Available online at www.sciencedirect.com
ScienceDirect

Information Processing Letters 101 (2007) 53-54

Information
Processing
Letters

www.elsevier.com/locate/ipl

Simple deterministic wildcard matching

Peter Clifford ®, Raphaél Clifford **

& Department of Statistics, University of Oxford, UK
b University of Bristol, Department of Computer Science, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK

Received 1 June 2006; received in revised form 2 August 2006; accepted 2 August 2006

Available online 1 September 2006

Communicated by L.A. Hemaspaandra

Abstract

We present a simple and fast deterministic solution to the string matching with don’t cares problem. The task is to determine all
positions in a text where a pattern occurs, allowing both pattern and text to contain single character wildcards. Our algorithm takes
O(nlogm) time for a text of length n and a pattern of length m and in our view the algorithm is conceptually simpler than previous

approaches.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Algorithms; String matching; Wildcards

1. Introduction

The problem of determining the time complexity
of exact matching with wildcards has been well stud-
ied. Fischer and Paterson [2] presented the first so-
Iution based on fast Fourier transforms (FFT) with
an O(nlogmlog|X|) time algorithm in 1974. Subse-
quently, the major challenge has been to remove the
dependency on the alphabet size. Indyk [3] gave a ran-
domised O(n logn) time algorithm which was followed
by a simpler and slightly faster O(nlogm) time ran-
domised solution by Kalai [4]. In 2002 a determinis-
tic O(nlogm) time solution was given by Cole and
Hariharan [1]. Section 2 presents a new deterministic
O(nlogm) solution, which we feel is conceptually sim-
pler than previous approaches.

* Corresponding author.
E-mail address: clifford@cs.bris.ac.uk (R. Clifford).

0020-0190/$ — see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.ipl.2006.08.002

2. Problem and solution

Let text t = tg,...,t,—1 and pattern p = po,...,
Pm—1. The pattern p is said to occur at location i in
t if, for every position j in the pattern, either p; =t ;
or at least one of p; and #;, ; is the wildcard symbol.

The main idea of the algorithm is to calculate the sum
of squared differences between the pattern and the text
for every possible alignment. Suppose that the alphabet
is a subset of non-zero integers. If there are no wildcards
then for each location 0 <i < n — m we can calculate

m—1

m—1
Z(Pj —tipj)* = Z(pf —2pjtivj+ t,-2+j)
— pars

in O(nlogm) time using FFTs.! Wherever there is an
exact match this sum will be exactly 0. When wildcards

' We assume the RAM model in order to be consistent with previous
work on wildcard matching.

54 P. Clifford, R. Clifford / Information Processing Letters 101 (2007) 53-54

Input: Pattern p and text ¢
Output: A[i] =0 iff p occurs at location i in ¢
Replace each symbol in the pattern and
text by a unique non-zero integer;
Replace all occurrences of the wildcard symbol * with 0;

q_xwm—1 3. m—1 _2.2 m—1 .3 .
Al =205 Pjtiv =22 jo Pjliv; + Xij=o Piliv

Algorithm 1. Algorithm for exact matching with wildcards.

are allowed in the pattern and the text we replace the
wildcard symbols by Os and then modify this sum to be

m—1
D pitivi(pj —tiy)
j=0
m—1
= Z(pitiﬂ' - 2p?tl-2+j + P./'ti3+j)
j=0

which equals O if and only if there is an exact match
with wildcards.

Theorem 1. The problem of exact matching with wild-
cards can be solved in O(nlogm) time.

Proof. Consider Algorithm 1 and note that the quan-
tities {A[i], i =0,...,n — m} can be calculated in
O(nlogn) time by FFTs. Now consider p at location
i in the text. A[i] =0 iff for each j =0,...,m — 1,
at least one of p; =tiyj, pj =0 or t;y; =0 is true.
Therefore A[i] = 0 iff there is an exact wildcard match
atlocationi. O

In order to reduce the time complexity from
O(nlogn) to O(nlogm) we employ a standard trick.
The text is partitioned into n/m overlapping sub-
strings of length 2m with the first substring starting
at the beginning of the text and each subsequent sub-
string having an overlap of length m with the previ-
ous one. Therefore every position in the text, except

for the first and last m positions is covered by ex-
actly two substrings. The matching algorithm is then
performed separately on each substring. Each iteration
takes O(m logm) time giving an overall time complex-
ity of O((n/m)mlogm) = O(nlogm).

3. Discussion

Algorithm 1 requires 3 correlation/convolution cal-
culations when wildcards are present in the pattern and
text. The pattern and text must also be encoded as inte-
gers with each value cubed in the worst case. The accu-
racy of the calculations must be sufficient to distinguish
0 from other integer values. The deterministic algorithm
of Cole and Hariharan encodes the pattern and text as
strings of rational numbers of length 2m and 2n, re-
spectively. One correlation calculation is performed on
these extended length strings and one on a pair of inte-
ger strings of length m and n. O(logm) bits of accuracy
are needed in the representation of each rational value
and the accuracy of the calculations must be sufficient
to distinguish O from values as small as 1/m(m — 1).

References

[1] R. Cole, R. Hariharan, Verifying candidate matches in sparse and
wildcard matching, in: Proceedings of the Annual ACM Sympo-
sium on Theory of Computing, 2002, pp. 592-601.

[2] M. Fischer, M. Paterson, String matching and other products, in:
R. Karp (Ed.), Proceedings of the 7th SIAM—-AMS Complexity of
Computation, 1974, pp. 113-125.

[3] P. Indyk, Faster algorithms for string matching problems: Match-
ing the convolution bound, in: Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, 1998, pp. 166—
173.

[4] A. Kalai, Efficient pattern-matching with don’t cares, in: Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2002, pp. 655-656.

