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Par ailleurs Ascher (1965) a ~num~r6 les 31 classes 
'pyroconductives' d6crivant le sym&rie ponctuelle des 
cristaux porteurs de courants 61ectriques spontan6s j. On 
remarque que ces 31 classes sont comprises dans les 58 
classes magn6to61ectriques (au contraire les 31 classes 
pyro~lectriques et les 31 classes pyromagn6tiques ne sont pas 
routes magn&o61ectriques): les tenseurs magn&o61ectriques 
Qu correspondants sont non sym6triques. Dans les autres 
classes magn&o61ectriques, les tenseurs magn~to61ectriques 
sont sym6triques. 

Cette propri&6 s'interpr6te ais6ment. Dans une classe 
pyroconductive, un vecteur de Poynting E × B construit ~. 
partir d'un champ 61ectrique E et d'un champ magn~tique B 
est invariant. En effet E x Bet  j se transforment de la m~me 
mani6re dans les op6rations i (centrosym6trie) et 1' 
(renversement du temps). 

Consid6rons alors une classe magn6to61ectrique. Si le 
tenseur Qu correspondant est sym6trique, on ne peut former 
aucun invariant magn6to61ectrique antisym6trique du type 
EIB j - EjB l (i, j = x,y,z), donc on ne peut construire aucun 
vecteur E x B ou j invariant: la classe consid~r~e n'est pas 
pyroconductive. 

Consid6rons maintenant une classe magn6to~lectrique 
dans laquelle le tenseur Qij n'est pas sym6trique. On peut 
alors isoler la partie antisym6trique de Qu et former des 
invariants antisym6triques du type EtB j -- EjB i. Par suite, la 
classe consid6r6e est pyroconductive. 

Ainsi dans la classe 4/m', le tenseur Q a la forme: 

Q12 Q11 0 , 

0 Qa 

d'ofl l'unique invariant antisym6trique ExBy - EyB x = (E x 
B)~. Cette classe autorise donc l'existence de courants 
spontan6s parall+les fi l'axe z. 

De m~me dans la classe 2'/m, Q a la forme: 

0 Qo 
31 032 

(en choisissant l'axe binaire parall~le /l Oz), d'ofi les 
invariants antisym&riques ExB z -- EzB ~ = (E x B)y et EyBz 
- EzBy = (E x B)x. Cette classe autorise donc l'existence de 
courants spontan~s parall~les au plan xy. 

En conclusion, les classes magn&o~lectriques dans les- 
quelles le tenseur Q n'est pas sym&rique sont pyro- 
conductives: la forme de Q indique la direction des courants 
spontan~s autoris~s. 
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Abstract 

An unusually fast method of superposing two sets of atomic 
coordinates for related molecular structures by least squares 
is described. It exploits the special nature of the problem and 
uses the method of conjugate gradients. The calculation 
takes about 0.003 s and is fast enough to be used in on-line 
graphics systems. 

The object of this paper is to describe a very fast and simple 
iterative method for calculating the rigid-body rotations 
which are needed to match protein structures to one another. 
The analysis of structures often requires two sets of 
coordinates for a group of atoms to be compared by finding 
the rigid-body rotation and translation which matches them 
as closely as possible. This least-squares fitting approach has 
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been used to compare closely-related proteins (Freer, Kraut, 
Robertus, Wright & Xuong, 1970; Huber, Epp, Steigemann 
& Formanek, 1971; Lesk & Chothia, 1980) or different 
functional forms of the same molecule (Baldwin & Chothia, 
1979); to assess the validity of energy minimization methods 
(Cohen & Sternberg, 1980); and to superpose repeated 
structural elements within the same protein (McLachlan, 
1972a). In simple one-to-one comparisons the time spent in 
the superposition calculation is unimportant, but more 
general methods involve multiple comparisons, with a 
systematic search for fragments of structure anywhere in one 
protein, A, which are similar to any part of a second protein, 
B (Rao & Rossmann, 1973; Rossmann & Argos, 1976, 
1977; Remington & Matthews, 1978; McLachlan, 1979). 
Studies of this kind have been used to assess the significance 
of structural relationships between proteins which may have 
descended from a common evolutionary ancestor 
(Remington & Matthews, 1980; Schulz, 1980). 
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In a typical search it may be necessary to do as many as 
one million structural superpositions, and so a fast simple 
method of calculation is essential. The Eulerian angle 
procedures used to find the rigid-body rotations in earlier 
work (Rao & Rossmann, 1973; Remington & Matthews, 
1978) were cumbersome and they have been superseded by 
matrix methods which calculated the rotation matrix R from 
a special three by three matrix U [defined below, equation 
(3)] which contains all the information necessary to solve the 
least-squares problem. In Remington & Matthews's zone 
comparison search the matrix U can be updated very simply 
by adding a new atom to the end of the existing zone for each 
fragment, A or B, and removing one from the beginning of 
the zone (McLachlan, 1979). This corresponds to moving 
one step down a diagonal of the comparison matrix. The 
rate-limiting step in the calculation is now the solution of the 
rotation problem. Several approaches have been tried. One is 
through least-squares matrix methods and the generalized 
inverse matrix of the atomic coordinates (Diamond, 1966, 
1976; Mackay, 1977; Penrose, 1955). Another deals directly 
with the U matrix (McLachlan, 1972b). Thus Kabsch (1976, 
1978) described a fast procedure which uses the square root 
of  the matrix U 'U  (U' is the transpose of U), and McLachlan 
(1979) later described a fast method which uses the 
eigenvalues and eigenvectors of a six by six partitioned 
matrix constructed from U and U'. This last method even 
allows the root-mean-square distance between two sets of 
coordinates to be obtained by a minimum of calculation 
without the need to calculate the rotation R. 

The new method described below seems to be the fastest 
yet devised for zone comparison calculations where the 
rotation matrix R is required. It is a simple iterative 
procedure based on the well-known conjugate gradient 
minimization method (Hestenes & Stiefel, 1952; Fletcher & 
Powell, 1963; Fletcher & Reeves, 1964; Walsh, 1975). It 
uses a succession of finite rotations about conjugate axes. 
For each chosen axis the rotation angle required to reach the 
local minimum around that axis can be calculated exactly in 
one simple step. The method is therefore particularly simple 
and only needs an elementary computer program. The 
mathematical basis has much in common with previous 
methods (McLachlan, 1972b, 1979). 

Let a,, bn, (n = 1 . . . . .  N) be the position vectors of two 
sets of atoms from molecular fragments A and B, and w, be a 
weight for each atom. We wish to find an orthogonal proper 
rotation matrix R with determinant +1, and a translation 
vector t which converts the coordinates at, (i = I, 2, 3) to 

rtn = Z R tj aj, + t t (1) 
J 

and minimizes the residual 

E = ½ ~. wn(r, -- b,) 2. (2) 
n 

The best translation t is that which superimposes the 
centroids of  both sets of  atoms. The common centroid is 
chosen as the origin of coordinates. The rotation is derived 
by considering two special matrices U and V = RU: 

UtJ= Z what, bin, Vt j= Z wnri, bjn. (3) 
n 

2 2 the residual can be written Since r n = a.  

E = ~ Z w. (a .  ~ + b. ~) - v, 

where v is the diagonal sum 

(4) 

v = V l l +  V22 + V33 = Y w, r,. b,. (5) 
n 

Suppose that we apply a rotation R followed by a further 
finite rotation Q through a variable angle 0 about a chosen 
direction !. The position vector r of any atom before the 
rotation can be resolved into a parallel component  (r. 1) 1 
and a perpendicular one - 1  × (1 × r). The rotated position 
then becomes 

r' = r cos 0 + (I x r) sin 0 + (r. !)1 (1 - cos 0) (6) 

and the contribution to v from this atom is proportional to 

r ' .  b = (r. b) cos 0 + ( l  × r. b) sin 0 + (r. l )(b.  r)( 1 - cos 0) 

= (r. b) + I. (r × b) sin 0 

+ [(r. 1)(1.b) - (r.b)](1 - cos 0). (7) 

Substitution into (4) gives the residual as 

E '  = E - -  G sin 0 +  H(1 - cos 0). (8) 

Here G and H can be expressed in terms of a vector g and a 
matrix T both derived from V. 

G =  g . l ,  g =  ~. wn(r. x b.). (9) 
n 

H = Z l t T J ~ ,  T i i = v 6 t j - - ~ ( V i j +  Vji). (10) 
tj 

The components of g come from the antisymmetric part of  
the V matrix, with gl = (I:23 - V32), and so on. When 0 is 
small the change of E becomes 6E = - G O  + ½HO 2, so that G 
is the downhill gradient of  E about the chosen axis and H is 
the second derivative. The problem of minimizing E is 
equivalent to searching for the rotation R which makes G 
vanish and H positive for any further choice of movement.  
Thus the vector g vanishes, the V matrix becomes symmetric 
and T must be positive definite, g has a simple physical 
interpretation as the couple which would act on the atoms in 
set A if each atom at r, was attracted to its guide point b n by 
an elastic restoring force - w . ( r  n - b.). 

An important consequence of (8) is that the unique 
minimum of E around a given axis is obtained in only one 
step from the conditions 

sin 0 = G/(G 2 + H2) 1/2, 
(11) 

cos 0 = H/(G 2 + HE) u2' 

E '  -- E = H -- (G 2 + H2) 1/2 _< 0. (12) 

The normal method of steepest descents reduces E iteratively 
in a series of rotations which are about axes parallel to the 
couples g at the start of each cycle. The process converges 
slowly. The standard conjugate gradients procedure (Walsh, 
1975) chooses the successive rotation axes to be 'conjugate 
directions' in the space of three-dimensional rotations and 
should ideally reach the minimum in just three steps. This 
would be true if E were a strictly quadratic function and if 
finite rotations could be treated as vector displacements in a 
suitable three-dimensional axis space. 
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The conjugate axes are chosen by taking each vector 1 
parallel to a path vector s for the step. In the first step the 
rotation is about the axis of steepest descent, defined by the 
couple g: 

sl = gr (13) 
Later paths each depend on the previous path and couple 
according to the relation 

Sp+l : gp+l + (g2+ jg2) sv" (14) 

After each group of three successive paths the axis is once 
again chosen parallel to the path of steepest descent. The 
process terminates when the couple vanishes or the last angle 
of rotation falls below a set value. 

In practice E is not a simple quadratic function. 
Furthermore, although infinitesimal rotations commute and 
form a vector space, finite rotations do not. There are 
however two good reasons for expecting that conjugate 
gradients should yield a rapidly converging solution in spite 
of these difficulties. The first is that every finite rotation 
applied, according to (11), leads to the exact minimum of E 
about that axis in just one step. The second is that when the 
orientation is close to the correct solution E does become a 
well-behaved quadratic function of the small rotation angles, 
and the concept of conjugate axes becomes a very good 
approximation. 

Tests with typical sets of atomic coordinates show that 
five to eight iterations are usually sufficient to reduce the last 
rotation below 10 -~° rad. Given the original U matrix, the 
calculation of R takes only 0.0032 s and 32 K bytes of store 
on an IBM 370/165. This is about one-third of the time taken 
by the previous method (McLachlan, 1979). A version of 
Kabsch's method, programmed by Dr Arthur Lesk, took 
0.0050 s for the same task. 

I thank Dr Lesk for his constructive suggestions and 
criticism. 
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Abstract 

Foster & Hargreaves [Acta Cryst. (1963), 16, 1127], in 
discussing partial mixed moments of structure amplitudes, 
remark in passing 'For the triclinic, monoclinic and ortho- 
rhombic space groups the partial moments mpq are zero when 
either p or q is odd, but for higher symmetries non-zero 
moments exist for p odd and q even'; the remark is repeated 
without comment by Srinivasan & Parthasarathy [Some 
Statistical Applications in X-ray Crystallography (1976). 
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Oxford: Pergamon Press]. Shmueli & Wilson failed to find 
any such non-zero moments among the general reflexions for 
any space group, and the problem has therefore been 
re-examined. Non-zero odd mixed moments are often found 
to occur in the plane groups with threefold or sixfold rotors, 
and hence in the hkO, but not the hkl, reflexions in space 
groups with trigonal or hexagonal symmetry. Details will be 
given in a forthcoming paper by Shmueli & Kaldor. 

All information is given in the Abstract. 
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