
.JOURNAL OF ALGORITHMS 13, 2-32 (1992) 

Efficient Pattern Matching with Scaling 

AMIHOOD AMIR" 

College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332-0280 

GAD M. LANDAU+ 

Department of Computer Science, Polytechnic University, 333 Jay Street, 
Brooklyn, New York 11201 

AND 

UZI VISHK~N * 

Institute for Advanced Computer Studies and Department of Electrical Engineering, 
University of Maryland, College Park, Maryland 20742 and 

Department of Computer Science, School of Mathematical Sciences, 
Tel Aviv University, Tel Aviv, Israel 69978 

Received April 17, 1990; revised May 23,199l 

The problem of pattern matching with scaling is defined. The input for the 
two-dimensional version of the problem consists of an n X n “text” matrix and an 
m x m “pattern” matrix. We want to find all occurrences of the pattern in the 
text, scaled to all natural multiples. That is, for every natural number i, 1 I i I 
[n/m] we seek all occurrences of the pattern in the text, where each character of 
the pattern corresponds to an i x i square in the text. This problem is useful for 
some tasks in computer vision. Our main contribution is a linear time algorithm for 
the problem. We also consider situations where the text is provided in a less 
redundant form. For instance, suppose that a repeating character is compressed 
into one character, along with the number of repetitions. We show how to enhance 
our algorithm so that its running time may become sublinear with respect to the 
original redundant input representation. Our algorithms are based on a new 
algorithmic approach to two-dimensional string matching. Unlike existing ap- 
proaches, the new approach does not work by reducing a two-dimensional problem 
into an one-dimensional problem. 0 1992 Academic Press, Inc. 

*Partially supported by NSF Grant IRI-9013055. 
‘Partially supported by NSF Grant CCR-8908286 and the New York State Science and 

Technology Foundation, Center for Advanced Technology in Telecommunications, Polytech- 
nic University, Brooklyn, NY. 

‘Partially supported by NSF Grant CCR-8906949. 

0196-6774/92 $3.00 
Copyright 8 1992 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



PAlTERN MATCHING WITH SCALING 

I. INTRODUCTION 

Elegant and efficient algorithms exist for exact string matching (e.g., 
[W-73, KMP-77, AC-77, BM-77, GS-83, V-85, V-91]), as well as efficient 
extensions to two dimensions [B-77, Ba-781. Considerable attention has 
been given lately to approximate string matching [U-85, LV-89, GP-901. In 
[LV-891 it was shown that all occurrences of a pattern string of length 111 in 
a text string of length n with no more than k errors (mismatches, addition, 
and deletion of characters) can be found in time O(kn). This result was 
extended to two dimensions in [KS-871 and improved by [AL-go]. 

One of the roles of theoretical computer science is to develop an 
algorithmic theory for various application domains. We can go about 
developing such theory by way of abstracting practical algorithmic prob- 
lems to “pure” form. (A single practical problem may lead to several pure 
problems.) This should be followed by designing algorithms for the specific 
pure problem(s). Finally, the knowledge base, consisting of these algo- 
rithms, will be used for composing an algorithm for the original practical 
problem. This paper is a modest part of such treatment. Consider prob- 
lems of searching aerial photographs. The first phase in an abstraction 
into pure problems will be to classify the difficulties that arise into three 
major subclasses: 

l local errors; caused by occlusion and varying level of detail. 
l scaling (or calibration of size); caused by the distance (and to some 

extent, the angle) of the camera. 
l rotation; caused by the orientation of the camera in relation to the 

object. 

In [AL-901 and [KS-871 algorithms for some pure local errors problem 
were given. In the present paper, we tackle a clean (discrete) version of 
scaling. 

We present here an efficient algorithm for finding all scaled occur- 
rences of a given pattern in a text. As an example of a two-dimensional 
scaling problem, consider reading a text with characters of differing sizes 
(e.g., newspapers). 

For didactic reasons, we start with a definition of the one-dimensional 
version of our newly defined scaling problem. A linear time algorithm for 
this problem was easily derived from the known linear time algorithms for 
the exact string matching problem. Encouraged by this success we tried to 
extend known algorithms for two-dimensional exact string matching to our 
two-dimensional problem (i.e., two-dimensional string matching with scal- 
ing). Unfortunately, standard techniques failed to offer efficient results. 
So, we had to develop an approach that is different from known two- 



4 AMIR, LANDAU, AND VISHKIN 

dimensional algorithms (e.g., [B-77, Ba-781). Recall that these algorithms 
work by reducing the two-dimensional input arrays into one-dimensional 
strings and then applying one-dimensional techniques. Interestingly, our 
approach is inherently two-dimensional since it adheres to the two-dimen- 
sional structure of the problem. Suggesting algorithmic techniques for 
coping with the two-dimensionalmatching problem with scaling is the 
primary concern of the present paper. An offspring of our research is a 
“sublinear” time algorithm; i.e., one whose complexity is, in some sense, a 
function of the number of blocks of repeating symbols in the images, 
rather than the number of symbols (pixels). 

String Matching with Scaling 

We define one- and two-dimensional versions of our problem. The 
string aa * - * a, where the symbol a is repeated k times (to be denoted 
ak), is referred to as scaling of the singleton string a by multiplicative factor 
k, or simply as a scaled to k. Similarly, consider a string A = a, * * * ~1~. A 
scaled to k (Ak) is the string a:, . . . , L$. 

The problem of one-dimensional string matching with scaling. Input: 
Pattern P = p, * a. pm and text T = t, . . . t,, where n > m. Output: All 
positions in T, where an occurrence of P scaled to k starts, for any 
k = 1,. . . , In/m]. 

A simple linear time algorithm in Eilam-Tzoreff and Vishkin [EV-881 
can be adapted for the one-dimensional problem. Under some reasonable 
assumptions this algorithm runs in sublinear (i.e., o(n + m)) time). Specif- 
ically, if P = x:1, . . . , ~fkf and T = y 2, . . . , yk then the algorithm runs in 
O(f + g) time for inputs that are given in this compressed representation. 
This compressed representation together with the sublinearity result pre- 
sents a challenging question for the two-dimensional problem that is not 
fully resolved in the present paper. It is not clear how to define an 
analogous compression for the two-dimensional problem, or whether a 
unique definition of compression even exists. Section 3 copes with this 
issue. 

Let P[m X ml = (Pi,j)i= 1,.. .,m;j=l, _, ,,m be a two-dimensional matrix 
over a finite alphabet C. Then P scaled to k (Pk> is the km x km matrix 
where every symbol P[i, j] of P is replaced by a k x k matrix whose 
elements all equal the symbol in P[i, j]. More precisely, 

Pk[i, j] = P i , i [I ‘1 i -11 . 

For an example, see Fig. 1. 



PA’lTERN MATCHING WITH SCALING 

000000 
000000 

p’ro 0 I I 0 0 
OorIoo 
000000 

000 
P=O IO 

000 

000000 

FIGURE 1 

The problem of two-dimensional pattern matching with scaling. Input: 
Pattern matrix P[i, jl, i = 1, . . . m; j = 1, . . . , m and text matrix T[i, j], 
i=l ,***, n; j =‘I,..., It, where n > m. Output: All locations in T, where 
occurrence of P scaled to k (a k-occurrence) starts, for any k = 
1 3 * * . , b/ml. 

We defined the scaled matching problem on square texts and patterns 
for the sake of simplicity only. AI1 our results are also true for rectangular 
texts and patterns. A more interesting generalization is of rectangular 
scaling, where every character is replaced by a rectangle of size i x j with 
i being the row scale and j being the column scale. Our techniques allow 
for finding all rectangular scale occurrences of the pattern with just a 
polylog slowdown compared to the square scales. It will be interesting to 
find out whether rectangular scaling can also be detected in linear time. 

Bird and, independently, Baker [B-77, Ba-781 showed that all exact 
matches of two-dimensional pattern P in text T can be found in time 
O(n*) (linear in the size of the text) when the size of the alphabet is fixed. 
Using Bird’s algorithm separately for each scale k = 1, . . . , in/m], the 
two-dimensional pattern matching with scaling problem can be solved in 
time O(n3/m>. Our main contribution in the present paper is a linear time 
algorithm for this problem. 

From a remote enough perspective our algorithmic design strategy can 
be viewed as realizing the following (very vague) approach: For each scale 
k, try to select only a fraction of l/k among the n columns and seek 
k-occurrences only in these columns. Since each selected column inter- 
sects n rows, this leads to consideration of O(n*/k) elements. Summing 
over all scales, we get O(n2> multiplied by the harmonic sum CrL’=/;“(l/i), 
whose limit is log(n/m) making the total number of elements scanned 
O(n2 logQz/m)). In all our algorithms, time bounds are proportional to 
the total number of elements scanned. So this approach had to be 
enhanced in order to obtain a linear time algorithm. A final intuitive step 
was to select also a l/k fraction of the rows, Since Cr/‘=/,“(l/i*) is bounded 
by a constant, the number of elements decreases now to 

O\n2~I ;-) = O(n”). 



6 AMIR, LANDAU, AND VISHKIN 

We consider situations where the text is provided in a less redundant 
form. For instance, suppose that a repeating character is compressed into 
one character, along with the number of repetitions. We show how to 
enhance our algorithm so that its running time may become sublinear with 
respect to the original redundant input representation. Sublinearity is a 
difficult concept, with different meanings depending on the context. There 
are a few works, in the literature, whose concern is to show that some 
string matching algorithms run in sublinear time under some assumptions 
about the source of the input. It is easy to justify such concern on practical 
grounds. To the best of our knowledge, however, theory has not yet 
developed a widely agreeable concept of how a “typical” input looks like. 
l7ze nature of our scaling problem suggests the concept of sublinearity that we 
adopted. A scaled occurrence in the text implies blocks of repeating 
symbols. The number of such repeating blocks is less than the total 
number of symbols. Exploiting these blocks in a way that the entire text 
need not be scanned is the source of sublinear processing time that we 
have in mind. We caution that even a “natural” definition of a repeating 
block is not clear. We present here an initial attempt to grapple with this 
problem. 

The paper is organized as follows. In Section 2, we present an easy and 
elegant solution to the one-dimensional version of the scaled matching 
problem. In an attempt to give a self-contained presentation, Section 2 
also summarizes some known techniques that are used in the paper; 
Section 2.2 reviews suffix trees and lowest common ancestors in trees. 
Section 2.3 reviews range minimum queries, the all-nearest smaller value 
problem, and Cartesian trees. In Section 3, we consider a relatively simple 
problem for warm-up. The problem is that of finding the exact match of a 
two-dimensional m X m pattern in a two-dimensional n X n text when 
they are given in a compressed form. We present a new algorithm whose 
running time is linear in a naive compressed form (rather than the U(n2) 
time Baker-Bird algorithm). Armed with the notions and techniques of 
Section 3, we produce a linear-time (O(n2)) algorithm for scaled two- 
dimensional matching in Section 4. Finally, in Section 5, we show that our 
algorithm actually achieves sublinear time utilizing the compressed form 
of the input. 

2. PRELIMINARIES 

2.1. Scaled Matching: l%e One-Dimensional Case 

Recall the one-dimensional version of the scaled matching problem. 
Input: Pattern P = pi * * * pm and text T = t, . * . t,, where n > m. Out- 
put: All positions in T, where an occurrence of P scaled to k starts, for 



PAlTERN MATCHING WITH SCALING 7 

any k = 1,. . . , [n/m]. The natural source of sublinearity in scaled string 
matching is compression of repeating symbols in the pattern and the text. 

DEFINITION 1. Let S = a,az * . * a, be a string over some alphabet 2. 
The factorized representation of string S is the string S’ = u;“u~” . * * uLrA 
such that: (1) ai # ui+r for 1 5 i < A; and (2) S can be described as 
concatenation of the symbol u; repeated rl times, the symbol a; repeated 
r2 times,. . . , and the symbol ui repeated r, times. 

We denote by Sx = u;u; * * * ai, the symbol part of S, and by Sx, the 
vector of natural numbers rl, r2,. . . , rfi, the exponent part of S. 

EXAMPLE 1. For S = AAABABBCCACAAAA, S’ = A3B1A’B2C2 
A’C1A4, S” = ABABCACA, and Sx = [3,1,1,2,2,1,1,4]. 

2.1.1. Algorithm for the One-Dimensional Scaled Matching Problem 

Step 1. Derive the symbol string TX and the exponent string TX 
(= tl,. . .) tA) from the text string T. Similarly, derive P” and Px 
(=p 1,. . . , pA) from the pattern string P. 

Observation 1. Finding all occurrences of P in T scaled to k is 
equivalent to finding all locations i that satisfy conditions A and B below: 

Condition A. There is an exact occurrence of P’ in location i of T’. 

Condition B.l. ti 2 kp,. 

Condition B.2. ti+l = kp2,. . . , ti+m-2 = kpAel. 

Condition B.3. ti+m-l 2 kp,. 

Step 2. Suppose riz 2 3. Derive the quotient string T’ = t,/t,, 
t,/t,, . . . , tA/tirel from TX and the quotient string P’ = p3/p2, 
P4/P3, * * * 7 P~-~/P+~ from P’. 

Observation 2. Suppose r? 2 3. Condition B.2 from Observation 1 is 
satisfied for k = t2/p2 if and only if an occurrence of string P’ starts at 
location i + 1 of string T’. 

Step 3.1. Find all occurrences of string P? in the string T’ and all 
occurrences of the string P’ in the string T’. This is done by applying any 
linear time string matching algorithm. 

Step 3.2. For each location i in TX, such that Pz starts at i and P’ 
starts at location i + 1 of T’, check whether Conditions B.l and B.3 
extend to locations i and i + P% - 1 in T’. This will take O(1) time per 
location i . 

Comments. (1) Extension to the case where fi < 3 within the same 
complexity bound as claimed below is trivial. (2) Step 2 and Observation 2 
follow Eilam-Tzoreff and Vishkin [EV-881. 



8 AMIR, LANDAU, AND VISHKIN 

Time. Step 1 needs O((PI + ITI) time. All other steps need O(IP’l + 
ITsI) time. If the input is already provided in the factorized form, then the 
running time of the algorithm will be linear in the length of the input, and 
possibly sublinear in IPI + I Tl. 

2.2. Longest Common Prefix of Two Suffiwes 

Given a string C = ci, . . . , cI we would like to preprocess it so that the 
following query can be processed in constant time. Longest common prefi 
(LCP) query. Given two suffixes find their longest common prefix. Namely, 
given a suffix Ci = ci, . . . , cl, and another suffix Cj = cj, . . . , c,, we want to 
find the largest f such that ci, . . . , c~+~ = cj, . . . , c~+~. Following [LV-891, 
we will do the following: 

(1) Construct the classic suffix tree data-structure for string C. It 
turns out that any such LCP query can be presented as a lowest common 
ancestor query with respect to the suffix tree. So, 

(2) Preprocess the tree so that queries requesting the lowest common 
ancestor of two nodes in the tree can be processed in constant time. 

In the rest of Section 2.2, we elaborate on these two steps and explain 
how to perform them in linear time. Any LCP query will then be pro- 
cessed in constant time. 

2.2.1. Suf@ Tree 

PROBLEM DEFINITION. Let C = c r, . . . , cl be a string, where cl = $ and 
the symbol $ does not appear elsewhere in the string C. We define the 
suffrx: tree of C as follows: 

(1) It is a tree in which all the edges of the tree are directed away 
from the root. The out-degree of each node of the tree is either zero (if 
the node is a leaf) or 2 2. 

(2) Leaves of the suffir tree. Each suffix Ci = ci, . . . , c, of the string 
C defines a leaf of the tree. (The tree has 1 leaves.) 

(3) Internal nodes of the suj$x tree. Let Ci and Cj be any two suffixes. 
Suppose ci, . . . , c~+~ is their longest common prefix. That is, ci, . . . , c~+~ 
equals to Cj, . . . , Cj+f and Ci+f+l # cj+f+i. Then, ci,. . . , ci+f defines an 
internal node (i.e., a node that is not a leaf) of the tree. 

(4) Edges of the suffir tree. Let D be a contiguous substring of the 
string C. Let B be a proper prefix of D. Suppose also that both D and B 
define nodes of the tree. Then there is an edge connecting the nodes of D 
and B if there is no contiguous substring F of the string C such that the 



PATTERN MATCHING WITH SCALING 9 

following three conditions hold at once: F is a proper prefix of D, B is a 
proper prefix of F, and F defines a node of the tree. 

Implementation Remark. For each node u of the tree, a contig- 
uous substring ci, . . . , c~+~ that defines it will be stored as follows: 
START(V) := i and LENGTH(V) := f. 

Weiner [W-73] (and McCreight [MC-761) compute the suffix tree in O(n) 
time when the size of the alphabet is fixed. If the alphabet of the pattern 
contains x letters then it is easy to adapt the algorithm of [W-73] to run in 
time O(n log x). 

2.2.2. Lowest Common Ancestor 

Recall that our goal is to find the largest f for which ci, . . . , c~+~ = 
cj, . . . , c~+~. Let LCA, j be the lowest common ancestor (in short LCA) of 
the leaves of the suffixes ci, . . . , c, and cj,. . . , c, in the suffix tree. The 
desired f is simply LENGTH(LCA,, j). Thus, the problem of finding this f 
is reduced to finding LCA,,j. We use the algorithm of [HT-841 (or the 
simpler algorithm of [SV-881) for the purpose of computing LCAs in the 
suffix tree, whenever we need to find such an f throughout the algorithms. 

Using the classification of [HT-841 we are interested in the static lowest 
common ancestors problem; where the tree is static, but queries for lowest 
common ancestors of pair of vertices are given on line. That is, each query 
must be answered before the next one is known. The suffix tree has O(n) 
nodes. The algorithm of D-IT-841 (or [SV-881) preprocesses the suffix tree 
in O(n) time. Then, given an LCA query it responds in O(1) time. 

2.3. Range Minimum, All-Nearest Smaller Values, 
and Cartesian Trees 

Let L = [II,. . .) l,] be an array of n numbers. All three definitions 
below relate to this array: 

A range minimum query is of the form: 

Givenarangeofindices[i,...,j],wherel li <j<n, 

return an index k, i I k I j, such that 1, = min{l,, . . . , lj}. 

The all-nearest smaller value (ANSV) problem is of the form: For 
every i, 1 I i 5 n, find the largest index 1 < i for which 1, < li, if such 
index exists, and the smallest index s > i for which 1, < li, if such index 
exits. 



10 AMIR, LANDAU, AND VISHKIN 

A Cartesian tree of L is a rooted binary tree defined recursively as 
follows: Let I,,, = min(l,, . . . , I,} (if min(l,, . . . ,1,1 is obtained at more 
than one index then root is the minimum such index). Then, 

1 root is the root of the Cartesian tree 
the left child of the root is the Cartesian tree of [I,, . . . , &,t-1l 
the right child of the root is the Cartesian tree of [Iroo[+,, . . . ,1,1. 

In [GBT-841 it was shown that, following a linear time preprocessing of 
L, each range minimum query can be processed in O(1) time and that the 
Cartesian tree of L can be constructed in time O(n) quite easily, using 
range minimum queries. We will be using this idea in Algorithms B a#& C 
for slightly modified Cartesian trees. In [BBGSV-881, it was shown how to 
use the output of an ANSV computation for constructing a Cartesian tree. 
The idea is that the parent of node i in the Cartesian tree, for each 
1 5 i I n, is the larger among its left and right nearest smaller neighbors. 
If one (left or right) of the nearest neighbors does not exist, then the 
parent is the existing node. If both left and right neighbors do not exist 
then node i is the root of the Cartesian tree. Relations among the lowest 
common ancestor, range minima, Cartesian tree, and ANSV problems in 
the context of parallel computation are discussed in [BSV-88, BV-891. 

3. TWO-DIMENSIONAL SUBLINEAR MATCHING 

Our main contribution is Algorithm C for the two-dimensional scaled 
matching problem. It is given in the next section. Algorithms A and B 
below gradually prepare the reader for the presentation of Algorithm C. 
They are both designed for a simpler problem: the exact two-dimensional 
matching problem with a finite alphabet. Algorithm A runs in time O(n2>. 
This very simple algorithm provides a framework that guides our more 
advanced algorithms. Algorithm B is a sublinear algorithm for the same 
problem. All our algorithms will assume a finite alphabet. For general 
alphabet, the time complexity is multiplied by log m. We note that the 
exact two-dimensional algorithms of [Ba-78, B-771 also become O(n* log m> 
for the general alphabet. 

3.1. The First Algotithm 

Algorithm A has three steps. The first step (Step A.11 is similar to 
Section 2.2. We construct data structures, based on the pattern matrix P 
and the text matrix T, that support O(1) time retrieval of longest common 
prefix queries. The second and third steps are similar to many string 
matching algorithms. In Step A.2, we build a table based on analysis of the 



PA’ITERN MATCHING WITH SCALING 11 

pattern. In the final step (Step A.31 we scan the text based on the table of 
Step A.2 and find all the occurrences of the pattern in the text. During 
Steps A.2 and A.3 several kinds of queries arise. Each of these queries is 
answered in O(1) time using the data structures constructed in Step A.l. 
In order to motivate the presentation we present the steps of the algo- 
rithm in reverse order. We start with Step A.3. This motivates Step A.2. 
Queries that may arise in these two steps motivate Step A.l. Incidentally, 
this line of presentation offers a top down description of Algorithm A. 

ALGORITHM A. 
Z~ZX&: n x n text matrix T and m x m pattern matrix P. 

A.3. Text Analysis 

Scan each column j of T separately, as if it was a one-dimensional 
string. The scan is done in a similar way to the classical string matching 
algorithm of [KMP-771 with one major modification regarding compari- 
son of elements of the pattern and the text: The symbol in position 
[i, j] is taken to be the whole row of length m, T[i, j]T[i, 
j + l] 0.. T[i, j + m - 11, and it will be compared to a full row of the 
pattern. Routine COMPARE, given later, actually performs such compar- 
isons. We will assume familiarity with the KMP algorithm and especially 
the concept of a failure array. Specifically, 

Input for Step A.3. The data structure built for P and T, the pattern 
and the text matrices, in Step A.l; FAIL, the array of failure links that is 
set up in Step A.2. 

Output: All indices of T where a copy of P begins. 

var 
j, i, 1: index 
{j indexes text columns; i indexes text rows; 
1 indexes the pattern rows and FAIL array.] 

for column j := 1 to n - m + 1 do 
i := 1; 1 := 1 
While i I n do 

if COMPARE(T[i; j, j + 1,. . . , j + m - 11, P[l; 1,. . . , ml) 
then i := i + 1; 1 := 1 + 1 

ifl=m+l 
then Output: there is a match at [i - m, jl; 

1 := FAIL(l) 
else 1 := FAILU) 

end {while] 
end {for] 

Routine COMPARE(T[i; j, j + 1,. . . , j + m - 11, P[l; 1,. . . , ml) 



12 AMIR, LANDAU, AND VISHKIN 

A query requesting the comparison 

T[i; j, j + 1,. . . , j + m - l] = ?P[l; l,...,m] 

is answered in O(1) time based on the data structure of Step A.l. 

A.2. Pattern Analysis 

Input for Step A.2. The data structure built for P, the pattern matrix, in 
Step A.l. 

Output. The failure array FAIL for the pattern string PAT = P,, 
pp..., P,, whose symbols are the rows of P, the pattern matrix; specifi- 
cally, Pi = P[i; 1, . . . , 112 I. 

Computation. Apply the pattern analysis step of the KMP algorithm to 
PAT with one adjustment: Comparing two symbols pi = pi translates into 
a query 

P[i; 1,2,. . . , m] = ?P[j;l,...,m]. 

Such a query needs O(1) time based on the data structure of Step A.l. 

A.l. Constructing Data Structures (Same as Section 2.2) 

A.l.l. Form a long string C as follows: Concatenate all rows of T and 
append to them a concatenation of the rows of P. Construct a suffix tree 
ST of C. 

A.1.2. Apply to the tree ST the preprocessing stage of the lowest 
common ancestor algorithm of [HT-84 or SV-881. 

Retrieving queries. The queries that arise in the pattern analysis and text 
analysis (Steps A.2 and A.3) have the following form: Are two contiguous 
substrings of length m, ci, Ci+l . . . ci+,,,-l and Cj, c~+~. . . Cj+,_l, of the long 
string C equal? This translates trivially into the following query: Find 
whether the length of the longest common prefix of the two suffixes ci, ci+ 1, . . . 
and cj, c~+~, . . . in C is larger than m - 1. 

Finally, recall that Section 2.2.2 explains how to process longest com- 
mon prefix queries using lowest common ancestor queries (with respect to 
the tree ST). 

Comment. The reader may wonder why we did not simply replace 
every set of identical rows in the pattern by the same symbol, following 
Step A.l.l. This complication will serve the presentation of our more 
advanced algorithms. 

end Algorithm A 



PATTERN MATCHING WITH SCALING 13 

Time. 

Step Al. The suffix tree can be computed in time O(n2 + m2) 
[W-73]. We also preprocess this tree in time O(n2 + m2) to enable 
processing LCA queries for any pair of nodes in constant time [I-E-84, 
SV-881. 

Step A.2 takes O(m) time. This follows from the linearity of the 
pattern analysis in KMP and the constant time processing of an LCA 
query. 

Step A.3 takes O(n*) time, by [KMP-771, and [HT-841 for the LCA. 

3.2. The Second Algorithm 

We describe now a “sublinear” exact two-dimensional algorithm (Al- 
gorithm B). As indicated in the Introduction, the goal and definitions of 
sublinearity are strongly biased towards presentation of the algorithms for 
the scaled two-dimensional string matching problem. The algorithm will 
achieve sublinear time if the following two ways for compression of the 
input are “sufficiently” effective: 

l Compression of equal successive symbols within each row of the 
pattern and the text. This is similar to the one dimensional case (strings), 
as demonstrated in the preliminaries. 

l Compression of equal successive subrows of the text or the pattern. 
For an illustration, see Fig. 2. 

DEFINITION 2. A submatrix T’ = T[i,, . . . , i,; jl, . . . , jl + m - 11 of T 
is a block in position i, of column jr if all rows of T’ are equal and if no 
row can be added to T’ without disrupting the above condition. 

The efficiency of the algorithm is achieved by grouping the n columns of 
the text into sets of m successive columns each, as follows (1,. . . , m), 
{m + 1,. . . ,2mJ,. . . , {(ln/mj - l>m + 1,. . . ,ln/m]m) (possibly followed 

T 
- - - 

j _---_------ 

i 
i+l 1 
i+2 I 
i+3 I 

I I 
AABBCCC 
AABBCCC I 
AABBCCC 
AABBCCC 
I 

__--------- 

FIGURE 2 



14 Ah4IR, LANDAU, AND VISHKIN 

by a final set of less than m elements {Ln/mlm + 1,. . . , n]). Instead of 
handling each of the columns separately, we combine the effort for 
processing all m columns in a set. The key player in each such set is 
its rightmost column, called power column. (Namely, columns m, 
2m , . . . , in/m]m are the power columns.) 

The components of Algorithm B are similar to Algorithm A. Algorithm 
B has three steps. Step B.l constructs data structures that support con- 
stant time retrieval of longest common prefixes. A key addition is a data 
structure that allows for constructing all blocks of each column in time 
proportional to the actual number of blocks. Step B.2 builds a table based 
on pattern analysis. Step B.3 (the text analysis) will have two substeps. For 
each column, Step B.3.1 will find all its blocks. Finally, Step B.3.2 will scan 
the text by advancing through the blocks of each column. 

ALGORITHM B. 
Input: FT the factorized representation of the text matrix T and FP 

the factorized representation of the pattern matrix P. Both FT and FP 
are given in a factorized representation of the rows. 

B.l. Constructing Data Structures 

B.l.l. Form a long string C as follows. Concatenate all rows of FT and 
append to them all rows of FP. Construct a suffix tree ST of C. 

Implementation Comment. Formally, the characters of a factorized 
representation are ordered pairs of the form (symbol, exponent). For 
instance, a row a3b4c5a2b5 becomes (a, 3X& 4Xc, %a, 2Xb, 5). This means 
introduction of three new symbols, ‘Y”, “I” and ‘0” to help distinguish 
between elements of the pairs. 

B.1.2. Apply to the tree ST the preprocessing stage of a lowest common 
ancestor algorithm. 

The above steps enable retrieval of longest common prefix queries with 
respect to suffixes of C. Step B.3 needs an additional data structure that 
enables retrieval of the following queries: Given a power column c and 
another column j 2 c (alternatively, j < c), find all rows 1 5 i 5 n - 1 
such that rows i and i + 1 differ between columns c and j (alternatively, 
between columns j and c - 1). Formally, T[i; c, . . . , j] # T[i + 1; c, . . . , j] 
(alternatively, T[i; j, j + 1, . . . , c - 11 # T[i + 1; j, j + 1, . . . , c - 11). 

We would like the time to process this query to be proportional to the 
length of the output (that is, the number of such rows i). Steps B.1.3-B.1.4 
construct such a data structure. 

Let [i, c] be a position on a power column c in T. Let B,[i, c] be the 
largest integer k for which the two strings T[i; c, c + 1,. . . , c + k - l] 



PAl-l-E,RN MATCHING WITH SCALING 15 

and T[i + l;c,c + l,..., c + k - 11 are equal. Similarly, let B,[i, c] 
be the largest integer k for which the two strings T[i; c - k, c - 
(k - l),... , c - 11 and T[ i + 1; c - k, c - (k - 11, . . . , c - 11 are equal. 
In other words, B,[i, c] gives the longest common prefix of rows i and 
i + 1 starting at column c and B,[i, c] gives the longest common suffix of 
rows i and i + 1 ending at column c - 1. 

B.1.3. Trace each pair of rows, i and i + 1, in FT, from right to left, 
and whenever a power column c is encountered, set B,[i, cl. 

(The number of operations is proportional to the sum of the factorized 
length of rows i and i + 1 and the number of power columns, [n/m].) 

Similarly, derive B,[i, c] for all power columns c by tracing these rows 
from left to right. 

EXAMPLE 2. Let row i in FT be a3b4c5a2b5 and row i + 1 be 
c2a1b4&c3b’a’b5. Suppose columns 510 and 15 are power columns. The 
figure below illustrates rows i and i + 1 in T, as well as the power 
columns: 

aaabbbbcccccaabbbbb 
I I I 

ccabbbbcacccbabbbbb 

Then B,[i,5] = 4, B,[i, lo] = 3, B,[i, 151 = 5 and &ii,51 = 2, B,[i, 101 = 
0, B,[i, 151 = 1. 

For each power column c, consider the arrays B,[l, . . . , n - 1; c] and 
411, * * * , n - 1; cl. 

B.1.4. For each power column c, construct the Cartesian tree CT,[c] for 
array BJ,. . . , n - 1; cl and another Cartesian tree CT,[c] for array 
q1, * - -, It - 1; cl. 

EXAMPLE 3. An example where m = 10 and it = 36 is given in Fig. 3. 
We relate to power column 10. In the figure we already extracted the 
values of B,[l, . . . , II - l] and B,[ 1, . . . n - 11. The Cartesian tree CT,[lOl 
(whose root is marked by the value 0) is laid on the left side of the power 
cohrmn. The Cartesian tree CT, [lo] (whose root is marked by the value 1) 
is laid on the right side of the power column. 



16 AMIR. LANDAU. AND VISHKIN 

m 

BI 10 B, 

5 

7 

9 

-- 1 

a 
5 
6 

-- 1 

5 

9 

a 
-- 2 

7 
6 

9 

-0 
7 

a 
5 
6 
5 

--3 

7 

9 

a 
--2 

a 
6 

9 
,-2 

5 

6 

a 
9 

7 

10 

5 -’ 

20 

ia 
9 

14 

3-- 

21 
16 

ia 
5 -- 

a 
11 

23 

I5 

a 
10 

17 

ia 
21 

l-- 

15 

9 

23 

17 

3 -’ 

16 

21 

14 

9 

12 

17 

21 

16 

19 

FIGURE 3 

B.2. Pattern Analysis 

Let P,,P, )...) P,,, be the rows of the pattern matrix P and let 
FP,, FP,, . . . , FP,, respectively, be their factorized representation. FP can 
be described as row FP,, repeating rl times (the block at row I,), followed 
by row FP,$# FPI,> repeating r2 times, followed by additional blocks until 
finally we have row FP,J# FP[,_,> repeating ra times; where 1, = 1, 



PATTERN MATCHING WITH SCALING 17 

1, = r1 + * * * + r,- t + 1 and rl + r2 + + * * + r, = m. The above descrip- 
tion is a factorized representation of the sequence FP,, FP,, . . . , FP, 
when viewed as a one-dimensional string R with m symbols. Formally, a 
pair ( FPIk, rk) is a block of rk rows at row I,. 

B.2.1. Compress the string R into its factorized representation, which is 
denoted FR. 

(This will take time proportional to I FP,I + I FP,I + . . * + 1 FP,I.) 
In the remainder of this presentation we assume that (Y > 2. We leave it 

to the interested reader to see why there is a solution within our claimed 
bound for the case (Y I 2. Let FR be the subsequence of FR that starts at 
its second element and ends at the predecessor of the last element. That 
is, I% = W’,2, r2). . .(FPIa-,, r,-,I. 

B.2.2. Compute the failure array FAIL for string #R using the suffix 
tree ST that was constructed in Step B.l (as in Algorithm A). 

B.3. Text Analysis 

We restrict our explanation to columns j = 1, . . . , m and their represen- 
tative power column m only. Other columns and power columns are 
treated similarly. Consider such column j. 

The output of Step B.3.1 is a linked list, denoted Sj, whose elements are 
the blocks of column j. The key observation is that a block at column j 
ends at a row i if and only if at least one of the following two conditions is 
satisfied: (1) B,[i, m] < m - j, or (2) B,[i, m] < j. Recall that each num- 
ber B,[ i, m] defines a node of the Cartesian tree CT,[ m] and each number 
B,[i, m] defines a node of the Cartesian tree CT,[m]. 

B.3.1.1. Get the list of all rows i (in increasing order of i) such that 
B,[i, m] < m - j, from the Cartesian tree CT,[ml. 

B.3.1.2. Get the list of all rows i such that B,[i, m] < j, from the 
Cartesian tree CT,[m]. 

B.3.1.3. Derive list Si by merging the above two lists. 

EXAMPLE 3 (Continued). In Fig. 3 we relate to column j = 6. The rows 
that we obtained in Steps B.3.1.1 and B.3.1.2 are marked. 

Comment. For column j, Step B.3.1 can be implemented in time 
proportional to IS,l, the number of blocks at column j. 

B.3.2. Additional preprocessing. While scanning the text in Step B.3.3 
we compare pattern rows and text substrings. For implementing such 



18 AMIR, LANDAU, AND VISHKIN 

comparisons, some preprocessing is needed. It is described in the context 
of routine COMPARE later. 

B.3.3. Scanning the texf. Scan each column j of T separately, as if it was 
a one-dimensional string. The scan is done in a similar way to Step A.3, 
with a few modifications. Most notable is the fact that instead of advanc- 
ing from a row i to its successive row i + 1 in column j, our advancement 
is guided by the list Sj. Another modification is due to the fact that 
comparisons between pattern and text symbols are now comparisons 
between blocks. 

Step B.3.3.1. Output of Step B.3.3.1. All indices of T where a copy of 
rows PI,. . . P!,-, of P begins. 

var 
j, i, k: index 
{j indexes text columns; i indexes text rows; 
k indexes subindices of $R and FAIL array.} 

for column j := 1 to n - m + 1 do 
i := I, (start of second block in Sj>; k := 2 
While i I n do 

if COMPARE(block at T[i, jl, block at row 1, of P) 
then i := i + rk (start of next block in Sj>; 
k := k + 1 

ifk=cr 
then 

Output: there is a match at [i - (m - I,) + 1, j]; 
k := FAIL(k) 

else k := FAIL(k) 
end {while) 

end {for] 

Step B.3.3.2. For every occurrence of $R, check whether it extends into 
an occurrence of the whole pattern. 

ROUTINE COMPARE. 
Input. (1) Block at T[i, j]. (The algorithm guarantees that row i is in 

the list Sj and the number of rows in the block is succ(i) - i, where succ(i> 
is the successor of row i in Sj.> (2) Block at row 1, of P (represented by 
the pair (FP1,, rk)). 

Output. Determine in O(1) time whether T[i; j, j + 1,. . . , j + m - 11 = 
Pt, and succ(i) - i = rk. 

The main tool in comparing the strings T[i; j, j + 1,. . . , j + m - 11 and 
PI, will be an LCA query with respect to the suffu tree ST. However, 
there is one difficulty. If T[i, j - 11 = T[i, jl, then the symbol in position 



PA-ITERN MATCHING WITH SCALING 19 

[i, jl may not be represented in FT. As a result, the suffix starting at 
T[i, j] will be missing from the suffix tree ST. 

Following the precomputation of Step B.3.2 (see below), we have for 
each such location [i, jl, the smallest j, 2 j for which the suffii starting at 
T[i, j,] appears in ST. So, 

if j, - j equals the first exponent in FP,, 
then find whether the longest common prefix of the following two 
suffixes has at least 
m - (ji - j) characters: 

(a) Tk jl,. . .I 
(b) P,,[jl - j + 1,. . .I 
(Both suffmes must be in ST) 

and verify that T[i, j] = P[l,, 11 

Implementation Remark. The longest common prefix query is imple- 
mented as an LCA query with respect to ST. The answer is in term of 
factorized length and special care is needed for interpretation of inequal- 
ity at the last character of FP,,. 

It remains to specify Step B.3.2. 
B.3.2. Details of additional preprocessing (continued). Lists Sj contain 

all locations [i, j] in the text to which Routine COMPARE has to be 
applied. Note that these lists are actually sorted lexicographically with j 
first and i second. 

B.3.2.1. Sort these locations lexicographically with i first and j second. 
(This is done using bucket sort and results in a separate increasing list for 
each i.) 

B.3.2.2. Scan row i of FT and form an increasing list of all locations 
[i, j] in T for which the suffix T[i; j, . . . ] appears. 

B.3.2.3. For each i, merge the list of step (1) with the list of step (2) and 
thereby derive for each location [i, j] of the first list the smallest ji 2 j 
such that [i, j,] is in the second list. 

end Algorithm B 

Time. Step B.l.l. The length of string C is IFTI + IFPI. It was shown in 
the preliminaries that the suffix tree of string S can be constructed in time 
O(lSl). However, this construction assumes a finite alphabet. In our case, 
the characters of C are pairs (a, r), where u is a symbol from a finite 
alphabet, but 1 I r I m. Note, however, that r is the number of repeti- 
tions of u in the uncompressed representation. The binary representation 
of r has log r I r bits. Let C, be the concatenation of sequences 
t(+,fI,r2,...,rIogr~ ) where ri is the ith bit in the binary representation of 
r, FTb be the part of C, induced by FT and FP, the part of C, induced 
by FP. 



20 AMIR, LANDAU, AND VISHKIN 

Clearly, ICI 5 IC,I = IFpbl + IFT,I I (IPI + ITI). C, is a string over a 
finite alphabet, so the suffix tree for C, can be constructed in time 
O(lCJ). In fact, the suffix tree construction is the only place where an 
unbounded alphabet would be handled differently. For unbounded alpha- 
bet the time bound for Steps B.l.l and B.1.2 becomes O(lC,llog m). 

Step B.l.l. O(lC,l>. 
Step B.1.2. O(lC,l) by [HT-841 or [SV-881. 
Step B.1.3. O(ln2/m] + IFTI + IFPI). 
Step B.1.4. O(]n2/m]) by [GBT-841. 
Step B.2.1. OWPI). 
Step B.2.2. 0(1&l) I O(m) by [KMP-771. 
Step B.3.1. O(C~= i number of blocks in column j) = O<C~,,lSjl). 
Step B.3.2. O<C~=,IS,l + IFTO. 
Step B.3.3. O<C~,,lSjl). 

Total time. 

0 
ii I 

~ +IC,l+ ~lS,l . 
j=l I 

We explain each additive term in the above time bound and argue that 
under appropriate circumstances, the above complexity is sublinear. 1n2/m J 
is less than n2. As mentioned earlier, lC,l I ITI + IPI. For example, if the 
entire text and pattern consist of a single repeating symbol then lC,l = 
(n + m)log n < n2. EISjl is the sum of all blocks in all columns. In the 
above example Z]Sjl = rz < n2. 

4. SCALED MATCHING IN LINEAR TIME 

In this section we consider the two-dimensional scaled matching prob- 
lem. Algorithm C, the main result in the present paper, solves this 
problem in time O(n2). In Section 5 we slightly modify Algorithm C and 
achieve sublinear time under some circumstances. Algorithm C is a 
generalization of Algorithm B. The main changes are in the text analysis 
(Step C.3). An overview of these changes is given as part of presenting this 
step. 

The following definition generalizes the block concept: 

k-blocks. Let k be a positive integer. A k-block at position i, of 
column j, of T is a submatrix T’ = T[i,, . . . , i,; ji, . . . , ji + km - l] that 



PAlTERN MATCHING WITH SCALING 21 

satisfies the following: 
(1) all rows of T’ are equal; 

(2) no rows can be added to T’ without disrupting condition (1) 
above (formally, substring T[i,; jl, . . . , j, + km - 11 is not equal 
to substring T[i, + 1; jr, . . . , jr + km - l] and substring 
T[i,; j,, . . . , jr + km - l] is not equal to substring T[i, - 1; 
jl, . . . , jl + km - 11). 

The height of a submatrix is its number of rows. The height of such 
k-block is i, - i, + 1. If a k-block is contained in a k-occurrence then its 
height must be at least k (because each pattern row must appear k 
successive times). 

ALGORITHM C. 
Znput: FT the factorized representation of the text matrix T and FP 

the factorized representation of the pattern matrix P. 

C. 1. Constructing Data Structures 

C.l.l. Form a long string C as follows. Concatenate all rows of FT and 
append to them the following [n/m] strings: 

1. A concatenation of the rows of FP. 

2. A concatenation of the rows of P, where each row is scaled to 2 
and given in a factorized representation. (These are the rows of FP where 
each exponent is simply doubled.) 

3. For k, 3 5 k I [n/ml, a concatenation of the rows of P, where 
each row is scaled to k, and given in a factorized representation. 

Similar to the time analysis of Step B-1.1, we have to actually compute 
the suffix tree of a string C,, which is composed of FT, followed by 
(FPj’& for all rows j, 1 5 j I m and k, 1 I k I In/ml. The length of 
string C, is equal to 

WA + c c I(F4k)bl 
j=l k=l 

which is o(n2), since 

IFTJ = o(d) 



22 AMIR, LANDAU, AND VISHKIN 

and 

m in/ml b/ml 

C C I(F~k)bl I m C m(logk + 1) I nmlog 
j=l k=l k=l 

Construct a suffix tree ST of C. 

C.1.2. Apply to the tree ST the preprocessing stage of a lowest common 
ancestor algorithm. 

The above step will enable constant time comparison between a text 
substring and a row of Pk for any 1 I k I n/m. 

C.1.3. Construct B,[i,c] and B,[i,c), i = l,.. .,n; c = m,2m,. . ., 
[n/m] as in Step B.1.3. 

In Algorithm B, a Cartesian tree guided the division into blocks. In 
Algorithm C we need to divide into k-blocks for every scale k; 1 I k I 
in/m]. The Cartesian tree has actually more information than we need as 
it enables division into blocks with height < k. Since this is too costly, we 
modify the definition of a Cartesian tree so that blocks with small heights 
are not even considered. 

A k-height Cartesian tree of L is a rooted binary tree defined recursively 
as follows: 

Let 1, = min{l,, . . . , I,} (if min(l,, . . . ,1,} is obtained at more than one 
index then root is the minimum such index). Then, 

1 rWt is the root of the k-height Cartesian tree 
the left child of the root is the k-height Cartesian tree of 

the right child of the root is the k-height Cartesian tree of 
t&,,t+k, : * *, I,]* 

For efficiency reasons we will generate as much of each k-height tree as 
needed during the text analysis, so that the number of operations is 
proportional to the number of nodes that are actually needed in each 
k-height tree. Implementation of this approach needs constant-time re- 
trieval of range minimum queries. For this, we perform the preprocessing 
algorithm of [GBT-841 in Step C.1.4 and use their O(1) time retrieval of 
range minimum queries in the text analysis. 

C.1.4. For each power column c, preprocess B,[i = 1, . . . , n; cl and 
B,[i = 1,. . . , n; cl for range minimum queries. 



PATTERN MATCHING WITH SCALING 23 

Some additional preprocessing is needed. The factorized representa- 
tion easily allows construction of the following arrays. For each power 
column c: 

1. D,[i, c] = the number of successive repetitions of the symbol in 
T[i, cl starting from location [i, c] and to the right. (Formally, T[i, c] = 
T[i, c + l] = . . . = T[i,c + D,[i,c]] # T[i, c + D,[i,c] + 11.1 

2. D,[i, cl = the number of preceding repetitions of the symbol in 
T[i, cl starting from location [i, c] and to the left. 

C.1.5.’ For each power column c, preprocess D,[i = 1,. . . , n; c] and 
D,[i = 1,. . . , n; cl for range minimum queries. 

C.2. Pattern Analysis (Same as B.2) 

C.3. Text Analysis 

An overview of the ideas of Algorithm C is delayed until Case 1.1 below. 
This case captures the main difficulties that we cope with. The other cases 
are needed to show that our algorithm is complete and capable of 
handling any anomaly that may come up. 

Recall that in Step B.2.1 (of Algorithm B) the following assumption was 
made. There are at least two pattern rows i, and i,, where P[i,; 1,. . . , m] 
# P[i, + 1; 1, . . . , m] and P[i,; 1, . . . , m] # P[i, + 1; 1, . . . , m]. This as- 
sumption is not limiting since the scaling problem has an easy solution for 
the excluded case. Furthermore, this easy solution enables us to assume 
also that: At least one row of the pattern has factorized length > 1. If each 
pattern row consists of a single repeating symbol, then we view the pattern 
in column major order (a 90” rotation) and thereby get a pattern with no 
row changes. The aforementioned easy solution will take care of this. We 
consider two cases: 

Case A. In any m/2 consecutive pattern rows there is at least one row 
of factorized length > 1. 

Case B. Otherwise. That is, there are at least m/2 consecutive rows of 
factorized length 1. 

Case A is treated in Algorithm C. Case B is treated in Algorithm S at 
the end of this section. 

C.3.1.1. Getting intervals of candidate scaled occurrences. In order to 
achieve the claimed complexity results we treat each possible scale k 
separately one at a time. Different procedures are being used for scales 
that are smaller or equal than m (Case 1) and scales that are bigger than 
m (Case 2). 



24 AMIR, LANDAU, AND VISHKIN 

Case 1. k I m. Divide the rows of each power column c into TOW 
groups of km/2 successive rows each. (The last one may be smaller.) 

For each group [wi,wJ (where wr is the starting row and w2 is the 
ending row) let rl be the minimum D,[i, cl over all i in [wr, WJ and let i, 
be a row in [wi, w2] for which this minimum is achieved (i.e., D,[ii, cl = ri). 

(Comment. Location [ii, c + ri] is called an anchor.) 

Case 1.1. rr I (k - l>m. In terms of ideas, this is the main subcase. 
Below we present an overview of how this subcase is handled throughout 
the entire algorithm. (This is not just an overview of Step C.3.1.1.) 

Overview of the text analysis step for Case 1.1. For power column c and 
its associated columns c - m + 1,. . . , c, we explain how to find all occur- 
rences of Pk that start in any row of these columns. For simplicity, we will 
assume in this overview that all row groups of power column c satisfy Case 
1.1. For each row group [wi, w2] we find in Step C.3.1.1 an anchor 
[iI, c + rl], where (c + rl> I c + (k - llm and row i, is in the row 
group. 

Observution. Any occurrence of Pk in columns c - m + 1,. . . , c of 
the text that contains location [il, c + rl] must start in a column j, where 
c + rl - j is an integer multiple of k. This is true since each character of 
P repeats itself k times in each row of Pk. Specifically, such an anchor for 
row group [wi, wz] enables us to restrict candidate occurrences starting in 
the working area defined below. 

COROLLARY. Consider the subarray consisting of rows w1 - km/2,. . . , 

Wl - 1 and columns c - m + 1, _ . . , c. Then candidate k-occurrences 
can start only in columns c - m + 1 I j I c, for which (c + rl - j) 
(mod k) = 0. 

For implementing the restriction that is implied by the corollary we 
include an interval [wi - km/2.. . w1 - 11 in a list of intervals I,!‘ for each 
such column j. We emphasize this connection between row groups and 
working areas. It helps in showing that all possible occurrences are 
considered. Let [i, j] be a (starting location of a) candidate k-occurrence. 
(Formally, [i, j] will be included in an interval of IF.> We say that a 
k-occurrence at [i, j] extends into rows i, i + 1,. . . , i + km - 1 of column 
j and these rows define a segment [i . . . i + km - l] on column j. Such 
segments will delimit the scope of our computation below. Our computa- 
tion will not generate these segments explicitly but will rather derive them 
on-the-fly from the lists of intervals I,!. Step C.3.1.2 finds locations [i, j] in 
which k-block starts only within segments of candidate k-occurrences. 
This procedure for finding k-blocks uses a k-height Cartesian tree. This 
implies the following problem: not all k-blocks are actually found. How- 



PAlTERN MATCHING WITH SCALING 25 

ever, notice that we are only interested in k-blocks whose height is at least 
k. We are guaranteed that all k-blocks in a sequence of consecutive 
k-blocks of height 2 k will be found by the k-height Cartesian tree, with 
the possible exception of the first k-block of the sequence. An S,! list 
connects all starting locations of k-blocks that were found. (These lists are 
similar to the Sj list of Algorithm B.) Finally, Step C.3.3 runs the 
one-dimensional version of a KMP-like scan on each S,! list. The KMP-like 
scan needs to be extended to cope with three additional problems: (a) The 
appearance of the first k-block will be verified separately, after the rest of 
the pattern is found. When comparing a k-block starting in position [i, j] 
to a pattern block. (b) Verify that i and its predecessor in the list S,!‘ 
belong in the same segment of a candidate k-occurrence on column j. 
Otherwise there is a gap between them where there cannot be any 
occurrence of Pk. (cl Verify that there are no hidden k-blocks between 
i and i + k. Namely, the k-block that starts at [i, j] includes rows i, . . . , 
i + k. If one of these conditions does not hold then the KMP-like scan will 
advance to check whether a k-occurrence starts at the next block in the S,“ 
list. This concludes the overview. 

We now proceed with a concrete presentation of Step C.3.1.1 for Case 
1.1 and power column c. Case 1.1 implies that in any possible k-block 
starting in columns c - m + 1,. . . , c and rows wi - km/2,. . . , w1 - 1 
there is a change of symbol in position c + ri and a k-block starting at 
one of the columns c - m + 1,. . ., c has to start in a position that is 
consistent with the column in which a change of symbol occurs. If 
ri = ak + b for 1 I b I k then the columns in which Pk can start are 
;,;,‘c + b) - k, (c + 6) - 2k,. . . , (c + b) - [(m + b - l)/k]k. There- 

. 

for i = (c + b) - k,(c + b) - 2k,...,(c + b) - 

Add interval [wi - 7, w1 - 11 to Z,!, 

I”‘;-‘]k 

end 

Case 1.2. (k - 1)m < rl I km. (Note that rl is not relevant to any 
column j such that c - m + 1 I j I c + rl - km. For these columns use 
the symbol change to the left; see Case 1.3.) 

Forall j=(c+b)-k,(kcm+b)-2k ,..., c+r,-km+1 

wi - y, w1 - 1 
I 

to ZF, 

end 



26 AMIR, LANDAU, AND VISHKIN 

Case 1.3. ri > km. Let 1, be the minimum D,[i, c] over all i in [wi, w2] 
and let ii be a row in [wit WJ for which this minimum is achieved. Take 
I, = I, - 1. 

If 1, < m ;hyZ fzrl all j = (c - I,), c - I, - k, c - I, - 2k, . . . , 

Cc-l,,-1 ; ]k 

end 

w1 - 5, w1 - 1 1 to Zj”, 

If I, > m then there is no symbol change in this work area and it cannot 
contribute to any ZF. To justify Step C.3.1.1 for Case 1 we explain why we 
cannot miss any k-occurrence. Given a k-occurrence at some location 
[i, j], take the leftmost power column that intersects it. One of its row 
groups (km/2 consecutive rows) must be contained in the occurrence. In 
Case A, every m/2 consecutive pattern rows have at least one row of 
factorized length > 1. Such a row will provide an anchor. The anchor will 
imply adding an interval into Zjk. This interval must include i. 

Time for Step C.3.1.1 on Case 1. Consider the work per power column 
and scale k. There are Oh/km) working areas and for each we may need 
to update at most (m/k)ZF lists. Computing ri and I, takes constant time 
per working area using range minimum queries on the 0, and D, arrays 
(see Section 2.3). The time is O(~~=,(n/kmXm/k) = O(n) per power 
column, and since there are n/m power columns, the total time for 
constructing the Z/ lists for all k I m is O(n*/m). 

Remark. We could not give exactly the same treatment to k > m and 
still get the same, or even linear, time bound. Note that the number of row 
groups per power column is O(n/km). Each such group needs at least 
constant time. The total time is O(Ci/y(n/km) = O(n log n/m). Sum- 
ming over all n/m power columns we get O(n* log n/m*) time. For 
m* = o(log n) this becomes non-linear. 

Case 2. k > m. The main reason for choosing the power columns at a 
distance of m from each other was so that every k-block will intersect a 
power column, even for k = 1. However, for larger scales, larger distances 
between each pair of power columns suffice for constructing the ZF lists. 
For k 2 m this is done in precisely the same manner as for k < m but 
using fewer power columns. Each row below gives a range of scales and 
the set of power columns needed for them. 



PATTERN MATCHING WITH SCALING 27 

Scale Power columns 

k = 1,2,. . . ) ??I - 1 m,2m,3m,... 
k=m,m+l,..., m*-1 m2,2m2,3m2 ,... 
k=m*,m*+l,..., m3-1m3,2m3,3m3 ,... 

There are log n/log m ranges of scales above. We already showed that 
for the first range (i.e., k = 1, . . . , m - 1) the time is O(n*/m). Let us 
analyze the second range. For each power column and scale k = 
m ,...,m 

2 - 1, we have n/km row groups and for each we may need to 
update at most (m*/k)Z,b lists. We bound the time per power column by 
owZ- l ,,,(n/kmXm*/kN = O(nmC$-,‘l/k*) = O(nm(l/m)) = O(n). 
(To see that O(C~,,l/k*) = 0(1/m) integrate the function 1/x2). Since 
there are n/m* power columns, the total time for constructing the Z,! lists 
for all m I k I m* is O(n*/m*). Similarly, the third range of scales 
k = m*, . . . , m3 - 1 takes O(n2/m3) time, etc. Over all ranges of scales 
we obtain O(n*/m + n*/m* + . . .) which is O(n*/m) time. 

C.3.1.2. Getting k-blocks within intervals. We now identify first rows of 
k-blocks within the segments that are to be scanned. The linked list 
connecting first rows of k blocks at column j is called S,!. The S,! lists are 
the output of Step C.3.1.2. We derive the segments to be scanned from the 
ZF list in a straightforward manner. 

For each segment [v, w] of column j and scale k: Construct the k-height 
Cartesian tree of Z3,[ v, v + 1, . . . , w; c] and the k-height Cartesian tree of 
qv, v + 1,. . . ) w; c] (where c is the power column of j). 

These trees are produced in time O((w - v)/k) by range minimum 
queries, each query providing a first row of a k-block. 

Merge the above two k-height Cartesian trees into an S: list. 
Time. For a fixed scale k, the number of first rows of k-blocks that 

were actually found is O(n*/k*). 
SF is now composed exactly of the k-blocks that are used by the 

scanning part of the algorithm. 
C.3.2. Additional preprocessing. Same as B.3.2, but sort lexicographi- 

tally with i first, j second, and k last. 
C.3.3. Scanning the text. Same as B.3.3, but scanning is separate for 

every scale k. S,! thus replaces Sj as the list of next text block to scan. In 
addition to the change described in the above overview of Case 1.1, there 
is also a necessary change in COMPARE (block at T[i, jl, block at row 1, 
of P). The block at row 1, of P is a pair (FP,, r,). For scale k the block is 
actually (FP$ kr,). This does not change the failure function of the 
pattern, but the comparison is different. The string comparison can be 
done in constant time since all rows of FPk for all scales k appear in 
suffix tree ST. The numerical comparison is trivial. 



28 AMIR, LANDAU, AND VISHKIN 

end Algorithm C 

Time complexity 

Steps C.l.l and C.1.2. o(n*). 

Steps C.1.3-C.1.5. O(n*/m>. 

Step C.2. O(IFPI). 
Step C.3.1.1. O(n*/m>. 

Step C.3.1.2. For each scale k the total length of segments that are 
derived from the Ij? lists cannot exceed O(n*/k). In each interval, only 
k-blocks are accessed; i.e., the processing time for each interval is at most 
interval length/k. Therefore, the processing time for each scale k is at 
most O(n*/k*). Summing over all k we obtain 

0 

Steps C.3.2 and C.3.3. O(size of ST lists) _< O(n*). 

In order to finish Section 4, we still need to consider Case B, where the 
pattern has m/2 consecutive rows of factorized length 1. In addition, we 
may assume that we also have at least m/2 consecutive pattern columns, 
whose factorized length is l-otherwise apply Algorithm C to a rotation 
by 90” of the text and pattern. We observe that these (at least) m/2 
consecutive rows must all be equal and these (at least) m/2 consecutive 
columns must also all be equal. Therefore, we call this collection of rows, 
the repeating symbol block. We consider two subcases: 

Case B.l. There is at least one pattern row of factorized length > 2. 
Algorithm S treats this case. Case B2 is discussed later. 

ALGORITHM S. 

S.l Preprocessing. Same as Algorithm C. This special case does not 
require pattern preprocessing. We are now ready to find all scaled 
appearances of P. Let Pi, row i of P, be the lowest row of factorized 
length > 2 that appears above the repeating symbol block. (The case 
where this row is below the repeating symbol block is handled symmetri- 
cally.) Row Pi has factorized length > 2 and say that rows i + d + 1, 

. , i + d + I, I > m/2 have factorized length 1. (Rows i + 1,. . . , i + d 
have factorized length 2.) 

S.2. Find all scaled occurrences of Pi in T. This can be done in time 
OWTI) by the algorithm for one dimensional scaled matching presented 
in Section 2. Since only one Pik can appear in a given location, there are at 
most IFTI such locations. Note that only one Pik can start at a given text 



PAlTERN MATCHING WITH SCALING 29 

location. The reason is as follows: Let ur be the smallest internal run of Pi 
(i.e., bu’c appears in Pi, where b, c # a, and r is the smallest repetition 
where such a situation occurs). Then ark is the smallest internal run of 
P,“, which precludes P,“‘, k’ f k, from starting at the same location. 

S.3. Discard every location [1,, f2] where the following two conditions do 
not both hold: 

S.3.1. There is a k-block of height k starting at [I,, 1J whose rows all 
equal Pik. 

S.3.2. There are kl(> km/21 equal subrows of length km and factor- 
ized length 1, starting at position [I, + k(d + l), I,]. 

S.3.1 can be verified in constant time by range minimum queries to B, 
and B,; and LCA queries with respect to ST. S.3.2 can be verified in 
constant time by range minimum queries to II,, D,, B,, and B,. 

Assume location [I,, /z] passed verifications S.3.1 and S.3.2. Without loss 
of generality we assume that the first symbol’s change in Pi appears in the 
first half of row Pi. This means that it is impossible for any of the k2m2/4 
locations [I, I’], 1 = 1, + k(d + l), . . . , I, + k(d + 1) + km/& I’ = 
1 . . . , f, + km/2 to satisfy condition S.3.1. Therefore, the total number of 
r:maining locations after Step S.3 is at most 4n2/k2m2, for a given k. 
Each remaining location [I,, /zl defines one candidate k-occurrence in 
location [sl, s2] = [1, - k(i - 0, Z21. 

S.4. For every scale k and potential starting point [sr, szl do 
For e = 0 to m - 1 do 

S.4.1 verify that T[s, + ek; s2,. . . , s2 + km - 11 = P:+,. 
S.4.2 verify that all rows T[s, + ek; s2, . . . , s2 + 
km - 11,. . . , 

end 
T[s, + ek + k - 1; Q,. . . , s2 + km - 11 are equal. 

All locations that passed the verification of Step S.4 are starting occur- 
rences of Pk. Step S.4.1 can be done in constant time in a manner similar 
to subroutine COMPARE of Algorithm C. Step S.4.2 can be done in 
constant time by range minimum queries on B, and B,. Therefore, for any 
given k and potential starting point [sr, s2 ] an occurrence of Pk can be 
verified in time O(m). 

end Algorithm S 

Total time for Algorithm S: 



30 AMIR, LANDAU, AND VISHKIN 

Case B2. Each pattern row (and column) has factorized length I 2. In 
this case, the pattern consists of at most two repeating symbols. Suppose 
the pattern consists of two symbols a and b; and T[l, 11 = a, then each 
row (or column) that has two symbols starts with a’s and ends with b’s. 
Also given a location T[i, j] = a we must have that for all x I i and 
y < j, T[ x, y 1 = a; and given a location T[i, j] = b we must have that for 
all n 2 i and y 2 j, T[x, y I = b. Algorithm S can handle this special case 
with some minor changes. (Hint: In Algorithm S a row Pi of factorized 
2 3 is needed for deriving the time complexity of O(lFTl), since only one 
Pi” can appear in a given location of FT. Instead, in Case B2 we will find a 
pair of successive rows whose change of letters occur in different columns. 
These two columns, when using the pair of rows together, provide the 
same property. If there are no such columns the situation is even simpler.) 

5. CONCLUDING REMARKS AND OPEN PROBLEMS 

When scaled matchings are being searched, it is quite reasonable to 
assume that the text has large blocks of repeating characters. These 
repetitions were assumed to be reflected in the input representation, 
yielding a shorter input. For Algorithm B we mentioned two types of 
repetitions: (i) a character repeating itself successively within the same 
row; (ii) a row (of the pattern) that repeats itself successively. Algorithm C 
took advantage of these two types of repetitions. 

In the following three implementation remarks, we discuss ways for 
reducing the linear running time of our algorithm to sublinear time. These 
ways are particularly effective around areas where k-occurrences, for 
relatively large k, are discovered. 

Zmpiementution Remark 1. Steps C.l.l and C.1.2 (in Algorithm C) 
require O(IFT,I + C~,C~/lm]I(FPjk)bl) time, which is oh*>. There, we 
compute a suffH tree of the rows of the pattern in all scales, as well as of 
rows of the text. Alternatively, we can compute two suffm trees: (i) A suffix 
tree for the symbol part of the rows of the pattern and the text. (ii) For 
each row of the pattern and the text get the quotient string of the row (see 
Section 2.1). The second suffix tree will be for these quotient strings. 
These two new suffix trees provide the same information as the old one in 
Algorithm C, but require only O((IFT,I + IFP,I)) computation time. 

Zmphentution Remark 2. Even if there are no large height k-blocks 
at all, Step C.3.1.2 may still enforce a running time of O(n*). This can be 
avoided by a divide-and-conquer construction of the k-height trees that, by 
means of lookahead, discards large chunks of rows where there are no m 
successive k-blocks of height 2 k. 



PAmRN MATCHING WITH SCALING 31 

Implementation Remark 3. Step C.3 treated each scale k separately. 
Consider treating the scales in decreasing order, from the largest possible, 
which is [n/m], down to 1. While investigating occurrences of Pk for a 
relatively large k we may discover contiguous k-blocks whose heights are 
each integer multiples of k. If the number of such contiguous blocks is 
large enough we may conclude that Z-occurrences (for I < k) that are 
contained in these contiguous k-blocks, are impossible. Hence, an imple- 
mentation idea is to discard from consideration containment of I-occur- 
rences by excluding appropriate sections from the lists of intervals Z,!. 
When later, the scale I is treated, we simply skip over the excluded 
sections. 

We have barely scratched the surface on the subject of sublinearity. The 
compressed representation we used was a concatenation of the factorized 
representation of the rows. Clearly this is an inherently one-dimensional 
approach. Even here our algorithm is probably not optimal. One would 
like the time complexity to be linear in the size of the factorized represen- 
tation. 

Several inherently two-dimensional compressions such as medial axis 
[RK-821 and quadtrees [S-90] are known. To our knowledge, no known 
compression scheme is particularly tailored for pattern searches in the 
compressed representation. We conclude with the following intriguing 
open problem. Is there a two-dimensional compression where exact match- 
ing or perhaps even scaled matching, can be done in time linear (or close 
to linear) in the size of that compression? 

REFERENCES 

[AC-751 A. V. AHO AND M. J. CORASICK, “Efficient string matching,” Comm. ACM 18, 
No. 6, (19751, 333-340. 

[AKSV-881 A. APOSTOLICO, C. ILIOPOULOS, G. M. LANDAU, B. SCHIEBER, AND U. VISHKIN, 
Parallel construction of a suffii tree with applications, Algon’rhmicu 3 (19881, 
347-365. 

[AL-901 A. AMIR AND G. LANDAU, Fast parallel and serial multidimensional approxi- 
mate array matching, “Sequences: Combinatorics, Compression, Security and 
Transmission” (R. Capocelli, Ed.), New York/Berlin, Springer-Verlag, pp. 
3-24, 1990; Theoret. Camp. Sci. 81, No. 1 (19911, 97-115. 

[Ba-781 T. J. BAKER, A technique for extending rapid exact-match string matching to 
arrays of more than one dimension, SLAM .I. Comput. 7 (1978), 533-541. 

LB-771 R. S. BIRD, Two dimensional pattern matching, Inform. Process. Lert. 6, No. 5 
(1977), 168-170. 

[BBGSV-891 O.BERKMAN, D. BRESLAUER, Z. GALIL, B. SCHIEBER, AND U. VISHKIN, Highly 
parallelizable problems, in “Proceedings, 21st ACM Symposium on Theory of 
Computing, 1989,” pp. 309-319. (This conference version contains results from 
[BSV-881. 



32 

[Bsv-881 

[BV-891 

[BM-771 

[EV-881 

[FP-741 

[GBT-841 

[GP-901 

[GS-831 

[HT-841 

[KS-871 

[KMP-771 

[LV-891 

[MC-761 

IRK-821 

[S-901 

[W-881 

[U-851 

[V-85] 

tv-911 

[W-731 

AMIR, LANDAU, AND VISHKIN 

0. BERKMAN, B. SCHIEBER, AND U. VISHKIN, “Some Doubly Logarithmic 
Optimal Parallel Algorithms Based on Finding All Nearest Smaller Values,” 
UMIACS-TR-88-79, University of Maryland, College Park, MD 20742, October 
1988. 
0. BERKMAN AND U. VISHKIN, Recursive *-tree parallel data structure, in 
“Proceedings, 30th IEEE Symp. on Foundations of Computer Science, 1989,” 
pp. 196-202; SIAM J. Cornput., to appear. 
R. S. BOYER AND J. S. MOORE, A fast string searching algorithm, Comm. ACM 
20 (1977), 762-772. 
T. EILAM-TZOREFF AND U. VISHKIN, Matching patterns in a string subject to 
multi-linear transformations, Theoret. Compuf. Sci. 60 (1988), 231-254. 
M. J. FISCHER AND M. S. PAERSON, String matching and other products, in 
“Complexity of Computation” (R. M. Karp, Ed.), SIAM-AMS Proceedings, 
Vol. 7, pp. 113-125, Amer. Math. Sot., Providence, RI, 1974. 
H. N. GABOW, J. L. BENTLEY, AND R. E. TARTAN, Scaling and related tech- 
niques for geometry problems, in “Proceedings 16th ACM Symposium on 
Theory of Computing, 1984,” pp. 135-143. 
Z. GALIL AND K. PARK, An improved algorithm for approximate string match- 
ing, SIAM J. Comput. 19 (19901, 989-999. 
Z. GALIL AND J. I. SEIFERAS, Time-space-optimal string matching, J. Comput. 
System Sci. 26 (1983), 280-294. 
D. HAREL AND R. E. TARJAN, Fast algorithms for finding nearest common 
ancestors, SIAM J. Comput. 13 (19841, 338-355. 
K. KRITHIVASAN AND R. SITALAKSHMI, Efficient two dimensional pattern 
matching in the presence of errors, Inform. Sci. 43 (1987), 169-184. 
D. E. KNUTH, J. H. MORRIS, AND V. R. PRATT, Fast pattern matching in strings, 
SIAM J. Comput., 6 (1977), 323-350. 
G. M. LANDAU AND U. VISHKIN, Fast parallel and serial approximate string 
matching, J. Algotithms 10, No. 2 (19891, 157-169. 
E. M. MCCREIGHT, A space-economical suffix tree construction algorithm, 
J. Assoc. Cornput. Mach. 23 (1976) 262-272. 
A. ROSENFELD AND A. C. KAK, “Digital Picture Processing,” 2nd ed., Academic 
Press, New York, 1982. 
H. SAMET, “The Design and Analysis of Spatial Data Structures,” Addison- 
Wesley, Reading, MA, 1990. 
B. SCHIEBER AND U. VISHKIN, On finding lowest common ancestors: Simplifica- 
tion and parallelization, SIAM J. Comput., 17 (1988), 1253-1262. 
E. UKKONEN, Finding approximate pattern in strings, J. Algorithms 6 (1985), 
132-137. 
U. VISHKIN, Optimal parallel pattern matching in strings, Inform. Comrol 67 
(19851, 91-113. 
U. VISHKIN, Deterministic sampling-A new technique for fast pattern match- 
ing, SIAM J. Comput. 20, No. 1 (19911, 22-40. 
P. WEINER, Linear pattern matching algorithm, in “Proceedings, 14th IEEE 
Symposium on Switching and Automata Theory, 1973, pp. l-11. 


