
Computers & Operations Research 34 (2007) 2931–2938
www.elsevier.com/locate/cor

An improved earliness–tardiness timing algorithm
Yann Hendel∗, Francis Sourd

LIP6, UMR7606, 8, rue du Capitaine Scott, 75015 Paris, France

Available online 6 January 2006

Abstract

Earliness–tardiness criteria with distinct due dates usually induce NP-complete problems. Researchers have focused on particular
cases like the timing problem, which is to look for the optimal schedule when the jobs sequence is already known. These timing
algorithms are very useful since they can be used in more complex procedures. In the first part of this paper we provide the most
efficient and fairly general algorithm to solve the one-machine timing problem. It is then adapted to a permutation flow shop problem.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Scheduling; Earliness–tardiness; Timing algorithm

1. Introduction

For regular criteria such as minimizing the makespan or the weighted sum of completion times, information about
the execution order of the jobs on each machine generally leads to an optimal schedule. Indeed, apart from release
dates, there is no idle time between the execution of each job. However, when the cost function is irregular, as in the
earliness–tardiness case, finding the schedule when the job sequence is fixed on every machine is not trivial.Algorithms,
used to solve these problems, are known as timing or timetabling algorithms. They are of practical interest since most
earliness–tardiness problems are NP-complete. Moreover, for efficiency reasons, neighborhood search or branch-
and-bound algorithms often rely on the job sequence instead of using the schedule. For instance, most neighborhoods
used in the literature are based on the permutation of jobs in the sequence [1–3]. The timing procedure must be called
for each iteration and, therefore, has to be done efficiently.

Timing algorithms have been proposed for different machine environments. In the case of the one-machine problem,
the seminal article of Garey et al. [4] propose an algorithm in O(n log n) based on blocks of adjacent jobs. The authors
prove the validity of their algorithm when the earliness and tardiness penalties are unitary. Some authors, Szwarc and
Mukhopadhyay [5], Davis and Kanet [6], Bauman and Jozefowska [7], or Pan and Shi [8], have then proposed variants
of this algorithm in order to solve problems with more general cost functions (weighted earliness/tardiness [5–7],
convex piecewise linear [8]) or to make it run faster in practice [5,8].

In a multiple machine environment (parallel or shop problems), we observe that when the operations processed by
each machine are sequenced, the resource constraints can necessarily satisfied so that they can be relaxed, which gives a
project scheduling problem. For the problem with symmetrical earliness–tardiness penalties, Della Croce and Trubian
[9] propose an O(np) algorithm where p is the number of precedence constraints. It is based on repeated solutions

∗ Corresponding author. Fax: +33 144277000.
E-mail addresses: Yann.Hendel@lip6.fr (Y. Hendel), Francis.Sourd@lip6.fr (F. Sourd).

0305-0548/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2005.11.004

http://www.elsevier.com/locate/cor
mailto:Yann.Hendel@lip6.fr
mailto:Francis.Sourd@lip6.Fr

2932 Y. Hendel, F. Sourd / Computers & Operations Research 34 (2007) 2931–2938

of maximum cardinality matching problems on a bipartite graph. Vanhoucke et al. [10] present another procedure
for the weighted earliness–tardiness case, which is used as a lower bound in a branch-and-bound algorithm for the
resource-constrained problem. Finally, Chrétienne and Sourd [11] generalize Garey et al. [4] approach for the problem
with convex cost functions. For the special case with weighted earliness and tardiness penalties, the complexity of their
algorithm is in O(n max(n, p)).

One can observe that both one- and multiple-machine problems can be formulated as linear programs. Then, it is
not surprising to observe that all the above-mentioned algorithms can be viewed as a specialization of the simplex
algorithm. Indeed, all the iterations of these algorithms stop at extreme points of the polyhedron.

When the cost functions are non-convex the extension of the simplex-based approach is not possible any more. For
the one-machine problem with general cost functions, Sourd [12] proposes a dynamic programming algorithm. When
the cost functions are piecewise linear cost functions, ‖fi‖ denotes the number of segments of the piecewise linear
function fi and m stands for

∑
i‖fi‖. In this case, the algorithm runs in O(nm). In the case of weighted earliness

and tardiness penalties, we have that m = 2n so that the complexity of the algorithm is O(n2). However, Hendel and
Sourd [3] show that combining the dynamic programming principles with a divide-and-conquer approach yield another
algorithm with complexity O(n log n).

This article focuses on the problem with convex cost functions and more specially piecewise linear cost functions.
Indeed, even if the paper of Chrétienne and Sourd [11] shows the properties of the optimal solutions and present
an algorithm, the complexity for the one-machine problem is not given (Hendel and Sourd [3] observe it runs in
O(m log m)). Moreover, independently of our study, Pan and Shi [8] have very recently revisited the algorithm of
Garey et al. [4] in order to propose an O(m log m) algorithm for the problem. The aim of this article is to point out
that the problem can be solved in O(m log n) time. In our presentation, we are going to use the elegant reduction of
the isotonic regression problem to our problem, which was proposed by Pan and Shi [8]. Finally, we mention another,
also recent, algorithm by Colin and Quinino [13], which is useful when cost functions are not piecewise linear. The
complexity of their algorithm depends on the time horizon.

The paper is organized as follows. We first present the problem and propose an O(m log n) algorithm for the case
with convex piecewise linear cost functions. Then we extend it for the case with convex piecewise quadratic cost
functions. We close our work by studying the flow-shop environment. In particular, we present two cases that reduce
to the one-machine problem.

2. The one-machine problem

2.1. Problem definition

We consider the sequence of n jobs (J1, . . . , Jn) that are to be scheduled in the order of their indices. For each
job, a convex piecewise linear cost function fi(Ci) is given where Ci is the completion time of job Ji (see Fig. 1).

τ

g i (
τ)

t1

= gi (∞) = s

∞ −
i

t2i

i
2

i
2

i
1

i
1

−
t3i

i
3

i
3

i
2 −

t4i

i
4

i
4

i
5

i
3 s −

t5i

i
4

′

Fig. 1. Cost function of job Ji and its corresponding linked list.

Y. Hendel, F. Sourd / Computers & Operations Research 34 (2007) 2931–2938 2933

The functions are encoded by the sorted list of their breakpoints and their corresponding slopes. Our objective is to
schedule the jobs in order to minimize the sum of the costs of each job.

In a preliminary remark, we observe that by using convex piecewise linear cost functions, it becomes easy to model
release dates and deadlines (respectively, denoted by ri and d̃i). Indeed, they appear as vertical segments, which means
that the cost of the job is infinite when it is processed before the release date or after the deadline. In a practical
implementation, it could be preferable to have functions defined over [ri + pi,∞)→ R. Therefore, in order to model
a deadline d̃i for Ji , we use a segment whose slope is equal to S =∑n

i=1maxj (slopeij) where slopeij is the slope of
the j th segment of fi (see Fig. 1). This ensures that the job is not executed out of its time windows unless there is no
feasible schedule.

The problem can be stated as

(TIMING) : min
n∑

i=1

fi(Ci)

s.t.: pi �Ci �Ci+1 − pi+1 ∀1� i < n.
Pan and Shi [8] have noticed that instead of considering the starting times or completion times of the jobs as the

variables, one can use variables that model the total idle time before the job starts, i.e. variable xi gives the amount of
idle time before the starting of job Ji . Consequently, there is still an order amid the variables with x1 �x2 � · · · �xn.
The completion times of the jobs and their associated idle time variables are linked by the relation xi =Ci −∑i

j=1pj .

We define the cost functions gi(xi) by gi(xi)= fi(xi +∑i
j=1 pj), they are clearly convex piecewise linear.

This simplified problem is known in the literature as the isotonic regression problem [14,15] and can be stated as

(IRP) : min
n∑

i=1

gi(xi)

s.t.: 0�x1 �x2 � · · · �xn.
This problem is equivalent to (TIMING) with null processing times. We can still apply the principles of Garey

et al. [4] algorithm. But, with this simpler problem, only one simple heap is needed. The major drawback of Garey
et al. [4] algorithm is that it needs heaps to be merged in logarithmic time. As pointed out by Pan and Shi [8], such
heaps like leftish heaps or Fibonacci heaps are very hard to implement and are practically not efficient [16,17]. Solving
(IRP) avoid this drawback since, as illustrated in the next subsection, only one simple heap is required.

2.2. Convex piecewise linear costs

By applying the ideas of Garey et al. [4], Pan and Shi [8] provide an algorithm with a complexity of O(m log m).
But, we can still slightly improve this complexity. Indeed, in their algorithm the size of the heap is at most m which
corresponds to the number of events of the algorithm. Hence operations like inserting, searching and deleting the
minimum are done in O(log m). We now show how to lower this complexity to O(log n).

Even if we consider the (IRP) formulation of (TIMING), we will use the scheduling terminology, that is xi is the
execution time of a job with null duration. A block is composed by jobs which are processed without idle time between
them, that is they are executed at the same time. The main idea of the algorithm is, at the ith iteration, to insert in the
schedule the job Ji processed at time infinity. The job is then left-shifted till either it is set at a time when its cost is
minimum or it encounters a block and is merged with it. The process goes on with this block until it is set at a time
where its cost is minimum or it met the preceding block. At the end of the iteration, the schedule must be optimal for the
first i jobs. The point is that we can identify i possible “next events” that can occur when adjusting the schedule, each
corresponding to a job. So that, only i events have to be stored in the heap. In order to have exactly i elements stored in
the heap, we use a reversed list per cost function; the list contains the breakpoints sorted from the last one to the first
one. The pointer on each list is set to the last breakpoint of the function (see Fig. 1). When an event corresponding to a
function occurs, this current breakpoint is deleted from the heap, and the next one is added to the heap. Consequently,
at any moment, there are at most n elements in the heap.

More formally, each cost function gi is given as a number corresponding to the last slope of the function (i.e. g′i (∞)),
and a “reversed” linked list of pairs (tei , me

i) made of the abscissa of the breakpoint and a so-called modifier which is the
variation between the right slope of the breakpoint to the left one (see Fig. 1, here g′i (∞)=S because Ji had a deadline in
the initial problem, the list has five elements: [(t5

i , S−�4)(t
4
i , �4−�3)(t

3
i , �3−�2)(t

2
i , �2−�1)(t

1
i ,∞)]).At the beginning,

2934 Y. Hendel, F. Sourd / Computers & Operations Research 34 (2007) 2931–2938

all the pointers of all the functions are set to the rightmost breakpoint of each cost function (which corresponds to the
first element of the list). The last modifier of each list (which corresponds to the leftmost breakpoint) is equal to∞. We
can observe that only slopes are represented in this data structure so that a reference point (t, gi(t)) is also necessary
to have a complete representation of the function. However, this data structure is sufficient for our algorithm.

We use a unique heap to store all the events, which are sorted so that the event with the maximal abscissa t = tej
is at the top of the heap. An event is encoded by a 4-tuple (t, j, k, m). The value t = tej is typically the abscissa of a
breakpoint of a cost function whose index is given by j. The second index, k, is the index of the first job of the block
(the role of this information will be apparent later) and m is the modifier associated to the breakpoint. We recall that
the classic heap operations (insert an event and remove the maximal event) are all done in O(log h) time, where h is
the size of the heap.

Let us consider the block that contains the jobs Jk, Jk+1, . . . , Jl scheduled at time t. The cost function of the block
is

∑l
i=k gi(t) and the slope of the block is defined as

∑l
i=k g′i (t) and represents the marginal benefit if the block is

left-shifted. We will emphasize the slope of the current block which will be denoted by the variable �: when it is
positive, the sum of the costs of the jobs in the current block is not minimal so that the block has to be left-shifted. The
second variable associated to the current block is f which indicates the index of the first job in the block.

We are now ready to present Algorithm 1 which indicates how to insert Ji in the schedule, J1, . . . , Ji−1 are assumed
to have been already inserted. This algorithm has to be called n times, for J1, J2, . . . , Jn in this order. In the algorithm,
an event represents either

• a job, say Jj , that is scheduled at a breakpoint of its cost functions (these events are inserted in the heap at the first
line of the while-loop). In order to left-shift Jj (and its block), the slope of the block has to be modified by m, or
• a block that is optimally scheduled (this event is inserted in the heap at the last line of Algorithm 1). Then m is the

slope of the block. When the current block meet this optimal block, the cost functions are merged, which means that
the current slope must be increased by m.

Algorithm 1. Insert Ji in the schedule

Initialize the current block: �← g′i (∞) and f ← i

let (te, me) be the last breakpoint of gi

j ← i

while ��0 do
insert the event (te, j, f, me) in the heap
let (t, j, k, m) be the event removed from the top of the heap
�← �−m

f ← min(f, k)

let (te, me) be the next event in the reversed list of gj

end while
insert the event (t, j, f,−�) in the heap

Algorithm 2 computes the execution time of each job (starting by the last one) by emptying the heap. The second
index f helps to determine all the jobs belonging to the block.

Algorithm 2. Post processing

i ← n

while i > 0 do
let (t, j, f, m) be the event removed from the top of the heap
while i�f do

xi = t

decrease i
end while

end while

Y. Hendel, F. Sourd / Computers & Operations Research 34 (2007) 2931–2938 2935

Fig. 2. The jobs and their cost functions.

Table 1
An instance with five jobs

Jobs J1 J2 J3 J4 J5

Slopes at infinity 1 1 2 1 3
Abscissa of the breakpoints 0, 2 0, 1 0, 8, 12, 14 0, 13 0, 7, 9
Modifiers ∞, 3 ∞, 2 ∞, 1, 1, 3 ∞, 2 ∞, 2, 2

Eventually, the completion times Ci for the initial problem are computed by Cj = xj +∑j
i=1 pi . Correctness of

the algorithm has already been proved by both Chrétienne and Sourd [11] and Pan and Shi [8]. The number of events
in the algorithm is in O(m) but, as announced in the beginning of the section, the heap contains exactly one event for
each job inserted in the schedule, that is, it contains at most n events. Therefore, for every event, at most one element
has to be deleted and one inserted into the heap, which is done in O(log n). The complexity is then in O(m log n). The
post processing algorithm consists in emptying the heap which contains n element: it is done in O(n log n). The global
complexity is then in O(m log n).

Example. Five jobs are considered in this instance of (IRP). The cost functions are represented in Fig. 2. The slopes
and the abscissas of the functions are given in Table 1.

The five iterations of the algorithm:

1. �=1, the event (2, 1, 1, 3) is inserted, then is removed. At the end of the iteration �=−2, thus (2, 1, 1, 2) is inserted.
2. �=1, the event (1, 2, 2, 2) is inserted, (2, 1, 1, 2), then is removed. At the end of the iteration �=−1, thus (2, 1, 1, 1)

is inserted.
3. �= 2, the event (14, 3, 3, 3) is inserted, then is removed. At the end of the iteration �=−1, thus (14, 3, 3, 3, 1) is

inserted.
4. � = 1, the event (13, 4, 4, 2) is inserted, (14, 3, 3, 3, 1) is removed. � = 0, (13, 4, 4, 2) is removed, (12, 3, 3, 1) is

inserted. At the end of the iteration �=−2, thus (13, 4, 3, 2) is inserted.
5. �=3, the event (9, 5, 5, 2) is inserted, (13, 4, 3, 2) is removed. �=1, (0, 4, 4,∞) is inserted, (12, 3, 3, 1) is removed.

�= 0, (8, 3, 3, 1) is inserted, (9, 5, 5, 2) is removed. At the end of the iteration, �=−2, (9, 5, 3, 2) is inserted.

In Fig. 3, the state of the heap is given at the end of each iteration.
Algorithm 2 gives the execution times of each job: J3, J4 and J5 are executed at t = 9, J1 and J2 at t = 2. Eventually,

we notice that the schedule which is computed by the algorithm is the earliest schedule.

2936 Y. Hendel, F. Sourd / Computers & Operations Research 34 (2007) 2931–2938

(12, 3, 3, 1)

(1, 2, 2, 2)

(1, 2, 2, 2)

(1, 2, 2, 2)

(1, 2, 2, 2)

(2; 1; 1, 1)

0 t

(2; 1; 1, 2)

(2, 1; 1, 1)

(2, 1, 1, 1)

(0, 4, 4, ∞) (2, 1, 1, 1) (8, 3, 3, 1)

(13, 4, 3, 2)

(14, 3, 3, 1)

(9, 5, 3, 2)

Fig. 3. State of the heap at the end of each iteration.

2.3. Convex piecewise quadratic costs

We now consider that the cost of a job is given as a convex piecewise quadratic function. In comparison with the
linear case, we need to know not only the current first derivative, but also the second derivative since the minimum
of these functions may not be at their breakpoints. Indeed as we add a new job to the schedule, two events can occur:
either, as in the piecewise linear case, a breakpoint is reached, or the minimum of the current sum of the quadratic cost
function is reached.

At any moment, the cost function of the current block is convex piecewise quadratic as a sum of convex piecewise
quadratic functions: g(t)= at2 + bt + c with a�0. The minimum of this function is reached for t =−b/2a (which is
−g′(0)/g′′). Contrary to the piecewise linear case, the slope of the current block function depends on t.

Each cost function gi is now given as two numbers corresponding to the value of the first derivative at time 0 and
to the second derivative of the rightmost piece of the function, and a reverse linked list of triplets (tei , me

i , q
e
i) made of

the abscissa of the breakpoint, and two modifiers, me
i being the variation of the right first derivative at time 0 to the left

and qe
i being the variation of the right second derivative to the left.

An event is now encoded by a 5-tuple (t, j, k, m, q). t is still the abscissa of the event, j the index of the job of the
breakpoint corresponding to the event, k the index of the first job of the block , m the modifier of the first derivative at
time 0 and q the modifier of the second derivative.

The algorithm is an extension of the previous one. In order to find the next event, we have to compare the abscissa
of the current breakpoint, the one of the next breakpoint and the minimum of the function which is −g′(0)/g′′: let
(te, j, k, me, qe) be the current event and (t, j ′, k′, m, q) the next event in the heap; if te <−me/qe, then the iteration
is stopped and the event corresponding to j in the heap is (te, j, k, me, qe), else if t <−me/qe, the iteration is stopped
and the event corresponding to j in the heap is (−me/qe, j, k, me, qe) (the block is therefore at its minimum), else we
proceed with (t, j ′, k′, m − me, q − qe). To each job corresponds at most one event, therefore the size of the heap is
still in O(n). The complexity remains in O(m log n).

3. Some generalizations for flow shop problem

The flow shop problem consists of n jobs. A job Ji is made of M successive operations Oi,1, . . . , Oi,M where
operation Oi,j is executed without preemption by the machine Mj and has a processing time pi,j . In the permutation
flow shop, every machine performs the jobs in the same order. We still consider an earliness–tardiness criterion: we first
assign a convex piecewise linear cost function fi on the last operation of each job. The problem being NP-complete,
the rest of the paper still deals with the timing problem: the sequence of jobs is already known and we search for the
optimal schedule.

Since, the first M − 1 operations of a job incurs no cost, they are executed as soon as possible. It comes down to
introduce release dates ri for the last operation of each job Ji . The cost function of a job is then modified: for each

Y. Hendel, F. Sourd / Computers & Operations Research 34 (2007) 2931–2938 2937

f (t) = fi (t + li,m − p′i)

Oi,1

Oi,2

Oi,3

Oi+1,1

Oi+1,2

Oi+1,3

Oi+1,4Oi,4

p′i

′

Fig. 4. The new processing time and the new cost function.

Fig. 5. A bad instance without No-Wait property.

job Ji , the cost is at infinity for t �ri . The last operations O1,M, O2,M, . . . , On,M are then scheduled according to the
algorithm presented in the previous section.

However, setting the earliness–tardiness cost on the last operation of the job may not render the will of the scheduler.
Indeed, as we have started a job, we generally want to finish it as soon as possible in order to avoid storage costs
between the operation executions. One way to penalize this storage cost is to ban idle time between operations of the
same job. A job Ji is then said to be No-Wait: we denote by Ci the completion time of the job and by Si , its starting
time and we have for each job the following formula: Ci − Si =∑M

j=1pi,j . We now solve this problem by reducing it
again to the one of the previous section.

For each pair of consecutive jobs (Ji, Ji+1), the index j of the critical operation (the one such that Ci,j =Si+1,j) has

to be found. We denote by li,j the value of
∑j

k=1 pik . The critical operation Oi,j has the j that maximizes li,j − li+1,j−1.
We can now view this problem as a one-machine timing problem. Each job Ji has a new processing time p′i (see

Fig. 4): it is the time the first operation of job Ji+1 has to wait after Si before starting: p′i =maxj (li,j − li+1,j−1). The
new cost function f ′i is f ′i (t)= fi(t + li,m−p′i). We are then in the conditions to apply the algorithm of the preceding
section. Finding all the critical operations is done in O(nM). The global complexity is then O(max(nM, m log n)).

This modelization may be insufficient too: we may want to allow idle time between operations of the same job and
penalize it. A possible model is to have the earliness cost tied to the first operation of the job and the tardiness cost tied
to the last operation. More formally, a preferred start time ds

i is assigned to the first operation of Ji ; to the last operation
of Ji , a due date dc

i is assigned. We redefine tardiness costs as Ti = max(0, Ci − dc
i) where Ci is the completion

time of the job and earliness costs as Ei = max(0, ds
i − Si) where Si is the starting time of job Ji . We still want to

minimize
∑n

i=1 (�iEi + �iTi). In this case, even with restrictions such as being limited to two machines and having
unitary earliness and tardiness costs, the optimal solution may not have the No-Wait property. Indeed, we provide a very
simple instance (see Fig. 5) with five jobs. There is no optimal solution where the third job has the No-Wait property.

2938 Y. Hendel, F. Sourd / Computers & Operations Research 34 (2007) 2931–2938

The problem becomes significantly more difficult: a job may be simultaneously early and tardy at the same time.
However, this problem is still solved by Chrétienne and Sourd algorithm [11].

4. Conclusion

In this paper we have proposed a general timing algorithm for the one-machine problem: it solves the cases where
there are release dates, deadlines, convex piecewise quadratic cost functions. Furthermore, it is the most efficient to our
knowledge: for the classic

∑n
i=1 (�iEi +�iTi) criterion, it runs in O(n log n) time, and for convex piecewise quadratic

cost functions, it runs in O(m log n) time.
We have also taken interest in the permutation flow shop problem with three different criteria. For the first case,

where the cost function is tied to the last operation of the jobs, an algorithm is trivially derived from the one of the
one-machine problem. For the second criterion, with the No-Wait property, we still provide an efficient algorithm.
However, we failed to find a simple algorithm to solve the problem when earliness cost is tied to the first operation.

References

[1] James RJW, Buchanan JT. A neighborhood scheme with a compressed solution space for the early/tardy scheduling problem. European Journal
of Operational Research 1997;102:513–27.

[2] Wan G, Yen BPC. Tabu search for single machine with distinct due windows and weighted earliness/tardiness penalties. European Journal of
Operational Research 2002;142:271–81.

[3] HendelY, Sourd F. Efficient neighborhood search for the one-machine earliness–tardiness scheduling problem, European Journal of Operational
Research, in press.

[4] Garey MR, Tarjan RE, Wilfong GT. One processor scheduling with symmetrical earliness and tardiness penalties. Mathematics of Operations
Research 1988;13:330–48.

[5] Szwarc W, Mukhopadhyay SK. Optimal timing schedules in earliness–tardiness single machine sequencing. Naval Research Logistics
1995;42:1109–14.

[6] Davis JS, Kanet JJ. Single-machine scheduling with early and tardy completion costs. Naval Research Logistics 1993;40:85–101.
[7] Bauman J, Jozefowska J. Minimizing the earliness–tardiness costs on a single machine. Computers and Operations Research 2005, in press.
[8] Pan Y, Shi L. Dual constrained single machine sequencing to minimize total weighted completion time. IEEE Transactions on Automation

Science and Engineering 2005; 2(4): 344–57.
[9] Della Croce F, Trubian M. Optimal idle time insertion in early–tardy parallel machines scheduling with precedence constraints. Production

Planning and Control 2002;13:133–42.
[10] Vanhoucke M, Demeulemeester E, HerroelenW.An exact procedure for the resource-constrained weighted earliness–tardiness project scheduling

problem. Annals of Operations Research 2001;102:179–96.
[11] Chrétienne Ph, Sourd F. PERT scheduling with convex cost functions. Theoretical Computer Science 2002;292:145–64.
[12] Sourd F. Optimal timing of a sequence of tasks with general completion costs. European Journal of Operational Research 2002;165:82–96.
[13] Colin EC, Quinino RC. An algorithm for insertion of idle time in the single-machine scheduling problem with convex cost functions. Computers

and Operations Research 2005;32:2285–96.
[14] Ahuja RK, Orlin JB. A fast scaling algorithm for minimizing separable convex functions subject to chain constraints. Operations Research

2001;49:784–9.
[15] Chakravarti N. Isotonic median regression: a linear programming approach. Mathematics of Operations Research 1989;14:303–8.
[16] Tarjan RE. Data structure and networks algorithms. Philadelphia, PA: SIAM; 1983 [chapter 3].
[17] Knuth D. The art of computer programming. Sorting and searching, vol. 3. Reading, MA: Addison-Wesley; 1973.

	An improved earliness--tardiness timing algorithm
	Introduction
	The one-machine problem
	Problem definition
	Convex piecewise linear costs
	Convex piecewise quadratic costs

	Some generalizations for flow shop problem
	Conclusion
	References

