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Abstract

The particle swarm optimization algorithm is analyzed using standard results from the dynamic system theory. Graphical
parameter selection guidelines are derived. The exploration–exploitation tradeoff is discussed and illustrated. Examples of
performance on benchmark functions superior to previously published results are given.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The particle swarm optimization (PSO) is a paral-
lel evolutionary computation technique developed by
Kennedy and Eberhart [4] based on the social behav-
ior metaphor. A standard textbook on PSO, treating
both the social and computational paradigms, is [5].
The PSO algorithm is initialized with a population of
random candidate solutions, conceptualized as parti-
cles. Each particle is assigned a randomized velocity
and is iteratively moved through the problem space.
It is attracted towards the location of the best fitness
achieved so far by the particle itself and by the loca-
tion of the best fitness achieved so far across the whole
population (global version of the algorithm).

The PSO algorithm includes some tuning parame-
ters that greatly influence the algorithm performance,
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often stated as the exploration–exploitation tradeoff:
Exploration is the ability to test various regions in
the problem space in order to locate a good optimum,
hopefully the global one. Exploitation is the ability to
concentrate the search around a promising candidate
solution in order to locate the optimum precisely. De-
spite recent research efforts, the selection of the al-
gorithm parameters remains empirical to a large ex-
tent. A complete theoretical analysis of the algorithm
has been given by Clerc and Kennedy [2]. Based on
this analysis, the authors derived a reasonable set of
tuning parameters, as confirmed by [3]. The reference
[2] contains a good deal of mathematical complex-
ity, however, and deriving from it simple user-oriented
guidelines for the parameter selection in a specific
problem is not straightforward.

The present work gives some additional insight
into the PSO parameter selection topic. It is estab-
lished that some of the parameters add no flexibil-
ity to the algorithm and can be discarded without
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loss of generality. Results from the dynamic system
theory are used for a relatively simple theoretical
analysis of the algorithm which results in graphical
guidelines for parameter selection. The user can thus
take well-informed decisions according to the desired
exploration–exploitation tradeoff: either favor explo-
ration by a thorough sampling of the solution space
for a robust location of the global optimum at the ex-
pense of a large number of objective function evalua-
tions or, on the contrary, favor exploitation resulting in
a quick convergence but to a possibly non-optimal so-
lution. Non surprisingly, the best choice appears to de-
pend on the form of the objective function. The newly
established parameter selection guidelines are applied
to standard benchmark functions. Examples of perfor-
mance superior to previously published results are re-
ported.

2. Particle swarm optimization algorithm

2.1. Standard algorithm

The basic PSO algorithm can be described in vector
notation as follows:

�vk+1 = �a ⊗ �vk + �b1 ⊗ �r1 ⊗ ( �p1 − �xk)

+ �b2 ⊗ �r2 ⊗ ( �p2 − �xk), (1)

�xk+1 = �c ⊗ �xk + �d ⊗ �vk+1. (2)

The symbol⊗ denotes element-by-element vector
multiplication. At iterationk, the velocity �vk is up-
dated based on its current value affected by a momen-
tum factor(�a) and on a term which attracts the particle
towards previously found best positions: its own previ-
ous best position( �p1) and globally best position in the
whole swarm( �p2). The strength of attraction is given
by the coefficients�b1 and�b2. The particle position�xk

is updated using its current value and the newly com-
puted velocity�vk+1, affected by coefficients�c and �d ,
respectively. It is shown later that�c and �d can be set
to unity without loss of generality. Randomness useful
for good state space exploration is introduced via the
vectors of random numbers�r1 and �r2. They are usu-
ally selected as uniform random numbers in the range
[0,1]:
�r1, �r2 ∈ Uniform[0,1]. (3)

2.2. One-dimensional algorithm

It appears from Eqs. (1) and (2) that each dimension
is updated independently from the others. The only
link between the dimensions of the problem space is
introduced via the objective function, i.e., through the
locations of the best positions found so far�p1 and
�p2. Thus, without loss of generality, the algorithm
description can be reduced for analysis purposes to the
one-dimensional case:

vk+1 = avk + b1r1(p1 − xk) + b2r2(p2 − xk), (4)

xk+1 = cxk + dvk+1. (5)

2.3. Deterministic algorithm

For the theoretical analysis of the PSO, the de-
terministic version will be considered. The exact re-
lationship between the random and the deterministic
versions of the algorithm was not yet rigorously estab-
lished, but a qualitative discussion is given in Section 4
below. The deterministic version is obtained by setting
the random numbers to their expected values:

r1 = r2 = 1
2. (6)

Eq. (4) can be simplified using the notation:

b = b1 + b2

2
, (7)

p = b1

b1 + b2
p1 + b2

b1 + b2
p2. (8)

Using this notation, the deterministic PSO algorithm
can be expressed as:

vk+1 = avk + b(p − xk), (9)

xk+1 = cxk + dvk+1. (10)

The newly introduced attraction coefficientb is thus
the average of the “own” and “social” attraction
coefficientsb1 and b2. The attraction pointp is the
weighted average ofp1 andp2.

The algorithm described by Eqs. (9) and (10)
contains four tuning parametersa, b, c andd . It will
be now shown that only two of them are truly useful.
The other two can be fixed arbitrarily without loss of
generality.
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2.4. Algorithm with d = 1

Using Eqs. (9) and (10) the velocity can be elim-
inated from the description of the algorithm yielding
the following second order recursion formula involv-
ing only successive particle positions:

xk+1 + (bd − a − c)xk + acxx−1 = bdp. (11)

It appears that individual values of coefficientsb and
d are not important; the only important quantity is the
productbd . Without any loss of generality, one can
always select, for example,

d ≡ 1. (12)

In other words, any sequence of particle positions
{xk} generated by the PSO algorithm described by
Eqs. (9) and (10) can also be generated withd = 1
and a suitably chosen value ofb. The sequence of{vk}
will be different, however, but this has no impact on
the optimization algorithm since the objective function
only depends onx, with v being just an auxiliary
variable.

2.5. Algorithm with c = 1

For optimization purposes it is desired that, in the
long run, the population of particles converges to the
optimum location found so far:

lim
k→∞ xk = p. (13)

Taking into account Eqs. (11) and (12), a necessary
condition is:

(a − 1)(c − 1) = 0. (14)

The choicesa = 1 or c = 1 are equivalent as far as
the sequence of particle positions{xk} is concerned
because Eq. (11) is symmetric with respect toa and
c. The case

c ≡ 1 (15)

will be considered in the rest of the paper. The choice
c = d = 1 has the nice feature that the variablev can
be interpreted as a true “velocity”, i.e., the difference
between two successive particle positions (Eq. (10)).

3. Dynamic analysis

The theory of linear, discrete-time dynamic sys-
tems provides a powerful set of tools and results for
assessing the dynamic behavior of a particle. Some of
the following results have been proved specifically for
the PSO algorithm in [2].

3.1. Matrix form

Eqs. (9), (10), (12) and (15) can be combined and
written in compact matrix form as follows:

yk+1 = Ayk + Bp with

yk =
[

xk

vk

]
, A =

[
1− b a

−b a

]
, B =

[
b

b

]
. (16)

In the context of the dynamic system theory,yk is
the particlestate made up of its current position and
velocity, A is the dynamic matrix whose properties
determine the time behavior of the particle (asymptotic
or cyclic behavior, convergence, etc.),p is theexternal
input used to drive the particle towards a specified
position andB is theinput matrix that gives the effect
of the external input on the particle state.

3.2. Equilibrium point

An equilibrium point is a state maintained by the
dynamic system in absence of external excitation (i.e.,
p = constant). If one exists, any equilibrium point
must satisfy the obvious conditionyeq

k+1 = y
eq
k for

any k. For the particle in a deterministic swarm a
straightforward calculation using Eq. (16) gives:

yeq = [p 0]T, that is

xeq = p and veq = 0 (17)

which is intuitively reasonable: At equilibrium (pro-
vided other particles do not find better positions, i.e.,
p2 and hencep do not change) the considered particle
must have zero velocity and must be positioned at the
attraction pointp given by Eq. (8).

3.3. Convergence

In general, the initial particle state is not at equilib-
rium. It is of highest practical importance to determine
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Fig. 1. Domains of dynamic behavior in the(a, b) parameter space. (a) Convergence domain. (b) Domain of harmonic oscillatory behavior.
(c) Domain of zigzagging behavior.

whether the particle will eventually settle at the equi-
librium (that is if the optimization algorithm will con-
verge) and how the particle will move in the state space
(that is how the particle will sample the state space in
search of better points). Standard results from dynamic
system theory say that the time behavior of the parti-
cle depends on the eigenvalues of the dynamic matrix
A. The eigenvaluesλ1 andλ2(either real or complex)
are the solutions of the equation:

λ2 − (a − b + 1)λ + a = 0. (18)

The necessary and sufficient condition for the equilib-
rium point given by Eq. (17) to be stable (an attrac-
tor) is that both eigenvalues of the matrixA (whether
real or complex) have magnitude less than 1. In this
case the particle will eventually settle at the equilib-
rium and the PSO algorithm will converge. The analy-
sis of the roots of Eq. (18) leads to the following set of
conditions:

a < 1, b > 0, 2a − b + 2> 0. (19)

The convergence domain in the(a, b) plane is the
triangle shown in Fig. 1(a). For any initial position and
velocity, the particle will converge to its equilibrium
position given by Eqs. (8) and (17) if and only if the
algorithm parameters are selected inside this triangle.

3.4. Harmonic oscillations

Before convergence, the particle exhibits harmonic
oscillations around the equilibrium point when the
eigenvalues of the matrixA, which are also the roots
of Eq. (18), are complex. This is equivalent to:

a2 + b2 − 2ab − 2a − 2b + 1 < 0. (20)

The corresponding domain in the(a, b) plane is shown
in Fig. 1(b).

3.5. Zigzagging

The particle may also exhibit zigzagging behavior
around the equilibrium point when at least one of the
eigenvalues of the matrixA, whether real or complex,
has negative real part. This is equivalent to:

a < 0 or a − b + 1 < 0. (21)

The corresponding domain in the(a, b) plane is
shown in Fig. 1(c). Zigzagging may be combined with
harmonic oscillations. Several examples of particle
dynamics, corresponding to various choices of the
algorithm parameters, are given in the next section.

4. Parameter selection guidelines

4.1. Examples of dynamic behavior

Several typical choices of the algorithm parameters
a and b are reported in Fig. 2 (left). Simulations of
particle behavior for these parameter couples are given
in Fig. 3. All simulations were performed with:

x0 = 2, v0 = −0.1, p = 0, m = 50 iterations.

(22)

Slowly convergent harmonic oscillations are shown in
Fig. 3(a) (complex eigenvalues with positive real part).
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Fig. 2. Left: Position of several typical parameter couples in the parameter space. Points marked (a) to (f) correspond to simulations in Fig. 3.
The hatched triangle corresponds to parameter couples that provided good results for the test functions listed in the “Optimization experiments”
section. Right: Contours of equal convergence rate. The contours are labeled with the number of iterations necessary to reduce the distance to
the equilibrium point by a factor of 1000.

The particle samples its state space relatively well.
The exploration of state space and the exploitation
of the current optimum are balanced. In contrast, the
oscillations shown in Fig. 3(b) decay quickly. The
exploitation is favored compared to exploration. As a
general rule, parameter couples close to the center of
the stability triangle induce quick convergence, while
parameter couples close to its borders require many
iterations to converge, as illustrated in Fig. 2 (right).
The terms “slow” and “quick” convergence should be
related to the allowed number of iterations(m). If, for
example,m = 1000 iterations were allowed instead
of 50, then the parameters used in Fig. 3(a) should
be interpreted as inducing a “quick” convergence,
since most of the particle positions(≈ 900) would be
quite close to the equilibrium. In real-life problems
the number of allowed iterations is a function of the
admissible computation time and of the complexity
of the cost function. Harmonic oscillations can be
combined with zigzagging as in Fig. 3(c) (complex
eigenvalues with negative real part).

An example of non-oscillatory convergence is given
in Fig. 3(d) (real positive eigenvalues). For optimiza-
tion purposes this behavior is not recommended in

general, since the state space is only sampled on the
one side of the current optimum. In special cases, how-
ever, this might be a useful option. For example, neg-
ative values ofx might not make sense in a given op-
timization problem while the optimum is suspected to
lie at or near zero.

Symmetric zigzagging convergence is shown in
Fig. 3(e) (real negative eigenvalues). The parameters
a andb can be tuned to make the convergence either
slow or fast as in the case of harmonic oscillations.
Asymmetric zigzagging is illustrated in Fig. 3(f) (real
eigenvalues with opposite signs).

4.2. Effect of the random numbers

The rigorous analysis of the optimization algorithm
with random numbers described by Eqs. (4) and (5)
is beyond the scope of this paper. Qualitatively, the
considerations presented in the previous paragraphs
remain valid, however, as shown by extensive simu-
lation studies. The presence of random numbers en-
hances the zigzagging tendency and slows down con-
vergence, thus improving the state space exploration
and preventing premature convergence to non-optimal
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Fig. 3. Examples of dynamic behavior of a single particle for various choices of the parametersa andb. (a) Harmonic oscillations with slow
convergence. (b) Harmonic oscillations with quick convergence. (c) Harmonic oscillations with zigzagging. (d) Non-oscillatory convergence.
(e) Symmetric zigzagging. (f) Asymmetric zigzagging.

points. This is especially true when the particle’s own
attraction pointp1 is situated far from the population
attraction pointp2. The equivalent attraction pointp,
is, in the case of the random algorithm, given by:

p = b1r1

b1r1 + b2r2
p1 + b2r2

b1r1 + b2r2
p2. (23)

If p1 �= p2, it changes from iteration to iteration even
if no better solutions are discovered, i.e.,p1 andp2
remain constant. In the long run, however, it is ex-
pected thatp1 = p2 as all the particles in the pop-
ulation “agree” upon a single best point which be-
comes the unique attractor. In this case, Eq. (23) says
thatp = p1 = p2 irrespective of the generated random
numbers.

4.3. Parameter tuning heuristic

In addition to parametersa andb and to the effect
of the random numbers discussed above, the conver-

gence of the algorithm is influenced by the number
particles in the swarmN (larger swarms need more
iterations to converge) and by the topology: strongly
connected swarms (e.g., with large neighborhoods)
converge faster than loosely connected ones. The best
rate of convergence, i.e., the best tradeoff between
exploration and exploitation, strongly depends of the
function being optimized: number of local optima and
distance to the global one, position of the global opti-
mum in the search domain (near center, near border),
size of the search domain, required accuracy in the lo-
cation of the optimum, etc. It is probably impossible
to find a unique set of algorithm parameters that work
well in all cases but the following empirical procedure,
based on the above considerations, was found to work
in practice.

Start with a relatively quickly convergent parame-
ter set, like those mentioned in the “Optimization ex-
periments” section and run the algorithm several times
until convergence. If different results are obtained in
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most runs, the convergence rate is too high: the swarm
converges prematurely to non-optimal points. A more
slowly convergent parameter set should be selected
(Fig. 2), a larger number of particles in the swarm
and/or a less connected topology should be used. If the
same result is obtained consistently, but during a large
fraction of the algorithm iterations no better points are
found, the convergence rate is too low: particles in
the swarm do not focus the search around promising
candidate solutions quickly enough. A more quickly
convergent parameter set should be selected (Fig. 2),
a smaller number of particles in the swarm and/or a
more strongly connected topology could be used. If
consistent results are obtained in most runs and con-
tinuous improvement over iterations is observed, then
the convergence rate is adequate and the same para-
meter set, swarm size and topology should be used to
solve similar problems. Monitoring the dispersion of
the particles in the swarm over iterations also helps
assessing the adequacy of the convergence rate.

The ideas upon which this procedure is based are
illustrated numerically in the following section.

5. Optimization experiments

5.1. Test conditions

The particle swarm optimization algorithm (Eqs. (1)
and (2)) was used for the optimization of five bench-
mark functions, also used in [2] and [3]. Vector pa-
rameter�a had all elements equal toa. Similarly, �b =
�b1 = �b2 had all elements equal tob. Two sets of pa-
rametersa andb were used. Parameter set 1 (a = 0.6
andb = 1.7) was selected by the author in the algo-
rithm convergence domain (Fig. 2) after a large num-
ber of simulation experiments. Parameter set 2 (a =
0.729 andb = 1.494) was recommended by Clerc [1]
and also tested in [3] giving the best results published
so far known to the author. All elements of�c and �d
were set to 1 as explained above. The functions, the
number of dimensions(n), the admissible range of the
variable(x), the optimum and the goal values are sum-
marized in Table 1. The number of iterations required
to reach the goal was recorded. The maximum iter-
ation number was fixed to 10000. Each optimization

Table 1
Optimization test functions

Name Formula Dim. Range Optimalf Goal forf Sketch in 2D

n [xmin, xmax]

Sphere f0(�x) =
n∑

i=1
x2
i 30 [−100,100]n 0 0.01

Rosenbrock f1(�x) =
n−1∑
i=1

(
100(xi+1 − x2

i
)2 + (xi − 1)2

)
30 [−30,30]n 0 100

Rastrigin f2(�x) =
n∑

i=1

(
x2
i − 10cos(2πxi) + 10

)
30 [−5.12,5.12]n 0 100

Griewank f3(�x) = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos
( xi√

i

) + 1 30 [−600,600]n 0 0.1

Schaffer’s f6 f6(�x) = 0.5−
(
sin

√
x2

1+x2
2

)2−0.5

(1+0.001(x2
1+x2

2))2
2 [−100,100]2 0 10−5
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experiment was run 20 times with random initial val-
ues ofx andv in the range[xmin, xmax] indicated in
Table 1. A fully connected topology (all particles be-
ing neighbors) was used in all cases. Population sizes
of N = 15, 30 and 60 particles were tested. During
the optimization process the particles were allowed to
“fly” outside the region defined by[xmin, xmax] and the
velocity was not restricted.

5.2. Optimization results and discussion

5.2.1. Effect of the number of particles in the swarm
(N)

In most cases, increasing the number of particles
decreased the number of required algorithm iterations,
as indicated by the average, median, minimum and
maximum values reported in Table 2. The success rate

of the algorithm (fraction of the number of runs it
reached the goal) was also increased significantly. This
was expected, since more particles sample the state
space more thoroughly. More particles require more
function evaluations, however. Since in real-life ap-
plications the optimization cost is usually dominated
by the evaluations of the objective function, theex-
pected number of function evaluations was retained as
the main algorithm performance criterion. It takes into
account the number of particles, the number of algo-
rithm iterations and the success rate (Table 2). Best
results were usually obtained with a medium number
of particles (except for the Rosenbrock function). Us-
ing too few particles gave a very low success rate and
required more iterations. Using too many particles re-
quired too many function evaluations per iteration.

Table 2
PSO algorithm performance

Parameter set 1:a = 0.6 andb = 1.7. Parameter set 2:a = 0.729,b = 1.494.

Function Number Number of algorithm iterations to achieve the goal Success ratea Expected number of
of particles function evaluationsb

(N) Average Median Minimum Maximum

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

Sphere 15 769 764 722 731 523 586 1377 1275 0.40 1 28 838 11 460
30 344 395 333 395 266 330 457 572 1 1 10 320 11 850
30c – 530 – 525 – 495 – 573 – 1 – 15 900
60 252 314 252 313 214 269 309 368 1 1 15 120 18 840

Rosenbrock 15 531 1430 523 729 413 452 695 9476 0.50 1 15 930 21 450
30 614 900 383 408 239 298 3718 4642 1 1 18 420 27 000
30c – 669 – 621 – 402 – 1394 – 1 – 20 070
60 337 611 284 311 189 219 916 4450 1 1 20 220 36 660

Rastrigin 15 172 299 147 292 102 152 308 523 0.35 0.80 7371 5606
30 140 182 128 174 104 123 208 299 0.90 0.95 4667 5747
30c – 213 – 200 – 161 – 336 – 1 – 6390
60 122 166 116 164 84 119 168 214 0.95 1 7705 9960

Griewank 15 689 755 580 608 443 470 1589 1755 0.35 0.60 29 529 18 875
30 313 365 304 361 257 319 401 455 0.90 0.90 10 433 12 167
30c – 313 – 308 – 282 – 366 – 1 – 9390
60 226 287 224 280 202 266 250 328 0.95 1 14 274 17 220

Schaffer 15 583 1203 138 126 63 91 3706 5853 0.45 0.40 19 433 45 112
30 161 350 120 157 74 102 595 1264 0.75 0.60 6440 17 500
30c – 532 – 321 – 94 – 2046 – 1 – 15 960
60 169 319 91 119 40 83 854 2361 0.90 0.95 11 267 20 147

a Fraction of the number of optimization experiments in which the goal was reached.
b (Number of particles in the swarm)× (Average number of iterations)/(Success rate).
c Best results reported by Eberhart and Shi [3]. Obtained withN = 30,a = 0.729,b = 1.494 and velocity limited to[xmin, xmax].
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5.2.2. Effect of the parameters a and b

Parameter set 1 has a higher convergence rate than
set 2 (Fig. 2, right). For set 1, the exploitation is
thus favored compared to the exploration of the state
space. The number of algorithm iterations for set 1 was
generally smaller (Table 2) but the risk of premature
convergence to non-optimal points was higher, as
indicated in Table 2 by the lower success rate. The
former did or did not outweigh the latter depending
on the function and on the number or particles.
Generally, the smallest expected number of function
evaluations (among all values ofN) was achieved for
parameter set 1, except for the Griewank function. The
convergence rate of a parameter set is not the only
important factor, though. Moving along the curves of
equal convergence rate (Fig. 2, right) does not at all
give equally good results. The convergence trajectory
(Fig. 3) is also important. ForN = 30, the author
obtained good results for parameter sets in the small
hatched triangle in Fig. 2, left. The exact meaning of
this triangle is not clear yet.

5.2.3. Effect of the objective function
In all cases, the global minimum (the only that

achieved the goal) was situated at or near the center
of the search domain. The Sphere and the Rosenbrock
functions have a single minimum, while the other
functions have multiple local minima (Table 1). Rastri-
gin and Griewank functions have a “large scale” curva-
ture which guides the search towards the global mini-
mum, while the Schaffer function is essentially flat ex-
cept near the global minimum. Therefore, it is not sur-
prising that the largest success rates were achieved for
the Sphere and Rosenbrock functions and the small-
est one for the Schaffer function. Most of the times,
failure to achieve the goal was due to a premature con-
vergence to a local minimum. For the combination of a
small number of particles (N = 15) and a quickly con-
vergent parameter set (set 1) convergence was also ob-

served to completely non-optimal points, as illustrated
by a low success rate for the Sphere and Rosenbrock
functions which have no local minima.

6. Summary

The dynamic behavior and the convergence of the
simplified (deterministic) PSO algorithm was ana-
lyzed using tools from the discrete-time dynamic sys-
tem theory. The analysis provided qualitative guide-
lines for the general (random) algorithm parameter se-
lection. Simulation experiments with two parameter
sets, three numbers of particles in the swarm and five
benchmark functions were carried out. The speed of
convergence—robustness tradeoff was discussed. For
four benchmark functions, better than previously pub-
lished results were obtained in terms if the expected
number of objective function evaluations.

Further research is needed, however, to clarify the
effect of the randomness, of the swarm topology and
of their interaction with the function being minimized.
Better parameter sets probably await discovery in the
outlined algorithm convergence domain.
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