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1. Introduction 

The n-star graph [ 1 ] is an attractive alternative to 
the n-cube. It has significant advantages over the n- 
cube, such as a lower degree and a smaller diameter. 
However, a major practical difficulty with the n-star 
graph is the restriction on the number of nodes: n! for 
an n-star graph. Since there is a large gap between n! 
and (n + 1) !, one may face the choice of either too 
few or too many available nodes. 

The objective of this paper is to propose a new 
topology, called the (n, k)-star graph, such that it re- 
moves the restriction of the number of nodes n! in the 
n-star graph, and preserves many attractive properties 
of the n-star graph such as node symmetry, hierar- 
chical structure, maximal fault tolerance, and simple 
shortest routing. 

The (n, k) -star graph is a generalized version of the 
n-star graph. The two parameters n and k can be tuned 
to make a suitable choice for the number of nodes in 
the network and for the degree/diameter tradeoff. This 
allows more flexibility in designing network topology 
than the star graph. The (12, k) -star graph is regular of 
degree n - 1, the number of nodes n!/(n - k)!, and 
diameter 2k - 1 for k < [n/21 and [(n - 1) /2J + k for 
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k 2 [n/2] + 1. In addition, the (n, n - 1 )-star graph 
is isomorphic to the n-star graph, and hence, all these 
properties can be derived for the n-star graph as it is a 
special case of the (n, k) -star graph. Moreover, many 
parallel algorithms [ 21 for the n-star graph may adapt 
to the (n, k)-star graph with a slight modification. 

2. Network topology and basic properties 

For simplicity, denote (n) = { 1,2,. . . , n}. 

Definition 1. An (n, k) -star graph, denoted by S,,k, 
is specified by two integers n and k, where 1 6 k < 

n. The node set of Sri,,, is denoted by {pIp2. . .pk 1 

P; E (n> and pi f pj for i # i }. The adjacency 
is defined as follows: ~1~2.. .pi . . .pk is adjacent to 
( 1) pip2 . . . PI . . pk through an edge of dimension i, 
where 2 6 i 6 k (SwappI withpi),and (2) xp;!. . .pk 
through dimension 1, where x E (n) - {pi 1 1 < i 6 
k}. The edges of type ( 1) are referred to as i-edges, 
and the edges of type (2) are referred to as 1 -edges. 
A (4,2) -star graph is shown in Fig. 1. 

Definition 2. A graph is node symmetric if and only 
if for its any pair of nodes u and U, there exists an 
automorphism of the graph that maps u to U. 
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Theorem 3. The (n, k) -star graph is node symmetric. 

Proof. We need to show that given any two nodes in 
Sri,,, there exists an automorphism that maps one node 
intotheother.Letp=pip2...pkandq=qiq2...qk 
be the two nodes in &,k, P = {pl ,p2,. . . ,pk}, Q = 
{qr42v.. , qk}, and 1x1 denote the number of ele- 
ments in the set X. 

Define the one-to-one onto mapping pl in (n): 

l ~1 (pi) = qi, for 1 < i < k, i.e., for p; E P; 
l ~1 (x) = y, one-to-one mapping for x E Q - P and 

y E P - Q (since IPI = lQ[, IQ - P( = IQ1 - IP n 

Ql=lpl-lPnQl=lf'-Ql); 
l p](z) =z,forz E (n)-PUQ. 

Let MI be the one-to-one onto mapping in Sn,k: 
Fig. I. A (4,2)-star graph. 

Ml(t) =Pl(tl)/‘l(t2)...Pl(tk) 

for all t = t] t:! . . . tk in $,k. 

M2CPIP2.. .Pn-IPn) =mp2.. .pn-I 

for a node p = ~1~2.. .pn_lpn of S,. 

Clearly MI maps the node p into the node q. Fur- 
ther, MI is an automorphism, for if two nodes s and t 
are adjacent in Sn,k. then MI (s) and MI (t) are adja- 
cent. More precisely, let s = si s2 . . . Si . . . Sk, then t = 

SiS2. . . S] . . . Sk (SWapSI withsi) OrtlQ...Si...Sk 

(tl E (n) - {Si I 1 < i < k}). Consider 

Moreover, h42 preserves adjacency. Let p and q are 
two nodes joined with an i-edge in S,. If 2 6 i 6 n- 1, 
then M2( p) and M2( q) are also joined with an i-edge 
in S,,,_ 1; if i = n, then A42 (p) and M2 (q) are joined 
with a 1 -edge in S,,,_ 1. 0 

MI(S)=PI(SI)CLI(S~)...PI(S~)...PI(S~) 3. Hierarchical structure and fault tolerance 

and Definition 5. Let &.i,k-i (i) denote a subgraph of 
S,,k induced by all the nodes with the same last symbol 
i, for some 1 6 i 6 n. 

PI(S . ..PI(SI) *.*pl(Sk)v 

so MI (s) and MI (t) are adjacent. 0 

Note that Sri,,, could not be edge symmetric. For 

Lemma 6. &,k can be decomposed into n sub- 
graphs S,_ I.k_l (i) , 1 < i < n, and each subgraph 
$_l,k_l (i) is isomorphic to &_l,k_l. 

instance, in Fig. 1, each 2-edge belongs to a cycle of 
length at least 6, but each l-edge may be within a 
cycle of length 3. 

Lemma 4. The (n, n - 1 )-star graph S,,,,_ I is iso- 
morphic to the n-star graph S,,. 

Proof. If we remove the last symbol of all the 
nodes in &_i.+i(n), we obtain an &_i,k_i. That 
is, Sn-l,k-l(n) is isomorphic to S”_i,k_i. So, we 
only need to show S,_i,k__l(i), 1 < i < n - 1, and 
S,_ 1 ,k_ I (n) are isomorphic. We define the one-to-one 
mapping pug in (n): 

Proof. To prove that S,,,_ 1 and S, are isomorphic, we 
remove the last symbol in all nodes of S,, and obtain 
an S,,,_ 1 by Definition 1. That is, we define a bijection 
M2 from the nodes of S,, to those of ,!&_i by: 

p3(i) = n, rug(n) = i, 

p3(x) =x for x E (n) - {i,n}. 

We also define a bijection M3 by: 
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M3hP2.. *Pk) = p3(PI )p3@2) . . ./-‘3h) 

for a node p = p1p2 . . .pk in S,,k. 

Obviously, M3 transforms the nodes of Sn_l,k_-l (i) 
into those of S,_l,+, (n) and preserves adja- 
cency. 0 

Since S,,k can be partitioned into n mutually dis- 
joint subgraphs S,_,,k_, (i), 1 < i < n, S,,k is hier- 
archical. Fig. 1 shows that $2 can be viewed as an 
interconnection of four SJJ ‘s through 2-edges. 

Lemma 7. There are (n - 2)!/(n - k)! k- 
edges between any two subgraphs Sn_l,k_l (i) and 
S,_l,k_l (j); each of these nodes of S,_l,k-, (i) is 
connected to exactly one node in S,_ 1 ,k_ 1 (j) . 

Proof. For any pair of two nodes jp2 . . .pk-I i E 
S,+-],k_l (i) and ipz.. .Pk-lj E Ll,k-l(j), i + j, 
there is a k-edge connecting them. Each p2p3 . . . pk- 1 

is a unique permutation of k - 2 distinct symbols 
chosen out of the n - 2 symbols of (n) - {i, j}. Thus, 
we get the result. 0 

Definition 8. The fault tolerance of a graph G is 
defined as the maximum number f such that if any 
f nodes are deleted from G, the resulting subgraph is 
still connected. 

Theorem 9. The fault tolerance of the (n. k)-star 
graph is n - 2. 

Proof. Let f (&,k) denote the fault tolerance of &k. 
First, we claim f(&k) 2 f(Sn__l,k_l) + 1 for 2 < 
k < n. For brevity, let f = f ( Sn__l,k_l ). We prove it 
by showing that S,,k remains connected even if f + 1 
of its nodes are faulty. We consider two cases. In the 
first case, suppose that all of the faults are within 
a subgraph S,_ 1 ,k_ 1 (i) . Since the fault tolerance of 
S,_ I ,k_ 1 is f, S,,_ I ,k_ 1 (i) could be disconnected be- 
cause of the f + 1 faults. But each nonfaulty node in 
S,_, ,k_ , (i) has a k-edge to the other copy S,__ I ,k- ,. 
All other S,_ 1 ,k- 1 ‘s remain connected since they have 
no faults. Thus, Sri,,, remains connected. 

Proceeding to the second case, suppose that the 
f + 1 faults are distributed among more than one sub- 
graph S,_ 1 ,k- I in Sn,k. Since there are at most f faults 
in any subgraph, each subgraph &_-l,k_, (i) remains 

connected. We merely need to prove that any two of 
n subgraphs &_-l,k_l (i), 1 6 i 6 n, remain con- 
nected to each other. By Lemma 7, each &_.l,k_-l (i) 
has ( n - 2) ! / (n - k) ! adjacent nodes in each of other 
S+l,k_l(j)‘s, j f i. If we regard each S,_l,k_l(i) 
of S,,k as a supernode, then the resulting graph is a 
complete graph of n nodes. To disconnect it, we would 
have to remove at least n - 1 nodes. So, if S,,k could be 
disconnected because of the f + 1 faults, then f + 1 3 
(n-l)!/(n-k)!.Butf+l <deg(S,_l.k_l)+l= 
(n-2)+1 =n-1 6 (n-l)!/(n-k)!,for2< k< 
n. This is a contradiction. Therefore, S,,k also remains 
connected. 

Based on the preceding discussion, we have the fol- 
lowing recurrence relation: f (&,k) 3 f (S,_ I ,k- I ) + 
1, and the initial condition: f (S”_k+ ],I ) = n - k - 1 
since &_k+, ,I iS isomorphic to a complete graph of 
n - k + 1 nodes. Thus, f (Sn,k) b n - 2. The degree of 
S,,k iS n - 1, which implieS f (Sn,k) 6 n - 2. There- 
fore, f (S,,k) = n - 2. 13 

4. Routing path and diameter 

Due to node symmetry of the (n, k) -star graph, any 
node can be mapped to the identity node Ik = 12. . . k 
by renaming the symbols. For the routing between any 
two arbitrary nodes s and t, the renaming function M 
maps the destination node to the identity node, i.e., 
M(t) = Ik. Then all the paths between nodes s and t 
in the original graph are isomorphic to those between 
M(s) and the identity Ik in the renamed graph. So, 
without loss of generality, considering the problem 
of the routing between two nodes in the (n, k)-star 
graph, the destination node is always assumed to be 
the identity node lk. 

Before solving the problem of routing between an 
arbitrary node p and the identity node Ik, we de- 
fine a cycle representation for the label of each node 
in (n, k) -star graphs similar to the well-known cycle 
structure of permutation for star graphs [ 11. 

To clarify our presentation, we call a symbol E 
(n) - (k) an external symbol since it is not used in the 
label of the identity node (destination). On the con- 
trary, a symbol E (k) is called internal. Unless stated 
otherwise, we use Ci (C,!) to denote an internal (ex- 
ternal) cycle and mi (ml) to denote the number of 
elements in Ci (C:). 
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Let/J =p1p2-. . pk, where pi denotes the symbol in 
the position i. The symbol in its correct position, i.e., 
pi = i, is called invariant. In the following discussion, 
we omit all invariants in the cycle representation since 
they will not be moved during the shortest routing. 

We construct the cycle representation of node p 
as follows. First, for each external symbol x,,,: in p 
we construct an external cycle C! = (XI, x2, . . . , xm: ) 
such that the desired position of Xj in p is held by 
xi+, for 1 < j < mf - 1. Additionally, for the cycle 
C,! we define the desired symbol d,-; whose desired 
position is held by the first element, x,, of the cycle. 
When we have constructed the external cycles for all 
external symbols in p, the rest are all internal symbols. 
Then we construct the internal cycles for the rest as 
the same as those in the star graph. An internal cycle 

C; = (x1,x2,. . . , n,, ) of p means that the position of 
xi+, inpisdesiredbyxjforl < j<mi-l.For 
ease of illustration, if there exists a cycle containing 
p, , we specially choose pI as the first element of the 
cycle since any cyclic shift of the sequence of symbols 
within each cycle is allowed. 

In the cycle representation of a node p. cycles can 
appear in any order. So, the cycle representation of a 
node p with (Y internal cycles and p external symbols 
can be denoted as 

C(p) = C,C2.. .C&Ci.. .CA and p 2 0. 

We now demonstrate the cycle representation of 
a node in the (n, k) -star graph through an example. 
Consider node p = 2968 134 in $7. The cycle rep- 
resentation of p is C(p) = C, C:Ci where the cycles 
C, = (3,6),CI = (2,9, I), and Ci = (4,8). The de- 
sired symbols of Ci and Cl are dl = 5 and d2 = 7, 
respectively. 

The routing from an arbitrary node p to the iden- 
tity node lk can be achieved by moving internal sym- 
bols to their correct positions and exchanging exter- 
nal symbols with desired symbols. Here, we correct 
the cycles of C(p) one by one. If there exists a cycle 
containing ~1, we certainly correct it first. 

In general, we correct an internal cycle Cj = 
(x1,x2,. . . , x,, ) as follows. If x, = PI, we directly 
move xl to its correct position (held by x2), while x2 
is swapped to the first position. Then x2 is taken to its 
correct position (held by x3) and so on until x,,_, is 
taken to its correct position. Note that each element of 
a cycle except for the first element of the cycle will be 

moved to the first position as a result of the correction 
of the previous element in the cycle representation. 
Since xm, = 1, its correction can be considered as a re- 
sult of the correction of x,,,,_, . If x, f pl , it requires 
an additional step to take x, into the first position of 
the label since a symbol must be in the first position 
before taken to its correct position. Then, we move 

x1,x2,. . . ,&n, to their correct positions in the same 
order. So, the number of steps required to correct 
each internal cycle Ci of length m;, 1 6 i < a, is 

i 

T?Z- 1 ifp, ECi, 

mj+l ifp, $C;. 

On the other hand, in order to correct an external cy- 
cle, we move the internal symbols into their correct 
positions by using the same argument as the preced- 
ing. But, when the only external symbol is taken to the 
first position, we exchange it with the desired symbol 
of any other uncorrected external cycle (if exists) or 
itself (otherwise). More precisely, let C: denote the 
first corrected but not completed external cycle. Only 
when all external cycles other than Ci have been cor- 
rected completely, the external symbol in the first po- 
sition is exchanged with dl . Through this strategy, all 
the external cycles are corrected consecutively such 
that the additional steps to swap the first element of 
these cycles other than Ci to the first position are re- 
duced. Thus, the number of steps required to correct 
the p external cycles is 

( 

m’+P-1 if p, E some Cj, 

m/+/3+ 1 ifpl 4 any Cj, 

where m’ = Cf_, rn;. 

Example. Consider the correction of node p = 

2968134 in S~,J. Following the above strategy, we 
first correct the external cycles CiCi = (2,9,1) (4,8) 
along the path: 

2968134-i;! 9268134--+,7268134-t7 4268137 

d4 8264137 +, 5264137 +5 1264537. 

Then the internal cycle C, = (3,6) is corrected along 
the path: 

1264537 -+6 3264517 +3 6234517 -6 1234567. 
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Note that the subscripts indicate the dimensions of numbers of cycles, misplaced symbols, and external 
passed edges. symbols in p(p’) with respect to ~,(I,_I). 

Definition 10. The distance between two nodes in 
G is the length of a shortest path joining them. The 
diameter of G is the largest distance between nodes 
of G. 

(a) p] = 1. If pn = n, then c’ = c, m’ = m, and 
e’ = 0; thus, d(p) = d(p’) = c + m. If pn f n, then 
c’=c,m’=m- l,ande’= l;thus,d(p) =d(p’) = 

c+m. 

Let c denote the total number of cycles of C(p), 
where all the external cycles is regarded as a cycle in 
count. So, if p > 0, then c = LY + 1; if p = 0, then 
c = cy. Let e denote the number of external symbols 
in p, i.e., e = p. Let m denote the total number of 
misplaced symbols of p with respect to the identity 
Ik, i.e., m = CL, m; + ~~zr mi = CL1 I?zi f m’. 

(b) p] # 1. If pn = n, then c’ = c, m’ = m, and 
e’ = 0; thus, d(p) = d(p’) = c + m - 2. If p,, # n, 
then c’ = c,m’ = m - 1, and e’ = 1; thus, d(p) = 
d(p’) =c+m-2. Cl 

From the above, the distributed routing algorithm 
may be described by using repeatedly one of the fol- 
lowing three rules until Ik is reached: 

(RI) 

Theorem 11. The distunce d(p) from a node p to 
the identity node Ik in &k is given by 

if symbol 1 is in the first position, then inter- 
change it with any symbol not in its correct po- 
sition, 

(R2) 

1 

CS m+e 
d(p) = 

ifpi = 1, 

c+m+e-2 ifp] f 1. 
(R3) 

if symbol i ( 1 < i < k) is in the first position, 
then move it to its correct position, and 
if the external symbol of cycle Cl is in the first 
position, then exchange it with the desired sym- 
bol, dj, of any other uncorrected cycle Ci. 

Proof. (a) pl = 1. There is no cycle containing pl . If 
p = 0, thend(p) = Cf, (mi+l) = cu+m = c+m+e. 

If /3 > 0, then d(p) = IfI (mi + 1) + {cf, (ml + 
l)+l}=a+m+~+l=c+m+e. 

(b) p] # 1. There exists a cycle containing pl. 
If /? = 0, then p] E some Cj, and d(p) = (mj - 

1)+{~~,(~i+1)-(~j+1)}=~+m-2= 
c + m + e - 2. If /I > 0 and pi E some Cj, then 
d(p) =(~j-1)+{~~,(~i+1)-(~j+~)}+ 

{~~,(mj+1)+1} =m+a+p-1 =c+m+e-2. 

If /3 > 0 and p] E Cj, it takes {Et, (ml + 1) - 1) 
to correct all exteyl cycles of p. Hence, d(p) = 
~~~~~!)~{~i_l(m~+l)-l}=n+m+~-l = 

Note that in rule 2, when an internal symbol is in the 
first position, we can move it to its correct position or 
interchange it with any symbol within another internal 
cycle. In addition, in rule 3, all the external cycles 
other than the cycle containing p] can be corrected in 
any order. So, for any symbol i, 1 < i < n, in the first 
position, we has more than one choice for routing. This 
turns out to be an especially useful rule for routing in 
the presence of faults. 

Theorem 13. The diameter D( Sn.k) of &,k is given 

by 

2k- 1 
D(Sn.k) = 

k-i-[+] if[F]+l<k<n-1. 

Corollary 12. The distance d(p) from a node p to 
the identity node Ik in S,, is given by 

1 

c+m 
d(p) = 

ifp] = 1, 

c + m - 2 ifp] # 1. 

Proof. The diameter D(&k) is max{d(p) 1 p E 
Sn,k}. We consider two cases as follows. 

Proof. Based on Lemma 4, the distance from p = 
pip2...pn tol, = 12.. .n in S,, is equivalent to the 
distancefromp’=ptp2...pn_i toI,_, = 12...(n- 
1) in S,,,_,. Let c(c’),m(m’), and e(e’) denote the 

(a) For 1 < k < [n/21: The diameter is obtained 
from one of the following two: ( 1) pl = 1, c = 1, m = 
k-lande=k-1,and(2)pl # l,c=l,m=k 
and e = k. Therefore, D(S,,k) = 2k - 1. 

(b) For [n/21 + 1 < k < n - 1: If II is odd, 
the diameter is obtained for p] = 1, c = (2k - n - 
1)/2+1,m=k-l,ande=n-k;thus,D(S,,k)= 



264 

Table 1 

W.-K. Chiang, R.-J. Chenl Information Processing Letters 56 (1995) 259-264 

Comparison of network topologies 

Topology Size 

Sri n! 

AG 
& 
2 

A n.k 
n! 
(n-k)! 

Degree 

n-l 

2(n - 2) 

k(n - k) 

Cost factor 

M 3(“-1)2 
2 

Z 3(n - 2)2 

z ik2(n - k) 

s n.k 

2k- I 
n! n-l 

if 1 6 k < [;1 x (n - 1)(2k- 1) 

(n-k)! 
k+ly] if[t]+I<k<n-1 

2 
z (n- I)k+ f(n- l)2 

k + [(rr - 1)/2J. If n is even, the diameter can be 
obtained from one of the following two: ( 1) PI = 1, 
c=(2k-n)/2,m=k-l,e=n-k,and(2)pr + 1, 
c = (2k - n)/2 + 1, m = k, e = n - k. Therefore, 
D(&k) is also k+ [(n - 1)/21. 0 

Corollary 14. The diameter D( S,,) of the n-star 
graph is [3(n - 1)/2J. 

Proof. Since S,, is isomorphic to L&_-l, D( S,) = 
D(&,,-I ). 0 

5. Performance comparison 

Finally, we compare the (n, k)-star graph with 
three well-known topologies: (1) the n-star graph 
(S,) [ 11, (2) the alternating group graph (AC,,) 
[5], and (3) the (n, k)-arrangement graph (An,k), 
another generalized version of the star graph proposed 
in [ 41. The numbers of nodes, degrees, and diameters 

of &, AC,, &,k, and &k are presented in Table 1. 
The number of parameters that one may vary in 

order to specify a graph provides a crude feeling for 
whether there are large gaps in the number of nodes of 
successive graphs in the family. From this viewpoint, 
An,k and &k are more flexible than S, and AC,,. The 
cost factor (diameter x degree of a node) is a good 
criterion to measure the performance of a network 
[ 31. We list the approximate cost factors of these four 
topologies in the last column of Table 1. The results 
show that S,,k is better than A,,k. 
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