3614

[3] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral tech-
niques for embedding and clustering,” in Advances in Neural Informa-
tion Processing Systems 14. Cambridge, MA: MIT Press, 2001, pp.
585-591.

[4] F. R. K. Chung, Spectral Graph Theory, 1997, AMS, Regional Conf.
Ser. Math.

[5] J. Duchene and S. Leclercq, “An optimal transformation for discrim-
inant and principal component analysis,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 10, no. 6, pp. 978-983, Jun. 1988.

[6] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd
ed. Hoboken, NJ: Wiley-Interscience, 2000.

[7] G. H. Golub and C. F. Van Loan, Matrix computations, 3rd ed. Bal-
timore, MD: Johns Hopkins Univ. Press, 1996.

[8] R. Gross, J. Shi, and J. Cohn, “Where to go with face recognition,” in
Third Workshop on Empirical Evaluation Methods in Computer Vision,
Kauai, HI, Dec. 2001.

[9] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, “Face recognition
using laplacianfaces,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 3, pp. 328-340, Mar. 2005.

[10] X. He and P. Niyogi, “Locality preserving projections,” in Advances in
Neural Information Processing Systems 16.. Cambridge, MA: MIT
Press, 2003.

[11] Q. Liu, R. Huang, H. Lu, and S. Ma, “Face recognition using Kernel
based fisher discriminant analysis,” presented at the 5th Int. Conf.
Automatic Face and Gesture Recognition, Washington, DC, May
2002.

[12] A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 23, no. 2, pp. 228-233, Feb. 2001.

[13] B. Moghaddam and A. Pentland, “Probabilistic visual learning for ob-
ject representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19,
no. 7, pp. 696710, Jul. 1997.

[14] H. Murase and S. K. Nayar, “Visual learning and recognition of 3-d
objects from appearance,” Int. J. Comput. Vis., vol. 14, 1995.

[15] P. J. Phillips, “Support vector machines applied to face recognition,”
in Advances in Neural Information Processing Systems. Cambridge,
MA: MIT Press, 1998, pp. 803—809.

[16] S.Roweis and L. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science, vol. 290, no. 5500, pp. 2323-2326, 2000.

[17] T. Shakunaga and K. Shigenari, “Decomposed eigenface for face
recognition under various lighting conditions,” presented at the IEEE
Conf. Computer Vision and Pattern Recognition, Dec. 2001.

[18] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illuminlation, and
expression database,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25,
no. 12, pp. 1615-1618, Dec. 2003.

[19] J. Tenenbaum, V.d. Silva, and J. Langford, “A global geometric frame-
work for nonlinear dimensionality reduction,” Science, vol. 290, no.
5500, pp. 2319-2323, 2000.

[20] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn. Neu-
rosci., vol. 3, no. 1, pp. 71-86, 1991.

[21] M. Turk and A. P. Pentland, “Face recognition using eigenfaces,” pre-
sented at the IEEE Conf. Computer Vision and Pattern Recognition,
Maui, HI, 1991.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 11, NOVEMBER 2006

Camera Calibration Using Symmetric Objects

Xiaochun Cao and Hassan Foroosh, Senior Member, IEEE

Abstract—This paper proposes a novel method for camera calibration
using images of a mirror symmetric object. Assuming unit aspect ratio and
zero skew, we show that interimage homographies can be expressed as a
function of only the principal point. By minimizing symmetric transfer er-
rors, we thus obtain an accurate solution for the camera parameters. We
also extend our approach to a calibration technique using images of a 1-D
object with a fixed pivoting point. Unlike existing methods that rely on
orthogonality or pole-polar relationship, our approach utilizes new inter-
image constraints and does not require knowledge of the 3-D coordinates of
feature points. To demonstrate the effectiveness of the approach, we present
results for both synthetic and real images.

Index Terms—Camera calibration, homography, stereo reconstruction.

I. INTRODUCTION

Traditional camera calibration methods require a calibration object
with a fixed 3-D geometry [1]. Recently, more flexible plane-based cal-
ibration methods [2]—-[4] are proposed, which use a planar point pattern
shown at a few different orientations. Some recent methods in this cat-
egory use also nonplanar shapes [5]-[7]. Zhang [8] has also presented a
method for calibration using 1-D objects. Another branch of study, re-
ferred to as self-calibration [9], does not use a calibration object. Their
aim is to provide further flexibility by not requiring a prior knowledge
of the 3-D to 2-D correspondences. Various methods [10]-[13] have
been proposed in this category that rely on scene or motion constraints,
most of which require good initialization, and multiple views.

The approach described herein needs a calibration object, but it
does not require the knowledge of 3-D coordinates of the object.
Different from existing methods, our approach extends the current
state-of-the-art calibration methods to situations where only one van-
ishing point and no vanishing line are known per view. The proposed
technique requires the camera to observe a symmetric object only
at a few (at least two) different orientations. We will show that such
configuration provides sufficient information to solve the problem
using only interimage homographies. Given a configuration described
shortly, our method can also be applied to 1-D objects [14], which is
useful in calibration of a large number of cameras [8].

II. PRELIMINARIES

A homogeneous 3-D point M ~ [X Y Z 1] and its corre-
sponding homogeneous image projection m in a pinhole camera are
related via a 3 x 4 projection matrix P. More comprehensive imaging
models including radial distortion [15] are out of the scope of this
paper. When the world points are coplanar (e.g., without loss of gener-
ality in the plane Z = 0), we get

ﬁ‘lNK[I'l To Is t]M
| S —
P
f 0 Uo X
=10 f wol[ri r2 t]|Y ()
0 0 1 1
H.,
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Viewpoint 2

Fig. 1. Points M; and M are two arbitrary feature points on the calibration
object, and M} and M/, are their symmetric counterparts. Alternatively, M,
and M are two feature points on a line through the point Q, and M and
MY, are their position after pivoting the line around the point Q. In order to
simplify the illustration, we choose the plane of symmetry as X = 0 and world
coordinate frame as follows: X axis along the line M} M, Y axis along the
line SO, where S is the intersection of IT and the line M, M, and the Z axis
given by the right-hand rule.

where ~ indicates equality up to a nonzero scale factor, r; are the
columns of the rotation matrix R, t is the translation vector, K is the
camera intrinsic matrix including the focal length f and the principal
point & ~ [¢’,1]" = [uo wo 1]" (assuming a unit aspect ratio
and zero skew), and H,, is the homography mapping the world plane
Z = () to the image plane.

We assume that our cameras are observing an object that has a plane
of symmetry II, so that for each object point M, there exists a point
M’ on the object that is symmetrically situated with respect to II. As-
sume that two such pairs, M ; M} and M, M35, are viewed by a camera
(see Fig. 1). Clearly, the two parallel and coplanar lines MM, and
M,MS are perpendicular to II. The configuration of four such points
M/, M,M;M, on a symmetric object as described above yields in
general an isosceles trapezoid [16].

Note that this configuration of coplanar points may also be viewed
as two separate configurations of colinear points in the 3-D space. In
other words, if we take the lines M; M and M, MQ as two different
positions of a 1-D object pivoting around the point Q, then we can also
apply the technique proposed herein to the images of this 1-D object.
The only difference then is that the set of four coplanar points My,
1\~/Iz, 1\~/I’1, and 1\7['2, are captured in two separate images. Therefore,
the number of images required in the 1-D case is twice as many as the
number of images required in the 2-D case, i.e., a minimum of four: one
pair from the same viewpoint but with the 1-D object at two distinct
positions, and another pair from a different viewpoint but the same two
positions of the object that were used in the first pair.

[II. OUR METHOD

Our approach is based on expressing the interimage homography as
a function of only the principal point. In the coordinate frame described
above, P in (1) reduces to H,,, which has the form [17]

H., = [7’31‘71 7’32‘7y fzf)] (2)
where v, ~ [U,m Vzy I]T and v, ~ ['Uyat Uyy 1]T are
the homogeneous = and y vanishing points in the image coordinate
system, and 6 ~ [0 oy l]T is the homogeneous image point
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corresponding to the projection of the world origin O. We can now
verify that [5], [16]

Ve ~ (i xm)) X (me X m)) 3)
v,, (8 x Q=20 )
0~(m1><m1)><(§><61). 5)

In our case, we only have the vanishing point v.. From the orthogo-
nality constraint \75 wv, = 0 with respect to the image of the absolute
conic w, and (4), it immediately follows that

I —c

v, 1|« wv., where w . . .
v YLt e

(6)
where 1 ~ § X @, and [-]x is the usual notation for the skew symmetric
matrix characterizing the cross product.

As shown in Fig. 1, the four points v,, q, s, and 0, are collinear,
and, hence, their cross ratio is preserved under perspective projection.
Therefore, we have the following equality between two given images:

[v,allse] _ 19,4156
vallasl ~ e

@)

where |- | denotes the distance between two points, and the primes indi-
cate corresponding points in the second image. Equation (7) provides
two solutions for f2 in terms of ¢, of which only one is correct. The
ambiguity is resolved by minimizing the symmetric transfer errors as
discussed later.

The camera external parameters can also be expressed
in terms of c as follows. First, due to the fact that v, ~
K[ry r» r3 t][1 0 0 O]T = Kr; (similarly v, ~ Kr»),
r; and ry in (1) can be computed as

K- and r K-
—,.',x 2 = Y 1~ 1
IIK‘1 IIK“VyII

®)

r =

Since the vanishing point v, has already been defined as a function of f
and c in (6), and f depends only on the principal point ¢ as shown in (7),
r; and r» depend only on ¢, with two-fold sign ambiguities eliminated
again by minimizing the symmetric transfer errors as discussed shortly.

As for the scale factor ¢. of the third column of H,, in (2), we use
the fact that in our case the world origin is mapped to a finite point in
the image plane, and, hence, the t. of the viewpoints can not be close
to zero. Therefore, since the scale factor of the third column, i.e., ¢,
does not introduce ambiguity in the rotation angles [ 18], we can assume
without loss of generality a unit ¢. for one of the viewpoints, in which
case the following result holds.

Proposition 1: Let the true world-to-image homography be
H,, = [hy hy h;s], and the estimated world-to-image homog-
raphy be H, = [hi h> (1/t.)hs]. Then:

1) H' = diag(1,1..)H, .

2) Given an inhomogeneous image point m, its corresponding true
inhomogeneous world point M and its estimated inhomogeneous
world point M, are related via M = 1 /t-M.

From proposition 1, we can compute the . of the other viewpoints by
forcing correspondences to be projected to the same 3-D world point.
Therefore, using (3), (5), (6)—(8), and proposition 1, we have H,, of
each image as a function of the principal point only. In order to find
the principal point, and, hence, other camera parameters, we formulate
our problem in terms of the interimage homography that minimizes the
symmetric transfer errors

mjnZd(ﬁn,;,H 'm}))? + d(m), Hm,)’
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Fig.2. Our configuration: the plane II that defines the image line 1, is different
from the plane of symmetry II, whose normal N, defines the vanishing point
V.. As aresult, in our configuration, 1 # wv,..

where d(-, ) is the Euclidean distance between the image points and
H=H, H,"isthe interimage homography, which is only a function
of c.

The solution is, therefore, found by resorting to standard nonlinear
minimization technique [19] with the initial solution obtained by as-
suming the principal point at the camera center. Once the correct prin-
cipal point is found, all other camera parameters can be easily com-
puted since they are expressed in terms of ¢, and the last column of the

world-to-image homography is computed up to a scale factor [16].

IV. RELATION TO EXISTING METHODS AND
DEGENERATE CONFIGURATION

One approach that seems to resemble our method is the work in [5]
using surfaces of revolution. The resemblance, however, is superficial
as described below. In [5], Wong et al. use the line 1. corresponding to
the projection of the axis of revolution in the image plane for calibra-
tion. In their case, this line is the vanishing line of the plane containing
the camera center and the axis of revolution. By choosing their v, as the
vanishing point along the normal to this plane, they obtain a pole-polar
relationship between v, and L, ie., lNS = wvV, (see [5] for derivation).
This pole-polar relationship provides two linear constraints per image.
Therefore, Wong et al. can solve for the intrinsic parameters using two
images. In our case, however, as depicted in Fig. 2, v,., is not the van-
ishing point along the normal of the plain II; containing the camera
center and the line SQ. Therefore, it does not have a pole-polar rela-
tionship with the vanishing line 1 of that plane.

Formally, in our configuration

Vs ~ PN, and N, ~ QII )

where € denotes the absolute dual quadric [10], but, clearly (as seen in
Fig. 2), in general, back-projecting the line 1 would not yield the plane
of symmetry II, i.e.,

m+pP'L (10)

From (9) and (10), we deduce that, in our case

1# wv,. an
Therefore, we do not have a pole-polar relationship between the image
line 1 and the vanishing point V.. As a result, in our configuration,
instead of the two constraints provided by the pole-polar relationship
per image, we get one weak constraint in (6). In order to be able to
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still solve the problem using two images, we resort to the invariance
of a cross ratio (7), which provides a nonlinear constraint from two
images while introducing a two-fold ambiguity, and solve the problem
by minimizing the symmetric transfer errors.

Note that, if the two lines 1 and wvV; become parallel or identical,
then we loose the constraint in (6), and cannot find the inhomogeneous
vy as the intersection of these two lines. Line 1 is the imaged projec-
tion of the 3-D Y axis and, therefore, passes through the image of the
world origin K[r; r» r3 —RCJ[0 0 0 1]7 = —KRC,
where C is the camera center in the world coordinate system (not to
be confused with the principal point, for which we used a lower case
character). It also passes through the vanishing point v, ~ Kr». along
the 3-D Y -axis direction. Similarly, line wv,. is the image projection of
the 3-D plane of symmetry (Y -Z plane) and, therefore, passes through
two vanishing points v, and v.(~ Krs). When two lines are parallel
to each other, it indicates that the two lines intersect at infinity. By using
the property that the cofactor matrix is related to the way matrices dis-
tribute with respect to the cross product [17], we have

1% (w¥;) ~ ((Krz) x (KRC))

X ((Krz) x (Krs)) (12)
~ (K*([rz]xRC)) x (K" (r2 x r3)) (13)
~ (K*'(-rs 0 r]C)) x (K'r() (14)
~ (K" ((C.ri = Cyr3))) x (K'ry) (15)
~K(C.r; xr1 — Cyrg Xr1) (16)
~C.Kry ()

where “x” denotes the matrix of cofactors, and C . are the coordi-
nates of C. Algebraically, C;, = 0 implies that the line 1 is identical
to the vanishing line wv,, in which case our method will degenerate
to the method [5] and the pole-polar relationship 1 ~ wv, offers two
independent constraints on the camera internal parameters per view.
However, the configuration C; = 0 indicates that the camera center
lies on the plane of symmetry II in Fig. 1, which is rare to happen in
practice.

V. EXPERIMENTAL RESULTS

We first show the synthetic simulations for the 1-D object (the 2-D
case is similar). We then show the results for some real images.

A. Computer Simulation

The simulated camera has a focal length of f = 1020, unit
aspect ratio, zero skew, and the principal point at (316 243).
The image resolution is 640 X 480. We observed the 1-D objects
randomly at seven positions [14]. The 3-D world points are M; =
[-75 0 0]",M, =[-45 -150 0]",M; =[75 0 0],
M) =[45 —150 0] For each observation, we switched the 1-D
object between two positions of the 3-D points given above.

1) Performance Versus Noise Level: We used five image pairs
with different positions and orientations of the camera. The estimated
camera intrinsic and extrinsic parameters were then compared with
the ground truth. We added a zero-mean Gaussian noise with standard
derivation varying from 0.1 pixels to 1.5 pixels, and run our algorithm
over 1000 independent trials. The averaged results are shown in
Fig. 3(a)—(d). For noise level of 1.5 pixels, the relative error for the
focal length f is 1.97%. The maximum relative error of principal
points is around 0.9%. Good performance is achieved for all extrinsic
parameters, i.e., relative errors less than 0.22% for ¢, and 0.31% for
t,, absolute errors less than 0.82° for 8., less than 0.33° for 4,, and
less than 0.09° for #.. The error in 6, is larger than that in 6. The
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Fig. 3. Performance versus noise (in pixels): (a), (d) relative errors in focal length and the principal point; (b), (e) relative errors in translations and the absolute
errors in rotations; (c), (f) relative errors in the focal length and the principal point as a function of the number of images.

x 10

symmetric transfer errors

Fig. 4. Error surface over the space of sampled principal points (71 x 71 with
1.0 pixel intervals for both uo and vy ), with added random noise of 1.5 pixels.

main reason is due to the accumulated errors toward the computation
of #. as detailed in [14]. For example, §.. is computed from §,, 6.,
and all the camera internal parameters, while #. depends only on the
principal point. Compared to our previous minimization approach [14]
of sampling exhaustively the space of principal points, the nonlinear
minimization gives us very similar solutions over reasonably big
number of trials (> 50). For instance, with a noise level of 1.0 pixel,
the relative error is 1.42% using nonlinear solution, compared to
1.33% using exhaustively search. To illustrate the trend in the cost
function, we show in Fig. 4 the error surface over the space of sampled
principal points.

2) Performance Versus Number of Viewpoints: In this experiment,
we varied the number of available viewpoints from 2 to 10. Results
are shown in Fig. 3(e) and (f). For this experimentation, the noise level
was kept at 1.5 pixels, and the results were averaged over 100 inde-
pendent trials. From 2 to 4, the errors decrease significantly. The more
viewpoints we have, the more accurate camera calibration will be in
practice.

B. Real Data

We applied our method to both 2-D and 1-D objects. For 2-D ob-
jects, we adopted the data set (five images) used by Zhang [2] with no
knowledge about the 3-D coordinates of the calibration grid. The radial

(a)

Fig. 5. Four trapezoids projected to two images.

!

(b)

TABLE I
CAMERA INTRINSIC PARAMETERS FOR ZHANG’S DATA
(1234) (1235) (1245) (1345) (2345)| mean dev
f[2] [831.82 832.10 837.53 829.91 833.11|832.90 2.84
f |[833.55 834.29 83596 832.33 834.28|834.08 1.32
uo [2]]304.53 304.32 304.57 303.95 303.53|304.18 0.44
up |303.50 304.25 303.25 304.00 304.50 [ 303.90 0.52
vo [2]) 206.79 206.23 207.30 207.16 206.33|206.76 0.48
vo |217.25 213.25 212.25 205.25 208.50 | 211.30 4.60
TABLE II

CAMERA EXTRINSIC PARAMETERS FOR ZHANG’S REAL DATA

Rotation angles (0, 0y,6.) (te/tz,ty/t2)%
Img [2] Ours [2] Ours
1t | (7.4-162,9.5) | (7.0, -162,10.2) | (-30,29) | (-30,28)
9nd | (.9.2,-13.6,10.8) | (-9.5,-13.6,11.4) | (-28,26) | (-28,28)
3rd | (83,-33.1,8.3) | (7.9-33.09.3) | (-21,27) | (-21,26)
ath | (6.8, -0.1,104) | (6.5-0.1,109) | (-27.29) | (-27,29)
5th N/A N/A (-28,22) | (-28,20)

distortion was removed according to Zhang’s experimental results. We
used four trapezoids (i.e., 16 corners) as shown in Fig. 5 for gathering
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Fig. 6. Three collinear points (marked in red) along a TV antenna.

TABLE III
CAMERA INTRINSIC PARAMETERS FOR 1-D TV ANTENNA

img set | f (rel. err.(%)) | uo (rel. err.(%)) | vo (rel. err.(%))
15t 2443.22 (-0.61) | 1137.00 (0.12) 838.67 (-0.02)
ond 2604.29 (5.94) 1143.00 (0.36) 844.00 (0.20)
3rd 2510.88 (2.14) | 1125.33 (-0.36) | 838.00 (-0.05)
4th 234797 (-4.48) | 1137.83 (0.15) 838.00 (-0.05)
5th 2472.31 (0.57) | 1131.00 (-0.13) | 838.00 (-0.05)
6t 241191 (-1.88) | 1137.00 (0.12) 838.00 (-0.05)
7th 2456.22 (-0.08) | 1131.00 (-0.13) 840.67 (0.06)
gth 2418.83 (-1.60) | 1131.00 (-0.13) | 838.00 (-0.05)

the error statistics. For each quadruples of images, we applied our al-
gorithm independently and the results are shown in Tables I and II. In
order to evaluate our results (in bold), we use Zhang’s results as the
ground truth. Note that we evaluate our focal length f using Zhang’s
focal length 3 along the image y axis due to the fact in his data the as-
pect ratio is practically equal to one. We also used an approach similar
to [2] based on estimating the uncertainty of the results using the stan-
dard deviation of the estimated internal parameters f and uo, vo . The
largest error of the estimated focal length is around 3 pixels, and for the
principal point around 11 pixels. For the rotation angles in Table II, we
use the relative rotation between the current image and the fifth image,
and R = R.R,R.. For the translation parameters, we use the ratios
between the components since we can only recover them up to a scale
ambiguity.

We used the antenna of a home TV as a 1-D object and took 16 im-
ages with 8 different viewpoints. One pair of images observed from
the same viewpoint is shown in Fig. 6. Three points along the antenna
are chosen to generate three isosceles trapezoids. The calculated in-
trinsic parameters using these images are listed in Table III. We used
the sample mean as the ground truth and show the relative difference
with respect to the mean value of f. The largest relative error of f, in
our case, is less than 6%.

C. Application to 3-D Reconstruction

To demonstrate the effectiveness of the method, we show an example
[20] for reconstructing a partially viewed symmetric object given two
views obtained by an unknown camera from unknown arbitrary po-
sitions and orientations. Fig. 7(a) and (b) shows the real images of
a symmetric object, the printer. We first calibrate the camera as de-
scribed before, and then apply the optimal triangulation method [17,
p- 318] with special consideration of visibility to recover both visible
and occluded parts. Some recovered 3-D coordinates (in the format
[X,Y, Z]) are shown in Fig. 7(a). In order to evaluate the results of re-
construction, we manually measured 3-D distances between randomly
selected ten pairs of features points [the black points in Fig. 7(a)],
and compared them to our computed one. The statistical results are
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(b)

(© (d)

Fig. 7. (a), (b) Two real images of a partially viewed symmetric object; (c), (d)
snapshots of the reconstructed 3-D model including the occluded left and right
portions.

TABLE IV
ERRORS IN DISTANCES BETWEEN TEN PAIRS OF POINTS

mean | std
0.02 | 0.88

absolute max
1.50

absolute min
0.25

Error (cm)

shown in Table IV. Considering the dimensions of the printer in cm as
(wx hxd)=(41.2 x 36.6 x 43.9), the average reconstruction error
is around less than 5%. Finally, two snapshots of a piecewise planar
model with mapped texture are shown in Fig. 7(c) and (d).

VI. CONCLUSION

We extend the current state-of-the-art calibration methods to situa-
tions where only one vanishing point per view is available. The pro-
posed technique is based on deriving the interimage homography as a
function of only the principal point, and requires no knowledge of the
3-D coordinates of the calibration object. The method uses images of
objects with mirror symmetry, which are frequently found in both in-
door and outdoor environments, e.g., a chair, a vase, eye glasses, a face,
a car, an airplane, etc. The fact that prior knowledge of the 3-D coor-
dinates of the calibration object is not required, makes the method a
versatile tool that can be used without requiring a precisely machined
calibration rig (e.g., grids), and also makes calibration possible when
the object is not accessible for measurements, e.g., in remote sensing,
image-based rendering, or simply when the images are taken by other
people as demonstrated in our experimentation with Zhang’s real data.
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