-
ter ranges are given as follows in this section.

The parameter range to guarantee the convergence of
iterative process {EXt } is illustrated in Fig. 1. The cyan
(light) area in Fig. 1 corresponds to case (1) discussed
in Theorem 1, and the blue (dark) area in Fig. 1 corre-
sponds to case (2) discussed in Theorem 1.

The parameter ranges to guarantee the convergence
of iterative process {DXt } are illustrated in Figs. 2–4.
In Fig. 2, the relationship between c1 and c2, which is
determined by Eq. (19), is illustrated. The relationship
between lower and higher range of ω and c1, c2, which
is determined by Eq. (20) and ω � 0, are illustrated in
Figs. 3 and 4, separately.
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Fig. 3. Relationship between lower range of ω and c1, c2 to guarantee
the convergence of iterative process {DXt }.

Fig. 4. Relationship between higher range of ω and c1, c2 to guarantee
the convergence of iterative process {DXt }.

Because the condition f (1) <
c2

2(1+ω)

6 is only a suffi-
cient condition, the relationship among parameter tuple
{ω,c1, c2} determined by this condition is not illus-
trated.

If we use PSE to denote the parameter set to guaran-
tee the convergence of iterative process {EXt }, use PSD
to denote the parameter set to guarantee the convergence
of iterative process {DXt }, and use PSC to denote the

parameter set to satisfy 0 < f (1) <
c2

2(1+ω)

6 , then it is
obvious that the relationship should be PSE ⊃ PSD ⊃
PSC. If we use PSS to denote the parameter set to en-
sure the convergence of iterative process {Pi(t)}, it is
obvious that the relationship should be PSD ⊇ PSS and
PSS ⊇ PSC.

The parameter selection of PSO algorithm in litera-
tures favors c1 = c2 = c, so more detailed discussion on
this condition is given. At this time, Eq. (10) becomes

0 � ω < 1 and 0 < c < 2(1 + ω). (21)

And f (1) > 0 becomes
Fig. 5. Relationship between ω and c when c1 = c2 = c to simultane-
ously guarantee the convergence of iterative processes {EXt }, {DXt },
and {Pi(t)}. The black (dark) area shows the convergence condition
of process {EXt }. The cyan (light) area shows the convergence condi-
tion of process {DXt }. And the blue (grey) area shows a convergence
condition of process {Pi(t)} and the total particle swarm. (For inter-
pretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

5c − √
25c2 − 336c + 576

24

< ω <
5c + √

25c2 − 336c + 576

24
. (22)

The synthetic convergence conditions are simultane-
ously illustrated in Fig. 5. The relationship between ω

and c, which is determined by Eq. (21), is illustrated
in the black (dark) area in Fig. 5. The relationship be-
tween ω and c, which is determined by Eq. (22) and
ω � 0, is illustrated in the cyan (light) area in Fig. 5.
The relationship between ω and c, which is determined

by 0 < f (1) <
c2

2(1+ω)

6 , is illustrated in the blue (grey)
area in Fig. 5. Obviously, the convergence condition
of iterative process {DXt } is much stronger than the
convergence condition of iterative process {EXt }, and
the convergence condition of particle’s cognition is the
strongest.

5. Conclusions

The stochastic process theory is applied to analyze
the standard particle swarm optimization algorithm de-
termined by parameter tuple {ω,c1, c2}, considering the
randomness thoroughly. The analysis results lead to a
convergent condition for the standard particle swarm
system, and the corresponding parameter ranges, both
in formular and graphical form, are given. This result is
helpful to understand the mechanism of standard PSO
algorithm and select appropriate parameters to make
PSO algorithm more powerful.
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The result derived in this letter declares that the stan-
dard particle swarm system can converge in a sense of
probability, but only a sufficient condition ensuring the
convergence is given, and the detailed convergent pro-
cedure is still not quite clear now.

Some more factors influencing the convergence of
particle swarm system are needed to be considered in
future. Further research is also needed to clarify the
relationship between PSO performance and parameter
selection to guarantee convergence.
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