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ABSTRACT

Summary:We introduce an algorithm that uses the information gained

from simultaneous consideration of an entire group of related proteins

to create multiple structure alignments (MSTAs). Consistency-based

alignment (CBA) first harnesses the information contained within

regions that are consistently aligned among a set of pairwise super-

positions in order to realign pairs of proteins through both global and

local refinement methods. It then constructs a multiple alignment that

is maximally consistent with the improved pairwise alignments. We

validate CBA’s alignments by assessing their accuracy in regions

where at least twoof the alignedstructures contain the sameconserved

sequence motif.

Results:CBA correctly aligns well over 90%ofmotif residues in super-

positions of proteins belonging to the same family or superfamily, and

it outperforms a number of previously reported MSTA algorithms.

Availability:CBAisavailableathttp://cba.stanford.edu/and thesource

code is freely available at http://brutlag.stanford.edu/software/

Contact: brutlag@stanford.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

INTRODUCTION

Methods for the alignment of multiple proteins, whether guided by

sequence, structure or both sources of information, are the corner-

stone of many techniques in the biological sciences. A number of

current areas of research depend on the ability to identify structur-

ally equivalent residues across a group of proteins, including a

variety of fold recognition and prediction techniques (Bystroff

and Shao, 2002), homology modeling (Madej et al., 1995;

Panchenko et al., 1999), evolutionary studies of both protein

families and entire organisms, and investigations into the relation-

ships among structure, function and sequence (Thornton et al.,
2000; Todd et al., 2001). As factors that contribute to errors and

ambiguity often differ between sequence alignment and structure

superposition algorithms (Marchler-Bauer et al., 2002), multiple

structure alignment (MSTA) has a place nearly everywhere multiple

sequence alignment (MSA) is used. In particular, since structure

is often more conserved than sequence, structural alignment has

the potential to be more accurate than sequence alignment below

the so-called twilight zone of sequence similarity (Doolittle, 1986).

However, relatively few MSTA algorithms exist, and even fewer

have been subjected to meaningful and clear validation.

Early MSTA efforts often focused on placing all structures in a

common frame of reference by aligning each of them to a stationary

reference, such as the structure that is in some sense the centroid of

the group (Akutsu and Sim, 1999). This approach, however, does

little to take advantage of the fact that more information can be

obtained from simultaneous consideration of all of the structures

than from independent analyses of pairs of proteins. Similar

methods instead iterate this process, in each phase aligning the

structures to the previous iteration’s MSTA, typically by defining

the consensus or average structure implied by the multiple align-

ment (Gerstein and Levitt, 1996; Taylor et al., 1994). Progressive

algorithms align the most closely related structures first and even-

tually incorporate the more distantly related ones, and some perform

a final optimization step once all structures have been aligned

(Russell and Barton, 1992; Sali and Blundell; 1990, Yang and

Honig, 2000). Since early iterations examine only a subset of the

proteins, they may discard the optimal alignment as suboptimal.

Alternatively, it is possible to use pairwise alignments as a starting

point for building an MSTA and then determine which residues

should be aligned using either structure-based scoring functions

(Guda et al., 2004) or graph theoretic methods designed to find

the best set of residue equivalencies across all structures that

do not conflict with one another (Sandelin, 2005). Some recent

algorithms make greater use of simultaneous consideration of

all structures in the input set, typically by building up a multiple

alignment out of aligned structural fragments (Dror et al., 2003;

Shatsky et al., 2004) or using methods such as geometric hashing

to identify structural equivalences across a group of proteins

(Leibowitz et al., 2001).

MSTA algorithms that explicitly or implicitly rely on pairwise

superpositions in some way depend on the principle of transitiv-

ity, often referred to as consistency, among the pairwise align-

ments (Gotoh, 1990). Mathematically, the three possible pairwise

alignments among three structures are said to be consistent if

the residue registrations of two of the alignments predict that

of the third. Though a set of pairwise alignments will be fully

consistent with one another only in the simplest cases, consis-

tency has successfully been used as a driving force in the multi-

ple alignment of both sequences (Do et al., 2005) and structures

(Ochagavia and Wodak, 2004). In fact, one recent algorithm

for obtaining the residue correspondences necessary for a multiple

sequence or structure alignment is based entirely on the premise

of ‘relaxed transitivity’ (Van Walle et al., 2003). This method

constructs a graph whose nodes are residues and whose edges

connect residues that are either aligned in a set of pairwise�To whom correspondence should be addressed
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alignments or that, if aligned, would create transitive cycles in the

graph.

Here, we present CBA (consisteny-based alignment), an MSTA

algorithm that uses information from consistent and nearly con-

sistent regions of pairwise alignments to create a MSTA. CBA

focuses almost entirely on the problem of determining which resi-

dues should be aligned given the relative orientations of the proteins

once they have been superimposed. We use consistency first to find

residue equivalencies across some or all structures in the input set

and then to correct residue registration errors and gaps in the pair-

wise alignments in order to add additional aligned residues to the

MSTA. We also introduce changes to the LOCK 2 pairwise protein

superposition algorithm (Shapiro and Brutlag, 2004) that signific-

antly enhance consistency among the alignments that are the

starting point for CBA. CBA is a general framework for MSTA

consisting of several modules that can be independently modified or

even replaced. Simple modifications would also adapt it to perform

multiple sequence alignment. Because CBA never uses sequence

information, its alignments are well-suited to the study of the

relationships among sequence, structure and function.

To date, very few validation techniques have been proposed

for MSTA or MSA methods. Alignment algorithms are often val-

idated by comparison with databases containing multiple align-

ments whose construction has been fully or partially guided

by structure, such as HOMSTRAD (Mizuguchi et al., 1998),

BaliBASE (Thompson et al., 1999) and OXBench (Raghava

et al., 2003), but even alignments that are manually corrected or

built entirely by hand are subject to error. Fully or semi-automated

databases such as HOMSTRAD require explicit trust in the

algorithms used to produce their alignments, thus establishing

these methods as de facto gold standards. While the HOMSTRAD

authors state that alignments are validated by hand, an incorrect

automated alignment could easily prove to be a misleading starting

point for manual analysis, particularly given the difficulty of visu-

alizing multiple structure superpositions. Comparison of an algo-

rithm with a database such as HOMSTRAD is therefore an

implicit comparison with the alignment methods used to produce

it, and thus lacks the generality we desire for validation of a new

algorithm. Other attempts to quantify alignment quality through

the use of simple measurements such as the alignment length

and the distances between aligned alpha carbons lack substantive

connections to alignment accuracy for anything other than closely

related proteins. Though many complex scoring functions have

been proposed, even a seemingly reasonable one is nonetheless

arbitrary.

We instead validate CBA by examining alignments of protein

structures containing the same conserved sequence motifs.

Although global sequence alignments of proteins that share only

limited sequence similarity are too prone to error to be used as gold

standards for MSTA, distantly related proteins may nonetheless

contain conserved local sequence motifs that are expected to

align to one another. This method avoids the problem of ambiguous

or incorrect global sequence alignments in regions of low sequence

similarity (<20%) while still retaining the ability to assess align-

ments of proteins with low overall sequence identity in a fully

automated fashion. We apply this benchmark to several previously

reported MSTA algorithms and demonstrate that CBA outperforms

them for multiple alignments of structures from the same family or

superfamily.

METHODS

Validation datasets

We have aligned structures from each family and superfamily in release 1.65

of the Structural Classification of Proteins (SCOP) (Murzin et al., 1995) that

contains at least three sequences with the same PROSITE pattern (Sigrist

et al., 2002) or eMOTIF hit (Nevill-Manning et al., 1998). These structures

come from an ASTRAL subset of the SCOP database created in such a way

that no two sequences share >40% sequence identity (Brenner et al., 2000).

Since not all PROSITE patterns have high specificity, we excluded as too

general for our purposes any pattern that recognizes structures from multiple

SCOP folds. Only structures from SCOP’s all alpha, all beta, alpha + beta

and alpha/beta classes were considered.

The 478 family validation sets have an average of 6.3 members, among

which the average sequence identity as determined by BLAST (Altschul

et al., 1990) is �16.7%, while the 197 superfamily validation sets have an

average of 13.4 members whose pairwise sequence identities average 14%.

Hence, relatively few pairs of sequences in any given validation set reach the

upper limit of 40% sequence identity, and many pairs are within or below the

twilight zone of sequence similarity. Among the family and superfamily

datasets that contain at least two examples of the same eMOTIF, an average

of 4.0 structures share the motif. Since more than one eMOTIF may be built

to recognize the same functional region, slightly different versions of the

same motif may cover different members of the validation dataset. On

average, the number of structures containing any eMOTIF is 4.6 and 5.7

for family and superfamily validation sets, respectively. The average number

of structures containing the same PROSITE motif is 2.6 in the family val-

idation datasets and 4.7 in the superfamily datasets. All datasets are available

for download in text format at http://fold.stanford.edu/distributions/CBA/

validationsets.html

LOCK 2

Though the pairwise structural alignments CBA uses to build a multiple

alignment may be created by any structural superposition algorithm, we use

an improved version of LOCK 2 by default. LOCK 2 produces an initial

superposition by aligning secondary structure elements as previously repor-

ted (Shapiro and Brutlag, 2004), and replaces the residue alignment phase

developed by Singh and Brutlag (1997) with a dynamic programming algo-

rithm that scores the alignment of a query and target residue pair according to

both the distances between their beta carbons and also the angles between the

vectors defined by the alpha and beta carbons (Fig. 1). The use of the beta

carbon allows LOCK 2 to encode a preference to align residues whose side

chains point in the same general direction. Glycine residues’ alpha hydro-

gens are replaced with beta carbons, whose positions are determined using

ideal bond lengths and angles.

Assessment of motif alignment accuracy

When two or more structures in a multiple alignment contain the same local

sequence motif, we assess the accuracy of the alignment in the motif region

using the sequence motif as a gold standard. We sum the number of motif

residues correctly aligned over all pairs of structures containing the motif

and normalize to the number of residue pairs examined to give the percent of

motif residues correctly aligned. If two or more motifs overlap, we count

each position only once.

ALGORITHM

Steps 1–3: obtaining an initial multiple superposition

Because pairwise structural alignment algorithms consider only two

proteins at a time, they cannot use information regarding the full

extent of the variability observed in a given fold to resolve ambi-

guous regions of the alignment. Both imperfect scoring functions

and this rather limited view of fold space lead to registration errors,
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and hence the pairwise alignments among a group of proteins tend

to contain residue registrations that are not consistent with one

another. This problem is exacerbated by the use of rigid body

transformation methods, which may be unable to optimize the

superposition in all structurally similar regions simultaneously.

CBA seeks to resolve inconsistencies in alignments by considering

an entire group of structures at once and extracting from them more

information than is available from independent analysis of pairs of

proteins.

The CBA algorithm consists of seven steps, each of which incor-

porates additional information into the alignment (Fig. 2). After

computing the pairwise alignments among the proteins in the

input set (Fig. 2, Step 1), CBA places all of the structures in the

input set into a common frame of reference (Fig. 2, Step 2). This is

particularly helpful in cases involving structures with repeated

subdomains. Given three structures, two with multiple copies of

the same subdomain and one with only one copy, LOCK 2 might

align the smaller structure to different repeats in the two larger

structures, thus yielding completely inconsistent pairwise align-

ments. While this is not necessarily incorrect, it is inconvenient

for analyzing similarities across all three proteins. Following a

number of progressive MSTA algorithms, CBA clusters all of

the structures in the input set by average linkage using

LOCK 2’s global alignment scores as measures of similarity.

This creates a binary guide tree that we use to progressively trans-

form all structures into the same frame of reference beginning at the

bottom of the tree, where clusters contain the most similar struc-

tures, and proceeding towards the root node. In the trivial case of a

node at the bottom of the tree with only two descendants, we

transform one child structure onto the other using the transformation

matrix from the pairwise alignment and label the parent node with

the resulting superposition. When a node has more than two des-

cendants, we choose one descendant of the left child and one from

the right such that the two selected structures have the highest

alignment score among all such pairs, and then use their pairwise

transformation to add all descendants from the left child to the right

child’s MSTA.

Since this process may change some pairwise superpositions, we

run LOCK 2’s residue alignment phase a second time to obtain

improved pairwise residue correspondences (Fig. 2, Step 3). Though

LOCK 2’s residue alignment phase does employ an iterative

algorithm in which each cycle uses the previous cycle’s residue

registration to update the transformation of one protein onto the

other, these changes in the overlap between the query and target

proteins are minor and serve only to make the correct residue

registration more clear. CBA discards the changes to the trans-

formations and retains only the new residue registration, thus

maintaining the common frame of reference obtained in Step 2.

From this point forward, the positions of the proteins in space

remain fixed.

Step 4: obtaining an initial residue registration across

all structures

Although the third step of CBA places all proteins in the same frame

of reference, this superposition does not directly imply an un-

ambiguous residue registration across all of the structures in any

but the simplest of alignment problems. For the sake of clarity, we

make a distinction between the superposition of a group of proteins,

which defines their relative positions in space, and their residue

registration, which specifies the groups of structurally equivalent

residues that are aligned to one another. The superposition is fixed

from this point forward, and the remaining phases of the algorithm

focus on the more difficult problem of determining the residue

registration without using sequence information.

The fourth step of CBA applies a fast implementation of the

Markov cluster algorithm (MCL) (Van Dongen, 2000) to find the

residue registration across all of the proteins that is maximally

consistent with the pairwise alignments obtained at the end of

Step 3 (Fig. 2, Step 4). One may view this task as the problem

of finding clusters in a graph whose nodes are residues and whose

edges connect nodes aligned in the pairwise superpositions (Fig. 3).

Edge weights, which reflect CBA’s confidence that the residue

correspondences from the pairwise alignments are correct, are

proportional to the LOCK 2 residue alignment scores described

in the Methods section. If the pairwise alignments were perfectly

consistent, this graph would consist of a series of fully connected

clusters, such as the leftmost cluster of Figure 3, and it would have

no edges connecting nodes in different clusters.

The MCL algorithm operates under the paradigm that a random

walk beginning in a region of the graph that corresponds to a

cluster—in this case, a column in the multiple alignment—will

visit many of the nodes in that cluster before leaving it for another

region. That is, regions of the proteins that are structurally equi-

valent will give rise to groups of nodes in the graph that are con-

nected to one another by many edges and that have relatively few

edges connecting them to other regions of the graph. If the structural

similarity in the region is strong, the edges connecting these nodes

will furthermore be associated with large weights.

Formally, MCL maximizes the flow through the graph where it is

already relatively strong and weakens it where it is already weak,

thus strengthening correct residue correspondences, eliminating

edges that describe incorrect correspondences, and adding edges

between residues not aligned by LOCK 2 when the principle

of transitivity suggests that they are structurally equivalent. Each

resulting cluster contains equivalent residues across a subset of the

proteins in the input set and is the basis for a column in the multiple

alignment. Since the MCL method does not enforce sequence order

constraints and does not require that each cluster contain only one

residue from each protein, CBA must deal with these matters in

subsequent steps of the algorithm. In the meantime, one can

consider the latter issue in particular as a reflection of uncertainty

in the residue registration.

Fig. 1. The LOCK 2 residue alignment scoring function. LOCK 2 scores the

alignment of a query and target residue pair by considering both the distance

between their beta carbons and the angle between the vectors defined by

each protein’s Ca and Cb atoms. Beta carbon positions for glycine residues

are determined using ideal bond lengths and angles.
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Steps 5 and 6: realignment of secondary structure

elements

Even when large portions of two protein structures align well,

individual helices and strands may superimpose poorly, thus making

identification of residue correspondences difficult. Realigning each

pair of superimposed secondary structure elements in isolation

circumvents this limitation of rigid body superposition algorithms,

which cannot always optimally superimpose all structurally similar

regions of two proteins simultaneously (Fig. 2, Step 5). Since more

than one registration of two secondary structure elements of the

same type is possible, CBA initially superimposes them onto one

other using the residue correspondences identified by the MCL

algorithm in Step 4. This produces a new superposition that is

fully consistent with the current MSTA but that is better suited

to LOCK 2’s scoring functions than was the overlap of the two

secondary structure elements in the global pairwise alignment.

We run the LOCK 2 residue alignment phase on the newly super-

imposed pair of secondary structure elements to fill in gaps and

to correct mistakes in the current multiple alignment’s residue

registration. We then transfer the resulting residue correspondences

to the global pairwise alignment, but discard the changes in the

superposition of the two secondary structure elements so that the

positions of the proteins in space remain unchanged. After repeating

this process for all pairs of aligned secondary structure elements in

all pairs of proteins, we run the MCL algorithm on the new pairwise

alignments in order to update the MSTA’s residue correspondences

(Fig. 2, Step 6).

Step 7: realignment of local regions

The final stage of the CBA algorithm seeks to identify and realign

small regions of the multiple alignment that could not be resolved

in any previous step (Fig. 2, Step 7). Regions to be realigned are

derived both from secondary structure elements with gaps and from

areas containing MSTA columns established by the MCL algorithm

that violate sequence order constraints or that contain more than one

residue from the same protein. Each region contains one target

Fig. 2. The CBA algorithm.

Fig. 3. A graph theoretic approach to determining residue correspondences

from pairwise alignments. CBA determines residue correspondences across a

group of proteins by constructing a graph in which each node corresponds to a

residue from one of the proteins to be aligned. Two nodes are connected by an

edge if they are aligned in the pairwise alignment of the structures to which

they belong. Thus, no edges exist between nodes of the same protein, and a

given node from one protein is connected to at most one node from each

additional protein. The leftmost column of nodes in the graph shown here is a

connected component, and thus corresponds to a column in the multiple

alignment. The two middle columns of nodes contain a registration error

that links them together, and the lack of an edge between the nodes from

structures three and four in the third column indicates that these residues

were left unaligned in the corresponding pairwise alignment. The rightmost

column of nodes reflects a deletion in structure 3.
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domain whose alignment is suspect, and each secondary structure

element or loop may be marked for realignment more than once

with different target domains.

CBA realigns the target domain’s residues within a particular

region by scoring the placement of a residue into a column accord-

ing to the number of pairwise alignments that agree with the assign-

ment. The assessment of structural similarity is therefore not based

on an isolated and possibly misleading local perspective, but is

instead derived solely from the global pairwise alignments obtained

at the end of the sixth step of CBA. As was the case up to this point

in the algorithm, sequence similarity is not considered. Dynamic

programming then determines the new registration of the target

domain in this region. This process thus uses the consistency

among the pairwise alignments to correct local regions of the mul-

tiple alignment. After realigning all regions marked as potentially

incorrect, we iterate until no further changes are made or for a

maximum of 10 iterations.

RESULTS

Within the 391 superfamilies in SCOP version 1.67 containing at

least three members in an ASTRAL subset of domains constructed

such that no two share >25% sequence identity, LOCK 2’s pairwise

residue registrations are on average 68.2% consistent. This number

is calculated from every triple of aligned residues from each triple

of structures within the same superfamily. This high level of con-

sistency among pairwise alignments often allows CBA to align

distantly related protein structures. The average consistency within

a superfamily increases to 80.4% after obtaining a common frame of

reference and recalculating the residue registration in the implied

pairwise alignments in Steps 2 and 3. After the realignment of

secondary structure elements in Step 5, the average consistency

reaches 84.2%. In the 351 families in SCOP containing at least

three members in the 25% sequence identity ASTRAL subset,

the consistency among the initial LOCK 2 pairwise alignments

averages 76.7%. This value increases to 85.1 and 87.7% after

Steps 3 and 5, respectively. These increases in consistency occur

without a decrease in the number of aligned residues.

Because CBA observes sequence order constraints, we can read

off a sequence alignment from the structural superposition.

Figure 4a shows a portion of an alignment of the 17 structures

in SCOP’s globin-like superfamily that are included in the

ASTRAL-25 subset; members of four families, including two

phycocyanin domains, are included in the superposition. The full

alignment (see Supplementary information) required 2.2 min. of

CPU time (1.5 min. user time, 42 s system time) on a 3.06 Ghz

Intel Xeon processor. Though gaps do occasionally appear in sec-

ondary structure elements, many are justified structurally or occur in

regions where the correct residue alignment might be considered

ambiguous. For example, the superposition of two of the structures,

SCOP domains d1itha_ and d1b0b__, shows the insertion of a

residue in SCOP domain d1itha_ (asparagine 17) that induces a

gap in globin helix A (Fig. 4b). The alignment of d1itha_ and

d1b0b__ shown in Figure 4b suggests that it is reasonable to

leave either 16L or 17N of d1itha_ unaligned. In cases such as

this, CBA tends to align the residue that is most consistently aligned

in the pairwise alignments. Many other gaps in helices and strands

are induced by insertions of loop residues that do not align to the

secondary structure element.

Validation by comparison to sequence motifs

Since manual analysis and validation of multiple structural align-

ments can be both prone to error and too time consuming to

approach on a large scale, we sought to validate CBA by examining

its alignments in regions containing conserved sequence motifs.

Even when a set of proteins is so diverse that sequence alignment

methods are not reliable enough to be used as a gold standard, a

subset of the sequences may still contain the same local sequence

motif. If the motifs themselves are reliable, then the alignment

accuracy can be assessed in these regions by assuming that residues

at the same position of the motif should align to one another. We use

both PROSITE patterns (Sigrist et al., 2002), which are constructed

manually to represent known functional regions, and eMOTIFs

(Nevill-Manning et al., 1998), which are built automatically

from high quality multiple alignments of proteins sharing strong

Fig. 4. Structurally reasonable gaps in a superposition of proteins from four

globin-like families (a) A portion of the CBA alignment of the 17 members

of SCOP’s globin-like superfamily contained in an ASTRAL-40 subset

is shown. The first two structures are protozoan/bacterial hemoglobins

(whose A helices are truncated or deleted), the third is a nerve tissue

mini-hemoglobin, the next 12 are globins from various species, and the last

two are phycocyanins. Helical residues are shaded. The arrow indicates a

residue (17N of d1itha_) that induces a gap in helix A. (b) The superposition

of SCOP domains d1itha_ and d1b0b__, whose relative orientation with

respect to d1itha_ is typical of other aligned domains, reveals that the gap

induced by the insertion is structurally reasonable.
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sequence similarity. Since CBA never uses sequence information,

this is an independent test of its accuracy.

In an ASTRAL subset of SCOP (version 1.65) created such

that no two structures have >40% sequence identity, there are

478 families and 153 superfamilies in which at least two structures

contain the same PROSITE pattern. Similarly, there are 123 families

and 121 superfamilies in which at least two structures contain the

same eMOTIF. All members of the SCOP family or superfamily

represented in the ASTRAL-40 database are included regardless

of whether they contain the sequence motif; this allows for a

more difficult test by increasing both the number of structures to

be superimposed and the overall structural variability. The average

pairwise sequence identity as determined by BLAST within these

validation sets is �17% for families and 14% for superfamilies.

For each pair of proteins in a validation set that contain a given

sequence motif, we count the number of motif positions that CBA

correctly aligned to produce a sum of pairs measurement of align-

ment accuracy. When a motif occurs in more than one location

in one or both proteins, we consider only the pair of hits that is

best aligned according to this criterion. Summing over all pairs of

proteins with the motif yields a measure of the accuracy of the

CBA alignments in these regions. CBA correctly aligns 96.4%

of eMOTIF residues and 97.4% of PROSITE residues in the

family validation sets (Table 1). Interestingly, only 92% of

eMOTIF residues were correctly aligned in the LOCK 2 pairwise

superpositions used by CBA. Hence, CBA was able to take advant-

age of the information contained in a set of related structures in

order to increase alignment accuracy. In the significantly more

challenging superfamily validation sets, CBA correctly aligns

91.6% of eMOTIF residues and 92.6% of PROSITE residues.

When an alignment of 135 P-loop containing nucleoside triphos-

phate hydrolases is excluded from this analysis, these numbers

increase to 94.9 and 94.2%, respectively. This procedure examines

17 922 aligned residue pairs in eMOTIF hits and 12 783 pairs in

PROSITE patterns within the family validation sets, though there is

a great deal of overlap between these two databases. The corres-

ponding numbers for the superfamily validation sets are 18 485 and

14 647, respectively.

Comparison with CEMC, MultiProt and MASS

The use of sequence motifs as a gold standard for alignment

accuracy provides an objective benchmark for evaluating MSTA

algorithms. Since the accuracy of the alignment in regions contain-

ing sequence motifs was assessed only after algorithmic develop-

ment had concluded, CBA was not overtrained to optimize the

alignment of motifs and hence does not have an inherent advantage

from this perspective over other algorithms.

We benchmarked CEMC (Guda et al., 2004), MultiProt (Shatsky

et al., 2004) and MASS (Dror et al., 2003) using the same sets

of multiple alignment validation sets as reported above for CBA.

A minor modification of the CEMC source code was necessary to

prevent it from excluding structures that it considered to be too

dissimilar to superimpose simultaneously. In some cases, CEMC

or MASS did not produce a superposition at all. Because these

failures may be more the result of technical issues than of

algorithmic inadequacies, we removed these alignments from the

validation sets.

Table 2 reports the percent of motif residues correctly aligned for

all four multiple alignment algorithms using the sum of pairs score

described above for assessing the alignment accuracy in regions

containing sequence motifs. Both MASS and MultiProt report

more than one possible multiple superposition for a given set of

structures, so we count only the solution that yields the highest

alignment accuracy with respect to the sequence motifs. This

approach is rather lenient, as it does not require MASS and

MultiProt to identify the best alignment before the motif alignment

accuracy is assessed. Because MASS and MultiProt do not always

produce a solution that superimposes all domains, we used two

different methods to score their alignments. In the first method

[Table 2, method (a)], we consider only alignments that include

all domains, and record a score of zero for cases in which the

algorithm did not produce a solution meeting this criterion.

Since MASS frequently fails to align all structures in the superfam-

ily validation sets, we evaluated it using this scoring method only

for the family validation sets.

Though structures that do not contain the motif under

consideration were deliberately added to the validation sets to

increase their difficulty, we also computed scores for MASS and

MultiProt without requiring them to superimpose all domains

[Table 2, method (b)]. While this clearly gives MASS and MultiProt

a distinct advantage over algorithms that superimpose all structures,

they are still outperformed by CBA and CEMC. The average

percentage of structures that were aligned in the best performing

superposition is given in parentheses in the columns corresponding

to method (b) in Table 2.

Table 1. Percent of motif residues correctly aligned by CBA

Family

validation

Sets (%)

Superfamily

validation

Sets (%)

Reduced

set of

superfamiliesa (%)

eMOTIFs 96.4 91.6 94.9

PROSITE patterns 97.4 92.6 94.2

aResults without considering the P-loop containing nucleoside triphosphate hydrolase

superfamily.

Table 2. Comparison of motif alignment accuracies

CBA CEMC MultiProt MASS

Method

(a) (%)

Method

(a) (%)

Method

(a) (%)

Method

(b) (%)

Method

(a) (%)

Method

(b) (%)

eMOTIF

families

96.2 93.4 75.1 87.7 (77.5) 65.1 80.2 (73.2)

eMOTIF

superfamilies

94.8 87.7 47.3 84.9 (51.3) N/A 61.9 (54.3)

PROSITE

families

97.5 95.9 81.7 90.7 (72.9) 72.3 83.2 (73.1)

PROSITE

superfamilies

95.4 89.4 55.3 87.8 (57.3) N/A 60.1 (53.2)

Method (a): Only superpositions that align all domains are considered. A score of zero

is given when an algorithm does not produce an alignment that superimposes all domains.

Method (b): Superpositions that do not align all domains are permitted. The average

percent of structures superimposed in the multiple alignments that achieve the greatest

motif alignment accuracies is given in parentheses.
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CBA reaches higher accuracies than the other three algorithms for

both the family and superfamily validation sets regardless of the

scoring method used, though CEMC does approach CBA’s accur-

acy in the family validation tests. The most striking improvement

over the previously reported MSTA methods, however, occurs in

the superfamily validation sets. Even when MultiProt and MASS

are permitted to exclude an arbitrary number of structures from the

alignment [scoring method (b)], CBA’s ability to align distantly

related structures is clearly superior.

DISCUSSION

CBA provides a general framework for building multiple structure

superpositions from pairwise alignments, and it is easily modified

for sequence alignment problems by removing steps such as the

realignment of individual secondary structure elements that may not

be applicable in this case. We address the problem of resolving

inconsistencies among pairwise alignments both by finding a

common frame of reference for all of the structures and by globally

and locally refining the multiple alignment’s residue registration.

CBA’s output consists of the superposition of the proteins and their

residue registration.

Though CBA uses LOCK 2 by default to perform pairwise align-

ments, any alignment algorithm may be substituted. The MCL

clustering algorithm, which CBA uses several times to identify

residue correspondences across multiple proteins, can similarly

be replaced by another clustering algorithm, though we strongly

caution against using progressive methods since they tend to

propagate mistakes that occur in stages that consider only a subset

of the proteins. Finally, the scoring system used in the last stage of

CBA to realign small regions of the multiple-sequence alignment

implied by the MSTA can be modified, though we have found in

practice that more complex scoring functions based on structural

measurements increase the algorithm’s computational complexity

without improving the resulting alignments (data not shown). CBA

is designed to use no sequence information in producing a multiple

alignment from pairwise alignments, but amino acid substitution

scores would be an appropriate addition to the realignment scoring

function in the case of MSA.

Assessment of multiple structure alignment’s accuracy in regions

containing conserved sequence motifs represents a new method for

multiple alignment validation. Though it can be argued that

comparison with hand-curated, full length sequence or structure

alignments is a more thorough approach, restricting the comparison

to regions containing conserved sequence motifs provides a more

straightforward analysis since this process is less subject to error

than is the comparison with global sequence or structural align-

ments of distantly related proteins. BaliBASE, a database of

sequence alignments that are manually corrected using evidence

from structural superpositions, recommends that comparisons be

restricted to reliably aligned core blocks. Our approach is similar,

but the use of sequence motifs is completely automated and does not

rely on the ability to construct accurate, global alignments of diverse

sequences or structures. Since BaliBASE alignments often contain

sequences for which no structures exist, we did not perform a full-

scale comparison with CBA.

Inclusion of structures in our validation sets that do not contain

the sequence motif under consideration allows for tests of alignment

accuracy at varying levels of difficulty with respect to sequence

identity, structural similarity and the number of structures in the

validation set. Though the alignment accuracy obviously cannot be

assessed in structures that do not contain the motif, their presence

makes the multiple alignment task more difficult. Despite the fact

that we have constructed validation sets from an ASTRAL subset of

SCOP domains in which structures may have up to 40% sequence

identity, the average pairwise identity within a validation set is in

practice <20%. Both the sequence similarity and the structural

similarity of the proteins in the validation sets can easily be

tuned for different applications.

CBA’s highly accurate alignment of the sequence motifs

contained within SCOP domains allows us to evaluate the accuracy

of the sequence motifs themselves. We find, for example, that a

number of misaligned or unaligned eMOTIF residues occur at or

near the ends of the motifs, suggesting that the automated procedure

used to generate them may occasionally extend a motif beyond its

true boundaries with respect to its functional or structural role.

Pruning the motifs in regions of poor structural conservation

may increase the sensitivity of eMOTIFs, or of motifs from any

other source, without decreasing their specificity.

Since PROSITE patterns are constructed manually, we observe

misaligned residues at the ends of motifs more rarely than was the

case for eMOTIFs. Instead, we have found instances in which a

member of a validation set that only partially matched the PROSITE

pattern nonetheless superimposed well in the region of the motif.

Here, the PROSITE pattern may be too restrictive. Given a family of

protein structures, several of which contain the same PROSITE

pattern, we can again increase the sensitivity of the pattern without

decreasing its specificity by expanding the set of allowed amino

acids at one or more positions in order to accommodate the

members of the family that superimpose well within the motif

region and nearly match the original sequence pattern. Structural

information has been added to PROSITE patterns in the past in order

to compensate for ‘softened’ substitution groups that are less

restrictive than in the original pattern, but previous methods

required a structural comparison between the PROSITE pattern

and the target protein and hence were only useful for comparison

to proteins of known structure (Jonassen et al., 2000).

For example, only two of the three structures in our annexin

validation set match the annexin PROSITE pattern, but the third

structure (chain A of the first domain of human annexin I) matches

the sequence pattern at all but the last of its 53 positions. Its

sequence contains a tryptophan at this unmatched position rather

than one of the several hydrophobic amino acids specified by the

PROSITE pattern. Since CBA accurately aligned this position to the

other two structures in the validation set, we created a modified

annexin pattern by adding a tryptophan to the last position’s

substitution group. This new pattern picks up two additional

matches in SCOP, both of which occur in a plant annexin (1dk5)

and have a tryptophan residue in the last position, without

encountering any additional false positives. The use of structural

information compensates for the risk that increasing the number of

amino acids permitted at a given position will decrease the

PROSITE pattern’s specificity.

Comparison of CBA with CEMC, MultiProt and MASS indi-

cates that CBA represents a substantial improvement over these

previously reported algorithms, particularly in the case of more

distantly related structures. CEMC’s results in the case of proteins

belonging to the same family lag behind CBA only by a relatively

J.Ebert and D.Brutlag
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small margin, but CBA clearly outperforms all three algorithms in

the superfamily validation sets.
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