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Abstract

RNA editing is a class of post-transcriptional processing which contributes to the organism complexity. C-to-U RNA editing is com-
monly observed in higher plant mitochondria. The in vivo mechanism of recognizing C-to-U RNA editing sites is still unknown. In recent
years, many efforts have been made to computationally predict C-to-U RNA editing sites. But all existing methods require using knowl-
edge other than an RNA sequence. In the present work, we propose the first method for predicting C-to-U RNA editing sites using only
nucleotide sequence features. This method was developed based on the SVM algorithm combined with a triplet scoring model. Our
method can achieve 84% overall accuracy which is comparable to other methods. We also computationally found that several triplets
never appear upstream near an edited cytidine, indicating that these triplets may protect a cytidine from being edited. This discovery

suggests the need for further experimental research and may be helpful in understanding the editing site recognition mechanism.

© 2007 Elsevier Inc. All rights reserved.
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Transcription is an important step in central dogma.
DNA is transcribed into messenger RNA in this process.
For most cases, mRNA has the same sequence as the
DNA template. However, there are some organisms that
can edit their mRNA sequences by inserting, deleting or
substituting single or multi-nucleotides of the mRNA [1].
RNA editing is recognized as a class of post-transcriptional
processing (like polyadenylation, 5’ capping and splicing)
which increases the organism complexity [2]. The mecha-
nism of RNA editing in some organisms is clear, but it
remains largely unknown for others [3,4]. The first
observed RNA editing event was C insertion in trypano-
some mitochondria [5]. From then on, many types of
RNA editing events have been discovered in various species
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[6-8]. C-to-U and A-to-I are two main types of substitution
RNA editing. C-to-U RNA editing events are mostly
reported in higher plant mitochondria and chloroplasts
[9-12]. A-to-I RNA editing events are commonly found
in animals [13-17].

C-to-U RNA editing is considered as a deamination
process in which a cytidine at a specific site is converted
to a uridine [3,18-20]. Since most of the known C-to-U
RNA editing events are found within coding regions [21-
23], the knowledge of C-to-U RNA editing focuses on its
effect on the protein product of an edited gene. C-to-U
RNA editing events prefer to appear at the second codon
position and make the coded amino acid more hydropho-
bic [21]. The protein which is translated from edited
mRNA is more conserved across species than the protein
sequence predicted from genomic DNA [24-26].

The in vivo recognition mechanism of C-to-U RNA edit-
ing sites remains largely unknown. Computationally identi-
fying C-to-U RNA editing sites is still an open problem.
Well-designed algorithms for predicting C-to-U RNA
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editing site not only provide powerful tools for discovering
new RNA editing events, but also give helpful suggestions
for experimental research to understand its site recognition
mechanism. Thus, in recent years, many efforts have been
made to computationally predict C-to-U RNA editing
sites. Cummings and Myers proposed the first ab initio
method to predict C-to-U RNA editing sites by a using
classification tree and random forest method [27]. PREP-
Mt used the homologous alignment of protein sequences
[28] to identify non-synonymous editing events. REGAL
introduced the second ab initio method based on the
genetic algorithm [29,30]. To make an accurate enough pre-
diction, however, all these methods require information
other than an RNA sequence, such as the codon position
of the cytidine or the homology gene name of the RNA
sequence. Because C-to-U RNA editing events do exist in
non-coding regions, like tRNA genes, UTRs and introns
(though the number is much less than that in coding
regions [21,28]), it is likely that the codon position is not
involved in the in vivo editing site recognition.

On the other hand, several short sequences which are
critical for efficiently editing some cytidines have been iden-
tified experimentally in their upstream and downstream
regions [31-33]. Some computational evidence shows that
the inferred secondary structure of the transcript is not
involved in recognizing the C-to-U RNA editing sites
[18,29], while others show the opposite [27]. With the above
knowledge, we could hypothesize that the flanking
sequence of a cytidine is necessary and sufficient to deter-
mine whether it should be edited.

In this paper, we develop an algorithm to predict C-to-U
RNA editing sites accurately based only on the flanking
sequence of a cytidine. Our method can achieve 84% over-
all accuracy which is comparable to other methods. By
analyzing the algorithm, we find that a group of triplets
may be able to protect a cytidine from being edited. We
hope that our method is a useful complement to those
existing methods and may suggest further experimental
research.

Materials and methods

Data collection. EARNA [34], dbRES [35], and REDIdb [36] are three
recently published RNA editing databases focusing on different aspects of
RNA editing. In this study, we constructed our dataset from GenBank
and our database dbRES which is a collection of all types of experimen-
tally validated RNA editing events. Three complete mitochondria genome
sequences were obtained from GenBank database. They are the mito-
chondria genomes of Arabidopsis thaliana (GenBank Accession No.
Y08501), Brassica napus (GenBank Accession No. AP006444) and Oryza
sativa (GenBank Accession No. BA000029). All GenBank annotations
related with C-to-U RNA editing of these three mitochondria genomes
were extracted to build a working set. The RNA editing events in this
working set were then mapped to the correct strand of genome sequence.
The obviously incorrect editing events annotations (like the editing site is
A) were excluded. The editing events which are not shared by GenBank
and dbRES were also excluded because they lack of experimental
evidence. Finally, we constructed a working dataset containing 454 C-to-
U RNA editing sites from A. thaliana, 416 sites from B. napus and 445 sites
from O. sativa.

After collecting all these editing sites, we adopted the strategy which
had been used by both REGAL [29] and the classification tree based
method [27] to construct a null observation set as negative samples for
training our predictor. Since our algorithm did not concern the codon
position of a cytidine, we simply randomly selected an equal number of
cytidines without any type of RNA editing annotation from the coding
regions for each genome. The data statistic of our working set is shown in
Table 1 with a comparison to the training sets of other methods.

Feature extraction. It has been proven that there are some short
sequences which are critical for efficient editing in the upstream and
downstream region of an edited cytidine. The locations of these short
sequences can vary in a long range [31-33,37]. By considering that
several consecutive editing sites may share such cis-elements [38,39], the
flanking sequence of a cytidine in a long range may have effect on its
efficient editing. On the other hand, a highly non-random nucleotide
distribution has been observed in the immediate proximity of edited
sites [21]. So we need to construct a set of sequence features which can
represent the information from the long flanking sequence and the
critical two or three nucleotides in the immediate proximity of the
editing site.

The sequence features used in this study contained two parts. One was
the triplet composition of the long range flanking sequence of a cytidine;
the other was two triplets at position —3 to —1 and +1 to +3 of a cytidine
(the cytidine position was 0).

The triplet composition was calculated in this way. First, the flanking
sequence from —N to +N nt of a cytidine was extracted from genome
sequence. It was easy to define 2N — 1 triplets in this 2N + 1 nt long
sequence. Suppose the numbers of 64 different types of triplet were
t1,ta,. .., tes, the triplet composition can be denoted as a 64 dimension
vector in Eq. (1). To get an optimized result, we chose N = 250 for cal-
culating triplet composition. The reason why we chose N =250 is
explained in the Supplementary material.
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Algorithm design. We combined two machine learning algorithms in
this study. One was SVM; the other was the triplet scoring model.

SVM is a machine learning algorithm based on Statistical Learning
Theory which was introduced by Vapnik [40]. It searches for an optimal
separating hyper plane which maximizes the margin in feature space. SVM
is designed to solve the binary classification problem. We used SVM with
RBF kernel function to classify the 64 dimension triplet composition
vectors in this study (SVM software is libSVM [41]).

The triplet scoring model is an extended version of the commonly used
positional weighted matrix model. It was used to score two triplets which
were defined in the Feature extraction section.

The triplet scoring model was defined as the following. The frequencies
of 64 different triplets at position —3 to —1 and +1 to +3 were estimated
for edited and non-edited sites respectively on the training set. Suppose the
frequencies of triplets at position —3 to —1 and +1 to +3 of edited cyti-
dines were P, (i), 1 <i< 64 and Py(i), 1 <i< 64, and the frequencies of
triplets at position —3 to —1 and +1 to +3 of non-edited cytidines were
Pp(i), 1 <i<64and Pyi), | <i<64. If a test sample had the ith triplet

Table 1

Data set distribution and comparison

Species Our method REGAL Tree based PREP-Mt
A. thaliana 454 344 444 433

B. napus 416 397 422 417

O. sativa 445 419 481 485
Over all 1315 1160 1347 1335

The number in the table shows the amount of edited cytidines of each
genome.
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at position —3 to —1 and the jth triplet at position +1 to +3, the triplet
score was defined in the following equation:

Py(i) Py ()
Py (i) Pa())

In order to combine the results of the two algorithms, we used a
two hierarchy structure to fuse the prediction results of SVM and the
score of triplet scoring model. The flowchart of the full algorithm is
shown in Fig. 1.

The first step was to use SVM to classify the 64 dimension triplet
composition. According to the prediction result made by SVM, different
processing strategies were used. If the prediction result of SVM was
positive and the triplet scoring model gave a score lower than the negative
acceptance cutoff, the prediction result made by SVM was reversed to
make it negative. Similarly, if the prediction result of SVM was negative
and the triplet scoring model gave a score higher than the positive
acceptance cutoff, the SVM prediction result was changed to positive. If
neither of the above two conditions was true, the prediction result of SVM
was considered as the final result.

After scanning the positive acceptance cutoff value from +2.0 to +1.0
with 0.1 step length and the negative acceptance cutoff value from —2.0 to

+In

i = In

)

—1.0 with 0.1 step length, we finally set them to +1.9 and —1.2, respec-
tively, to get an optimized result.

Evaluation methods. We used leave-one-out cross validation to estimate
the performance of our algorithm on each of the three mitochondria
genomes respectively. We employed sensitivity, specificity, accuracy and
positive predictive value (PPV) which were commonly used in evaluating
the performance of C-to-U RNA editing predictors [27-30] to describe the
performance of our method. These statistics are defined in Egs. (3)—(6).

Sensitivity = TP];% (3)

Specificity = TNTifFP (4)

Aceuracy = 35+ %I\)J :;1:-"- FN )
TP

PPV =T Fp ©

TP, TN, FP, and FN in these formulas denote the number of true
positives, true negatives, false positives, and false negatives.

Sequence
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Fig. 1. Flowchart of the full algorithm. The first step is to use SVM to classify the 64 dimension triplet composition vectors. And then the prediction result
made by SVM will be adjusted according to the output of triplet scoring model. The input of the triplet scoring model is two triplets in the immediate

proximity of a cytidine.
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Results
Algorithm performance

The performance detail is shown in Table 2. We can see
that the prediction accuracy of the algorithm is about 85%,
which shows it to be effective. Because of the leave-one-out
cross validation method we used, the possibility of over-fit-
ting can be eliminated.

Comparison with other methods

We compared the performance of our algorithm with all
the other three methods. First, we compared our method
with the classification tree method and random forest
method. The comparison result is shown in Table 3.

As shown in Table 3, the accuracy of our method is
much higher than either of the other two methods. The sen-
sitivity of our method is also much higher than either of the
other two methods, but the specificity is lower than classi-
fication tree method.

The comparison with REGAL method was based on its
overall performance [30]. The comparison result is shown
in Table 4. The performance of our method is higher than
REGAL except the sensitivity estimated on B. napus mito-
chondria genome.

The comparison between PREP-Mt and our method
cannot be carried out directly, because the training set of
PREP-Mt was not a balanced training set [29]. We employ
the comparison method and performance data which were
reported while REGAL was compared to PREP-Mt [29].
The comparison result is shown in Table 5. The difference
of the performance between our method and PREP-Mt is
not significant. The sensitivity of our method is a little
higher than PREP-Mt, while the positive predictive value

Table 2

Estimated performance of the algorithm in this paper

Species Sensitivity Specificity Accuracy PPV
A. thaliana 0.86 0.85 0.85 0.85
B. napus 0.81 0.89 0.85 0.88
O. sativa 0.82 0.85 0.83 0.85
Over all 0.83 0.86 0.84 0.86

The performance in this table is estimated using leave-one-out cross
validation.

Table 4
Comparison with REGAL
Species REGAL Our method

Sn. Sp. Acc. Sn. Sp. Acc.
A. thaliana 0.81 0.80 0.81 0.86 0.85 0.85
B. napus 0.83 0.72 0.77 0.81 0.89 0.85
O. sativa 0.79 0.71 0.75 0.82 0.85 0.83
Over all 0.81 0.74 0.77 0.83 0.86 0.84

Sn., stands for sensitivity; Sp., stands for specificity; Acc., stands for
accuracy.

Table 5
Comparison with PREP-Mt
Species PREP-Mt Our method
Sn. PPV Acc. Sn. PPV Acc.

A. thaliana 0.79 0.86 0.82 0.86 0.85 0.85

B. napus 0.87 0.87 0.87 0.81 0.88 0.85
0. sativa 0.81 0.85 0.83 0.82 0.85 0.83
Over all 0.82 0.86 0.84 0.83 0.86 0.84

Sn., stands for sensitivity; PPV, stands for positive predictive value; Acc.,
stands for accuracy.

is a bit lower than PREP-Mt. The estimated over all accu-
racy is the same.

These results show that our method, which is based on
nucleotide sequence features, achieves better performance
than classification tree based methods and REGAL. And
the performance of our method is comparable to PREP-
Mt method which is based on protein sequence homolo-
gous information.

Discussion
The second step is a fine adjustment

The two or three nucleotide in the immediate proximity
of a cytidine is an important feature for discriminating the
edited and non-edited sites. By considering the correlation
between neighbored nucleotides, we use the triplet immedi-
ately near the cytidine as a correction to the result of SVM.
This correction not only increases the algorithm perfor-
mance, but also balances the sensitivity and specificity.
Thus, we call the second step a fine adjustment.

Table 3
Comparison with classification tree/random forest method
Species Random forest Classification tree Our method

Sn. Sp. Acc. Sn. Sp. Acc. Sn. Sp. Acc.
A. thaliana 0.70 0.81 0.74 0.65 0.89 0.71 0.86 0.85 0.85
B. napus 0.73 0.81 0.77 0.63 0.89 0.69 0.81 0.89 0.85
0. sativa 0.72 0.81 0.72 0.64 0.88 0.71 0.82 0.85 0.83
Over all 0.72 0.81 0.74 0.64 0.89 0.70 0.83 0.86 0.84

Sn., stands for sensitivity; Sp., stands for specificity; Acc., stands for accuracy.
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Table 6
Usefulness of the second step of the algorithm

Species The first step Full algorithm

Sn. Sp. Acc. Sn. Sp. Acc.
A. thaliana 0.89 0.76 0.83 0.86 0.85 0.85
B. napus 0.83 0.80 0.82 0.81 0.88 0.85
O. sativa 0.86 0.77 0.81 0.82 0.85 0.83
Over all 0.86 0.78 0.82 0.83 0.86 0.84

Sn., stands for sensitivity; Sp., stands for specificity; Acc., stands for
accuracy.

To perform this fine adjustment, we define a triplet
scoring model (see Feature extraction section). By the
definition of triplet scoring model, if a cytidine gets a
high score from triplet scoring model (higher than posi-
tive acceptance cutoff), there is strong evidence that the
cytidine should be edited. Similarly, if a cytidine gets a
low score (lower than negative acceptance cutoff), there
is strong evidence that the cytidine should be a non-edi-
ted one. With the strong evidence provided by triplet
scoring model, the prediction result of the SVM classifier
should be reversed to get a more reliable and more accu-
rate prediction.

Table 6 shows the comparison of the performance
detail between the first step and the complete algo-
rithm. From the performance data of the first step, it
is obvious that the sensitivity is much higher than the
specificity. This means that the SVM classifier can rec-
ognize positive samples better than negative ones. But
after the second step of the algorithm, the sensitivity
and specificity are much closer. The full algorithm
has similar recognition ability for positives and
negatives.

Further investigation of the second step

Further investigation of the second step shows some
very interesting results. The results of the second step rely
on the frequencies of triplet on —3 to —1 positions and
+1 to +3 positions. In all three training sets, the frequen-
cies of some kinds of triplet on —3 to —1 position of an
edited cytidine are zero. But there are no zeroes observed
in the frequencies of all kinds of triplets on +3 to +1 posi-
tion of an edited cytosine. There are also no zeroes in the
frequencies of the negatives. After hybridizing all three
training set, there are still seven zeroes in the frequencies.
The seven triplets are AUA, GGA, ACA, UGG, CGG,
GCG, and GAG.

This is the first time to report triplets which are impos-
sible to appear on —3 to —1 position of an edited cytidine.
This discovery shows that the triplet upstream near an edi-
ted cytidine is critical for its editing. It should be able to
prove that some kinds of triplets can protect a cytidine
from being edited in vivo if further experimental validation
can be carried out.

Conclusion

In this paper, we develop an algorithm which can pre-
dict C-to-U RNA editing sites directly from nucleotide
sequence. The performance of our algorithm is better than
otherab initio methods [27,29,30], and is comparable to the
homology information based method [28]. The success of
our algorithm suggests that the recognition of C-to-U
RNA editing site may depend only on nucleotide sequence.
We hope that our algorithm will provide a useful comple-
ment to those existing methods. Since the C-to-U RNA
editing site recognition mechanism is still unknown, our
computational discovery could suggest further experimen-
tal research.
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