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ABSTRACT

Motivation: Modularity analysis is a powerful tool for studying the

design of biological networks, offering potential clues for relating the

biochemical function(s) of a network with the ‘wiring’ of its components.

Relatively little work has been done to examine whether the modularity

of a network depends on the physiological perturbations that influence

its biochemical state. Here, we present a novel modularity analysis

algorithm based on edge-betweenness centrality, which facilitates

the use of directional information and measurable biochemical data.

Contact: kyongbum.lee@tufts.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

A common feature of large, complex biological networks is that

they are organized into smaller sub-networks consisting of directly

interacting, or ‘connected,’ molecular components. Recent studies

have suggested that these sub-networks correspond to biologically

meaningful, functional units or ‘modules’ (Hartwell et al., 1999). In

this light, one approach to understanding the design of biological

networks is to examine their modularity e.g. comparative analyses

of structurally similar modules across different species may identify

mutually shared functions, associate a modular structure with a new

function, and provide insight into the evolution of various network

structures (Sharan and Ideker, 2006). One issue that remains to be

addressed is whether particular structures are inherent to a network

or dependent on its functional state. This issue can be addressed by

incorporating experimental and derived measures that correlate the

functional state of a biological network with the extents of inter-

actions, or ‘connection strengths’, between the many molecular

components (Patil and Nielsen, 2005). In recent years, analytical

technologies have emerged enabling parallel measurements on the

most common types of biochemical processes. For example, the

DNA micro-array technology is now widely used to compre-

hensively profile the transcriptional activity of a gene network

(di Bernardo et al., 2005). Recent reports have also described the

use of isotopomer modeling and metabolomic technologies for

high-throughput analyses of metabolic reaction fluxes in intact

cells (Fischer and Sauer, 2005).

In this application note, we describe an algorithm for data-driven

modularity analysis, with the principal aim of disseminating the

source code. A novel feature of this analysis is that it incorporates

functional information on the interactions between the network’s

components. Our core algorithm extends the edge-betweenness

analysis algorithm (Newman and Girvan, 2004) to partition directed

graphs with non-uniform edge costs. Additional components of our

algorithm consist of well-known techniques for graph (Freeman,

1979) and vector space calculations. Our algorithm is general with

respect to the type of connections between network components,

and should be applicable to a variety of biological networks, such as

transcriptional regulatory and protein–protein interaction networks.

The inputs of the algorithm are an adjacency matrix describing the

‘static’ connectivity of the network components and a weight matrix

describing the extents of interactions between these components.

Here, we briefly describe the application of our modularity analysis

to a metabolic network represented as a directed, compound graph

with reaction edges, where the edge costs are supplied by metabolic

profiling and flux analysis. In this analysis, the modularity of the

network quantitatively reflects the connection diversity, i.e. reaction

engagements, between the network components, i.e. metabolites.

2 BACKGROUND

Vertex betweenness centrality—A network is conveniently modeled

as a graph G{V, E} consisting of a set of vertices (V) and edges (E),

where each edge connects a pair of vertices (Cormen et al., 2001).

Vertex centrality refers to the significance of a vertex in determining

the layout of the graph. There are three different measures of cen-

trality based on degree, closeness or betweenness. Among these,

betweenness centrality has been shown to best reflect the variation

in vertex centrality among distinguishable graphs (Freeman, 1979).

Betweenness centrality is defined in terms of a probability. If sst(v)

is the number of the shortest paths (geodesics) from a vertex s to t
that contains the vertex v and sst is the number of shortest paths

from s to t, then bstðvÞ ¼ sstðvÞ/sst is the probability that vertex v
falls on a randomly selected shortest path connecting s with t. The

overall betweenness centrality of a vertex v is obtained by summing

up its partial betweenness values for all unordered pairs of vertices

fðs‚ tÞ j s‚ t 2 V‚s 6¼ t 6¼ vg :

CBðvÞ ¼
X

s6¼n 6¼t2V
bstðvÞ: ð1Þ

This index reflects the amount of control exerted by a given vertex

over the interactions between the other vertices in the network.

In general, the ‘vertex’ betweenness centrality index is costly to�To whom correspondence should be addressed.
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compute for large networks. Recently, a faster algorithm has been

developed applicable for large, but also very sparse networks, such

as social networks (Brandes, 2001). We have adapted this faster

algorithm to calculate the edge-betweenness centrality index for a

metabolic reaction network based on shortest paths.

Edge-betweenness centralit—unlike many conventional cluster-

ing methods, which are agglomerative, the edge-betweenness

algorithm is a top-down, divisive method for grouping network

components into modules. Edge-betweenness centrality is the freq-

uency of an edge that places on the shortest paths between all pairs

of vertices. Analogous to Equation (1), the betweenness centrality

of an edge in a network is given by the sum of the edge-betweenness

values for all source vertices. As suggested by (Newman and

Girvan, 2004), the edges with highest betweenness values are

most likely to lie between sub-graphs, rather than inside a sub-

graph. Consequently, successively removing edges with the highest

edge-betweenness will eventually isolate sub-graphs consisting

of vertices that share connections only with other vertices in the

same sub-graph.

3 ALGORITHM

In its original implementation, which was developed for

unweighted, undirected networks, the edge-betweenness analysis

used the breadth-first search (BFS) algorithm (Newman and

Girvan, 2004). Here, we extended this prior work to enable the

edge-betweenness analysis of directed, weighted networks. The

algorithm steps are as follows:

Step 1. Shortest paths through the network are calculated using

Dijkstra’s algorithm. Usually, the shortest paths differ for undi-

rected and directed graphs. The shortest path calculation also criti-

cally depends on an edge-weight matrix, which adjusts the relative

distances between the network nodes (graph vertices) based on the

strengths of the biochemical interactions represented by the corre-

sponding edges. For example, a weight matrix holding metabolic

flux data are used to adjust the distance between a pair of reactant

and product nodes based on the activity of the intervening reaction.

In the limiting case of an infinitesimal flux, the corresponding edge-

cost is infinite, and thus unavailable to any shortest paths, reflecting

a non-active component of a metabolic reaction network. In general,

the dimensions and contents of the user-defined weight matrix (W)

will depend on the available data. In case activity data are only

partially available or altogether unavailable, our algorithm permits

the assignment of a default weight matrix with uniform edge costs.

The outputs of step 1 are: a shortest path number matrix (Ssigma), a

predecessor matrix (Ppred), and a shortest distance matrix (Ddist)

(Supplementary material).

Step 2. The edge-betweenness centrality index is calculated for all

edges as previously suggested (Newman and Girvan, 2004). The

edge with the highest index value is removed, forming a new,

potentially modular, graph representation of the original network.

Steps 1 and 2 are repeated iteratively until no more edges remain.

The first iteration finds all possible shortest paths of the complete

network, calculates the edge-betweenness values of each edge in the

network, and removes the highest betweenness edges. After the first

partition, the algorithm iterations recalculate the shortest paths and

edge-betweenness index values subsequently. Both steps 1 and 2 are

performed over a variable space of O(n + m), where n is the number

of vertices and m is the number of edges. In the worst case, steps 1

and 2 will require, respectively, O(nm + n2logn) and O(nm) steps

per edge removal. At completion, when all edges have been

removed, the algorithm will have executed m · [O(nm + n2logn)

+ O(nm)] steps.

As an illustration, we show the application of the algorithm to a

model of liver central carbon metabolism (Fig. 1), for which

detailed flux data had been obtained previously (Lee et al.,
2003). On a Pentium 4 desktop with a CPU clock speed of 2.53

GHz and RAM of 0.5 GB, the calculations for this example applica-

tion required nine iterations and lasted 8 to 9 s, indicating an average

run time of 1 s per iteration.

Conflicts of Interest: none declared

REFERENCES

Brandes,U. (2001) A faster algorithm for betweenness centrality. J. Math. Soci., 25,

163–177.

Cormen,T.H. et al. (2001) Introduction to algorithms. The MIT press, Cambridge, MA.

Figure 1. Modularity analysis of central carbon metabolism in the fasted rat

liver (22 internal metabolites, 50 reactions). Metabolites were represented as

nodes, and reactions as edges. Edge weights were derived from reaction flux

data as noted in the text. Figure panels show the network partitions generated

at a few, selected stages of the algorithm: graph representation (‘view’) of the

original network (A), view 5 (B), view 6 (C), view 8 (D) and view 9 [insert

(E)]. The view numbers refer to algorithm iterations. Modules were first

observed at view 5. After 9 iterations (E), all edges were removed and all

nodes separated. All programs were implemented in MATLAB (version

7.0.4, MathWorks, Natick, MA). The graph views were drawn using the

Bioinformatics toolbox. Note that the drawn edges do not reflect the length

adjustments supplied by the edge-weight matrix. The bold arrows highlight

the highest betweenness edges removed in the subsequent iteration.

Algorithm for modularity analysis

3107



di Bernardo,D. et al. (2005) Chemogenomic profiling on a genome-wide scale using

reverse-engineered gene networks. Nat. Biotechnol., 23, 377–383.

Fischer,E. and Sauer,U. (2005) Large-scale in vivo flux analysis shows rigidity and

suboptimal performance of Bacillus subtilis metabolism. Nat. Genet., 37, 636–640.

Freeman,L.C. (1979) Centrality in social networks: conceptual clarification. Social

Net., 215–239.

Hartwell,L.H. et al. (1999) From molecular to modular cell biology. Nature, 402,

C47–C52.

Lee,K. et al. (2003) Profiling of dynamic changes in hypermetabolic livers. Biotechnol.

Bioeng., 83, 400–415.

Newman,M.E. and Girvan,M. (2004) Finding and evaluating community structure in

networks. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys., 69, 026113.

Patil,K.R. and Nielsen,J. (2005) Uncovering transcriptional regulation of metabolism

by using metabolic network topology. Proc. Natl Acad. Sci. USA, 102, 2685–2689.

Sharan,R. and Ideker,T. (2006) Modeling cellular machinery through biological net-

work comparison. Nat. Biotechnol., 24, 427–433.

J.Yoon et al.

3108


