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Fast Template Matching With Polynomials

Shinichiro Omachi, Member, IEEE, and Masako Omachi

Abstract—Template matching is widely used for many applica-
tions in image and signal processing. This paper proposes a novel
template matching algorithm, called algebraic template matching.
Given a template and an input image, algebraic template matching
efficiently calculates similarities between the template and the
partial images of the input image, for various widths and heights.
The partial image most similar to the template image is detected
from the input image for any location, width, and height. In the
proposed algorithm, a polynomial that approximates the template
image is used to match the input image instead of the template
image. The proposed algorithm is effective especially when the
width and height of the template image differ from the partial
image to be matched. An algorithm using the Legendre polynomial
is proposed for efficient approximation of the template image. This
algorithm not only reduces computational costs, but also improves
the quality of the approximated image. It is shown theoretically
and experimentally that the computational cost of the proposed
algorithm is much smaller than the existing methods.

Index Terms—Algebraic template matching, image processing,
object detection, polynomial, template matching.

I. INTRODUCTION

EMPLATE matching is one of the most common tech-
Tniques used in signal and image processing. Template
matching applications include image retrieval [3], image recog-
nition [13], image mosaicing or registration [2], object detection
[7], and stereo matching [17]. Given an input and a template
image, the matching algorithm finds the partial image that
most closely matches the template image in terms of specific
criterion, such as the Euclidean distance or cross correlation
[5]. However, conventional template matching methods using a
template image consume a large amount of computational time.
A number of techniques have been investigated with the intent
of speeding up the template matching [8]-[10], [15]-[18], [20],
[23], [24].

The coarse-to-fine strategy, proposed by Rosenfeld and
VanderBrug [15], [24], is a well-known approach to reduce
the computational cost of template matching. This strategy
uses a low-resolution template and an input image for initial
coarse matching. Matching between high-resolution template
and input images is applied for fine matching only when there
is high similarity in the coarse matching. Tanimoto proposed
a hierarchical search algorithm and introduced pyramid data
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structures [20]. However, this strategy cannot always find the
most similar part in the fine matching since the other part may
be detected in coarse matching. This strategy can be easily
combined with other speed-up techniques.

The fast Fourier transform (FFT) helps calculate cross corre-
lations efficiently. The Fourier transform of the correlation of
two functions is the product of their Fourier transforms [14].
The cross correlation of the template image and every part of
the input image can be calculated simultaneously. The calcu-
lated non-normalized cross correlation can be efficiently nor-
malized by the algorithm provided by Lewis [10]. Uenohara
and Kanade proposed a method that combines the FFT and the
Karhunen—Loeve transform for matching images with a large
set of template images [23].

Another strategy to accelerate template matching is esti-
mating the upper boundary of the similarity and eliminating
unnecessary calculations. In this strategy, the reduction rate
of the computational cost depends on the template and input
images. Gharavi—Alkhansari combined this strategy with the
coarse-to-fine strategy, and proposed a method for estimating
a threshold in the coarse search and pruning the candidates in
the fine search [9]. Stefano and Mattoccia proposed an efficient
template matching algorithm by defining an upper-boundary
function for normalized cross correlation, using the inequality
of arithmetic and geometric means [18].

In the field of stereo matching, given a left and a right image,
their corresponding points can be found. The windows in both
images move together in the same way, and similarities between
these windows are calculated. In this situation, an incremental
calculation scheme is effective [8], [17]. That is, if the simi-
larity of a region is already calculated, the similarity of an over-
lapped region can be calculated using only the differences in
these regions. However, this situation is different from template
matching where the template is fixed and the location of the par-
tial image in the input image varies.

Approximation of the image by a function may reduce the
computational cost. Schweitzer et al. proposed an efficient tem-
plate matching algorithm that introduced integral images and
approximated the input image with second- or third-order poly-
nomials [16].

All of these methods handle a fixed-size template image.
Some methods (e.g., those using the FFT or incremental al-
gorithms mentioned above) efficiently calculate similarities
between a template and the fixed-size partial images at various
locations. However, if the width and height of the partial image
to be detected within the input image are unknown, we must
change them and then repeat the procedure.

This paper proposes a novel template matching method,
called algebraic template matching. Algebraic template
matching (ATM) efficiently calculates similarities between
the template and partial images of the input image of various
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widths and heights. First, the template image is approximated
by a high-order polynomial. Then, this polynomial is used
to match an input image instead of the template image. We
propose an efficient incremental algorithm for calculating the
similarities using this polynomial. According to the authors,
there is no algorithm that calculates similarities incrementally
like the proposed algorithm by changing the widths and heights
of the partial image.

The polynomial has been studied as a tool for representing
shapes [21], [22]. However, in many cases, the approximation
by the polynomial is used for feature extraction. That is, the
coefficients of the polynomial that represent the shape are re-
garded as the features of the shape. Our approach approximates
the image with a high-order polynomial used as a template. This
approach has not been previously considered for the following
reasons.

1) Approximation by a high-order polynomial using the con-
ventional least-square method requires large amounts of
computational time, and often fails due to truncation error.

2) There is no use in representing the image with a polyno-
mial, as an algorithm to efficiently use the polynomial had
not been found.

This paper uses an algorithm based on the Legendre polynomial
to solve the first problem. The latter problem is addressed with
an efficient incremental calculation algorithm.

The organization of the rest of the paper is as follows. First,
in Section II, we present an algorithm for approximating an
image with a polynomial. In Section III, we propose our tem-
plate matching algorithm, called algebraic template matching,
which uses the polynomial. In Section IV, we describe the pro-
cessing time and matching accuracy results to show the effec-
tiveness of the proposed algorithm.

II. IMAGE REPRESENTATION BY POLYNOMIALS

According to the Stone-Weierstrass theorem [6], any 2-D
continuous function defined in closed intervals can be ap-
proximated by a polynomial with two variables. However, the
approximation of an image by a polynomial using the classical
least-square method requires a great deal of computation and
often fails due to truncation error. Thus, we propose an approx-
imation algorithm that uses the Legendre polynomial.

A. Approximation by the Least-Square Method

Given an M; x N, gray-scale image, a simple way of finding
a polynomial that approximates the image is to use the least-
square method. Let z(%, j) be the intensity of the ith column and
the jth row of the image (0 < ¢ < M; — 1,0 < j < Ny — 1),
and f(z,y) be the polynomial of degree d that is defined in
0<z<1,0<y<1as

fay)= > ey )

0<k+1<d
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The least-square method finds the coefficients ag; of f(x,y) that
minimizes

M;—1N;—1 i J 2
=Y Y (n-r(5pa)) @
i=0 j=0

by solving the following L linear equations:

oJ
Oay

=0 (0<k+1<d) 3)

where L = (d + 1)(d + 2)/2 is the number of coefficients ay;.

The computational costs of obtaining these equations and
solving them are O(M;N;L?) and O(L?), respectively. There-
fore, the total computational cost is O(M;N;d* + dS). As the
value of d increases, the approximation requires more compu-
tation. Moreover, in order to solve the linear equations, inverse
matrix calculation or a similar approach is needed. The trun-
cation error of the inverse matrix calculation may degrade the
quality of the approximation.

B. Legendre Polynomials

Legendre polynomials [1] are orthogonal functions that are
defined in —1 < 2 < 1. The Legendre polynomial of degree
n, P, (), is written as

. (2n — 2k)!
(D i n — B)l(n —2)

[
P,(z) =
A

n/2]
'x"*’“. 4)

0

Equation (4) shows that P, (x) has only even powers of « for
even n, and odd powers for odd n. It is known that the following
formulae are satisfied:

Pi(z)=u
2n+1 :
Posa() = ToaPy(a) = = Pasa() (n21)
5)

The set {P,(z)} is orthogonal because the following equa-
tion is satisfied:

2

1
/ Py (z)Py(2)dz = { il MM (e
1 0,

(otherwise)

Since the set is also a complete system, any function h(x) de-
fined in —1 < 2 < 1 can be expanded by the Legendre polyno-
mials as

h(w) =Y enPalz) (7)

n=

o

where

1
Cp = ntl / h(z)P,(z) dx. ®)



OMACHI AND OMACHI: FAST TEMPLATE MATCHING WITH POLYNOMIALS

The multivariate Legendre polynomials [4] with ¢ variables
are definedin -1 <z <1,...,-1 <z, <1las
Pn1---nq(x17"-7$q):Pnl(xl)"'an(xq)- 9
For example, the multivariate Legendre polynomials with two
variables x and y up to second degree are

P()()(ZE y) =1
Pyy(z,y) =x
Poi(z,y) =
3 1
P 2 -
20($ Z'J) 2 2
Pyi(z,y) =y
3 1
Poa(7,y) = —y bt

Since the set of the multivariate Legendre polynomials is or-
thogonal, a 2-D continuous function h(z,y) defined in —1 <
r < 1,—1 <y < 1 can be expanded as

(x,y) Z Zcmn () P (y) (10)
m=0n=0
where
A (2m+1)(2n+1)
1,1
X/ / h(z,y) Pm(2) Py (y) dody. (11)
-1J-1

C. Approximation Using Legendre Polynomials

We propose an algorithm to approximate a 2-D image using
the completeness of the Legendre polynomials. If we rewrite (4)
as

(12)

n
k
= 5 PnkT
k=0

we can calculate the coefficients p,; (0 < n,0 < k < n) with
the following recurrent formulae:

poo = 1
p1o =0, pll—irzll
2n n
Pint )k = 7 Pr(k-1) ~ [P—1)k (n>1)
(13)
where
Pk =0 (k<0,n<k).

Given an image 2(4,7)(0 < 7 < My — 1,0 < 5 < Ny —
1), first, z(4, j) is approximated with the polynomial h(z,y) of
degree d, definedin —1 <z <1,-1<y<1,as

>

0<m+n<d

hiz,y) = Coren Pon () P () (14)
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where
S 2m+1)(2n+1)
mn — MtNt
Mi—1N;—1 9 %
2o ) p (2L -1).as
IR S EACAEE

Equatoin (15) shows that the coefficients can be obtained by
calculating the inner products instead of calculating the inverse
matrix. Note that since we replaced the integral of (11) with the
summation of (15), in order to achieve a good approximation,
the values of M; and N, should be large.

Now we can approximate the image z(4, j) by the polynomial
f(z,y) definedin0 <2 <1,0<y <1las

f(@,y)
=h(2z —1,2y — 1)
0<m+n<d

- 5

0<m+n<d

Cmn Z mek’ 2$ - 1 Pnl’(23/ - 1)
=010'=0
(16)

Comparing the coefficients of 2*7' of (1) and (16), we have

m n
agl = § g g WEik' I Ceon Pmk’ Pnl’

m>kn>lm4n<dk'=k U'=l

K =kttt [ K r
WElk'l! —( 1) 2 k l .

In the proposed method, the coefficients of (1) are obtained
by the linear transformation of (17). In this process, numer-
ical errors are introduced. However, the errors are much smaller
than those introduced by calculating the inverse matrix in the
least-square method. This is confirmed using a real image in
Section II-D (see Figs. 2 and 4).

The computational costs for calculating (15) and calculating
ay; for all k and [ in (17) are O(M;N;d?) and O(d*), respec-
tively. Therefore, the total computational cost is O(M;Nyd> +
d4) , which is much smaller than that of the least-square method.

Note that there are orthogonal polynomials other than the Le-
gendre polynomials that can be used for representing an image.
These include the Chebyshev polynomials, the Laguerre poly-
nomials, and the Hermite polynomials [1]. However, all these
polynomials have a weighting function and, therefore, cannot
be converted into the form of (1). Since the proposed algorithm
described in Section III assumes that the approximated image
is represented in the form of (1), these polynomials cannot be
used directly for the proposed algorithm.

7)

where

(18)

D. Example of Image Representation

In order to show the effectiveness of representing an image
by the polynomial and the presented algorithm for calculating
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Fig. 2. Images generated by the polynomials calculated using the Legendre

polynomials. (a) d = 2.(b)d = 4.(c)d = 6.(d)d = 8.(e) d = 10.
(Hd = 12.(g)d = 14. (h) d = 16.
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Fig. 3. Mean square errors.

the polynomial, an example for approximation of an image by
the polynomial is provided. A gray-scale image of 128 x 128
pixels is shown in Fig. 1. The image is a part of a road sign.
The proposed method and an algorithm using the least-square
method were implemented in C language, using 64-bit floating
point.

Fig. 2 shows images generated by the polynomials of different
degrees d, applying the algorithm described in Section II-C to
the image. It is clarified that the generated image becomes more
similar to the original image as the value of d increases. The
mean square errors between the original and the generated im-
ages are shown in Fig. 3. The horizontal axis is the degree d.
When d = 0, the image is represented by a single gray level.
The mean square error for d = 0 is the standard deviation of the
intensities of the pixels in the original image, and can be used as
a criterion to evaluate the quality of the mean square errors when
d > 0. If d becomes large, the mean square error becomes suf-
ficiently small compared to that of d = 0. This means an image
can be approximated by the polynomial to certain extent.

Fig. 4 shows the images generated by the polynomials cal-
culated by the least-square method. The images obtained for

- S F 3D
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Fig. 4. Images generated by the polynomials calculated by the least-square
method. (a) d = 2.(b)d =4.(c)d =6.(d)d =8.(e)d = 10.(f) d = 12.
(g)d =14.(h)d = 16.
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Fig. 5. Processing time for finding a polynomial that approximates an image.

d < 10 in Fig. 4 are similar to the ones in Fig. 2. However,
the images are degraded for d > 12, because of the occurrence
of truncation error when solving (3).

The processing times of a Xeon 2.4-GHz computer for the
two methods are shown in Fig. 5. As the degree d increases, the
computational cost of the least-square method increases rapidly.
However, when using the Legendre polynomials, the increase in
processing time is not large. Obtaining a polynomial of degree
d = 10 [Fig. 2(e)] requires only 0.04 s. These results show
the effectiveness of the proposed algorithm using the Legendre
polynomials.

III. ALGEBRAIC TEMPLATE MATCHING

We propose an algorithm that efficiently calculates similar-
ities between the template and the partial images of various
widths and heights in the input image. First, the definition of
the problem of template matching is clarified. Given an My x N,
template image and an M x NN input image, the partial image
in the input image most similar to the template, regardless of
location, width, and height, is detected as shown in Fig. 6. To
generalize the problem, we limit the maximum size of the par-
tial image to M7 X Nj.

Various criteria, such as the Euclidean distance or correla-
tions, can be used for template matching. This paper uses nor-
malized cross correlation (NCC). By using polynomials, we can
rapidly calculate NCCs between the template image and partial
images of the input image.
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Fig. 6. Problem definition of template matching. (a) Template. (b) Input image.

In Section III-A and B, we explain the algorithms for calcu-
lating NCCs between the template and the input by fixing the
origin. Since the 2-D case is too complex to explain, the prin-
ciple of the proposed algorithm is described using a 1-D ex-
ample. Then the algorithm for a 2-D case is described by refer-
ring to the 1-D case. In Section III-C, we describe the algorithm
for algebraic template matching.

A. One-Dimensional Case

Given a template f(z) (0 < z < 1) and an input g(z)(0 <
x < M) shown in Fig. 7(a) and (b), we can calculate the nor-
malized cross correlation NCC(«) between g(z) and f(z/a) to
find the maximum NCC. Here, f(z/a) is an expanded or con-
tracted pattern of f(z), as shown in Fig. 7(c). If the origin is
fixed, NCC(«) can be written as

d
NCO(a) = o f@/@)g(@)de
\/fo F(z/a)dz [ g
fo (x/a)g(z)dx (19
1@ / fO )d:l?
where
1
I = / f2(x)dx (20)
Jo
is a constant.
If the input has discrete values G(7) (i = 0,1,...,M — 1),
the function of NCC is written as
a—1 . .
; G(1
NCC(OJ) _ Zz:O f(Z/Ol) (L) ) (21)
a Yoy G2(i)
Here, the value of « is limited to the following integers:
a=1,2,...,M. (22)

If f(x) is also discrete, to calculate NCC(«) for M kinds of
a, (21) should be calculated for each a.. The computational cost
will be

M(M +1)
2

1+2+-+ M= =0(M?). (23
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Fig. 7. Calculation of NCC between a template and an input (1-D case).
(a) Template. (b) Input. (c) Expanded template.

If f(z) is represented by a polynomial as

d
= Z aka:k 24)
k=0
(21) will be written as
NCC(a) = Z | Sl i G(0) /o (25)
o Zi;O 2(i)
Let
a—1
= (26)
1=0
a—1
s(a) =) G*(i) (27)
1=0

The values of b, () (k = 0,1,...,d) and s(«) for all & can be
calculated successively by the following recurrent formulae:

be(a) = bp(a— 1)+ (a = D*Gla—1) (a>2)
(28)
{5(1) = G?(0
s(a) =s(a—1)+G*a-1) (a>2)
(29)
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Fig. 8. Calculation of NCC between a template and an input (2-D case).
(a) Template. (b) Input.

Using these values, NCC(a) (o = 1,2,..., M) is calculated as

NCC(a) = ZZ:I? “’“2’;23/ o

(30)

Since the computational cost for each « is O(d), the total com-
putational cost is O(dM).

B. Two-Dimensional Case

Given a template f(x,y) and an input g(z,y), NCC(a, ) is
defined as the normalized cross correlation between g(z, y) and
f(z/a,y/B) as shown in Fig. 8.

Let the intensity of the sth column and the jth row of the input
image be G(i,7) (1 =0,1,....M -1, j=0,1,...,.N —1)
and the template be

?

fle,y)= > anaty' (0<z<1,0<y<1) @3
0<k+I1<d

NCC(a, ) is written as
NCC(a, )
_ Zio:ol Zf;ol 20§k+l§d aklikle(iaj)/akﬂl
DyJaf S0 -0 G2 )

(32
where
1,1
b=\ [ [ raydca (33)
JO JO
is a constant that can be calculated analytically, and
a=12,....M
{[3:1,2,..,N. (34)
Let
N a—1
ba(e, ) = (B = 1)'G(i,6 - 1) (35)
=0
a—138-1
bia(r, ) = i*5'G(i, ) (36)

Il
o
.

I
<
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a—1

§(Ol,ﬂ) = Z Gz(inﬁ - 1)

a—18-1

s, B) =Y > G(ij).

i=0 7=0

(37
(38)

Here, b (e, §) and 3(a, ) are the sums of the (th row, and
bri(a, ) and s(«, 3) are the sums from the first row to the Sth
row.

The values of NCC(a, 3) can be calculated successively by
the following recurrent formulae:

Ijkl(laﬁ) = Qk(ﬂ - l)lG(O,ﬂ - 1)
bkl(a7[3) = bkl(a — 1,[3) (39)
+Ha-DHB-D'Gla-1-1) («>2)

{ bkl(a, 1) = bkl(a, 1) B (40)
bri(er, B) = bri(ov, 8 — 1) + b, B) (B2 2)
5(1,8)=G*(0,8-1)
§(a7/8> :g(a_]wﬂ) (41)

+G*(a—-1,8-1) (a>2)
s(a, 1) = 8(a, 1)

{S(mﬂ) —s(@,f-1)+i(a,p) B22) P

chxofﬂ)::EZOSkHSdaMbM(aJ%/akﬂl. )

12 V aﬂs(aHB)

Fig. 9 displays the details of the calculation. In Fig. 9, the
black rectangle represents the region in which the similarity to
the template is calculated. Here, only the underlined parts of
each expression need to be calculated each time. The pixel cor-
responding to the underlined parts is shown as a gray pixel.

First, NCC(1, 1), which is the NCC between the 1 x 1 re-
gion in Fig. 9(a) and the template, is calculated. From (43), only
bri(1,1) and s(1,1) are necessary for calculating NCC(1,1).
These values can be calculated by using the value of G(0,0).
Next, NCC(2, 1), which is the NCC between the template and
the 2 x 1 region in Fig. 9(b) is calculated. In this case, by;(2, 1)
and s(2, 1) are necessary for calculation. Each value can be cal-
culated by using the values of G(1,0) and by;(1,1) or s(1,1).
Accordingly, the NCC between the template and the 2 x 1 re-
gion can be calculated using the value of G(1,0).

Fig. 9(c) and (d) shows the 1 x 2 and 2 x 2 regions, respec-
tively. In these cases, NCC can be calculated by adding bri (a,2)
to by (e, 1) and 5(a, 2) to s(«, 1). In this way, each NCC can
be calculated using the value of one pixel.

There are M N ways of selecting « and (3, therefore, the com-
putational cost for calculating M N NCCs is O(d>M N). On
the other hand, for conventional template matching, which cal-
culates NCC for every width and height separately (hereafter
called simple matching), the computational cost is O(M?N?).

C. Algorithm for Algebraic Template Matching

Next, we show the algorithm for algebraic template matching
(ATM). Given an M; x N; template image and an M x N input
image, we can find the partial image in the input image that is
most similar to the template image, regardless of its location,
width, or height.
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b, (1,1) = 00' G(0,0)
§(1,1)= G*(0,0)

b, (L) =by,(1,1)
s(1,1)=5(@1,1)

,,,,,

,,,,,

b,(1,2) = 0"1'G(0,1)
5(1,2)=G*(0,1)

by (2,1) =b,(1,1)+1"0'G(1,0)
5(2,)=5(1,1)+G*(1,0)

by(2,1)=b,(2,1)
s(2,)=52,1)

.....

b,(2,2) = b,(1,2) +11' G(1,1)
§(2,2)=5(01,2)+G*(1,1)

{bﬂ(l, 2)=b, (L) +5,(1,2)

by(2,2) =b, (2,1)+5,(2,2)
5(1,2) = s(1,1)+5(1,2)

$(2,2)=s(2,1)+5(2,2)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 9. Calculation of NCCs for 2-D case.

Starting location

7

.

Ni

Fig. 10. Search for partial images.

First, the algorithm described in Section II-C finds the poly-
nomial that approximates the template image. Then, we cal-
culate the NCC between the template and each partial image
smaller than, or equal to, M7 x N7. As shown in Fig. 10, we se-
lect a starting location in the input image and consider an My x
N rectangle whose top left corner is located at the starting lo-
cation. Here, the part that is not included in the input image need
not to be considered. The algorithm described in Section III-B
is applied to this rectangle. Since there are M N different ways
of selecting the starting location, and the computational cost for
searching within the rectangle is O(d? My N1 ), the total compu-
tational cost of the algorithm is O(d> M N M; N ). As described
in Section III-B, the cost of simple matching within a rectangle
is O(M?N}), and the total cost is O(MNMZN2).
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Fig. 12. Example of the matching result. Input image size is 80 X 60 and degree
of the polynomial is eight.

IV. EXPERIMENTS

In order to illustrate the effectiveness of ATM, we carried out
experiments to examine the processing time and the matching
accuracy. A few examples of applying ATM to object detection
in scene images are provided.

A. Processing Time

The processing time for ATM was compared to very fast tem-
plate matching [16] (VFTM), a method that use FFT, and simple
matching. VFTM seems to be the algorithm most closely related
to the proposed algorithm, in the sense that, in both methods,
a polynomial approximates an image. The VFTM algorithm is
summarized as follows.

1) Compute the moments of the template.

2) Compute the integral images.

3) Compute the moments of the input image for each location

in the input image.

4) Compute NCC at each location.
The number of moments is given by L = (d + 1)(d + 2)/2,
and the calculation of each moment requires summation up to
L terms, where d is the degree of the polynomial. Therefore,
the computational cost of step 3) for each location of the input
image is O(L?) = O(d*).

In the implementation of VFTM and FFT, the width and
height of the template image were changed and the proce-
dure was repeated. Since the calculation of moments requires
O(d*) for each location, the total computational cost of VFTM
is O(d*MNM;N;). According to the authors, VFTM is
the only existing algorithm that has a computational cost of
O(MN M Ny), except for the coarse-to-fine strategy, when
d is regarded as a constant. The computational cost of FFT is
O(M; Ny M?log(M)), where M = 2max([logz M],[logy N),

Various image sizes were generated by reducing the
320 x 240 image shown in Fig. 11. These images were
used as input images and the image shown in Fig. 1 was used
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TABLE I
PROCESSING TIME [SECONDS]
ATM (Proposed method) VFTM
Size. 1 g—2|d=4|d=6|d=8|d=10|d=12|d=2|d=4|d=6|d=8 | FFL | Simple
40 x 30 0.04 0.07 0.14 0.21 0.29 0.42 0.35 1.28 4.05 11.1 | 2.01 1.95
60 x 45 0.12 0.22 0.36 0.56 0.81 1.17 0.98 3.65 11.2 314 | 2.36 7.86
80 x 60 0.26 0.46 0.76 1.11 1.61 233 2.01 7.38 22.5 644 | 10.8 18.1
100 x 75 0.42 0.78 1.29 1.90 2.72 3.86 3.47 12.4 382 110 10.9 32.6
120 x 90 0.66 1.17 1.96 2.88 4.07 5.77 543 18.8 58.0 169 11.0 514
160 x 120 1.23 2.24 3.72 5.46 7.82 11.1 10.5 35.7 111 328 49.2 102
as a template image, and M; = N; = 30. Fig. 12 displays an ol
example of the matching result. 10}
The processing times for a Xeon 2.4-GHz computer using 7 °f
these methods with images of various sizes are shown in Table I. 2 8
Since processing times for ATM and VFTM depend on the de- é, ;
gree of the polynomial, various degrees are tested. The values of g 5¢
d in the table are the degrees of the polynomial. The processing & :
time for ATM includes the processing time for approximation 2l
described in Section II-C. 1t
From the table, it is clarified that the processing time for ATM 0 20 x106
is much less than that for VFTM, FFT, and simple matching. MNMiNy
For example, using the 80 x 60 image and polynomial of de- @
gree eight (the matching result of Fig. 12 was obtained), the : R
processing time for ATM was 1.11 s, however, FFT and simple 10F  |--60xd5
matching required 10.8 and 18.1 s, respectively. ATM is more 3 z | E?gggzg
effective than FFT and simple matching as the values of M; 2 7| leteoxizo
and N; increase. Note that VFTM was much faster than FFT _%” 6
and simple matching when the degree of the polynomial d was g i I
small. However, VFTM was not fast when d was large, since its * sl
processing time is proportional to d*. For any degree d, and any f I
input-image size, ATM was faster than FFT. ° : : : :
Fig. 13(a) shows the relationship between the processing time eo2 0 ® ,ﬂm o
and M N M, N; for various degrees, d. Fig. 13(b) shows the (b)
relationship between the processing time and d? for various Fig. 13.
input-image sizes. Experimentation verified that the processing ~ (b) @*.

time of ATM is O(d* M N M;Ny).

B. Matching Accuracy

The matching accuracy for ATM was tested quantitatively
using 200 images. The size of each input image was 320 x 240.
An 80 x 80 partial image of each input image was used as the
template image.

Note that Table I shows that it is necessary to reduce the
input-image size to some extent for practical use. Therefore,
each input image was reduced to 80 x 60. ATM was then used to
detect the location, width, and height of the partial image most
similar to the template image. The degree d of the polynomial
was changed from 1 to 15.

The template image was considered correctly matched if the
errors in the row, column, width, and height were within two
dots. The results are shown in Fig. 14. The figure shows that the
matching accuracy increases as the value of d becomes large.
The results of simple matching and VFTM are shown in the

Accuracy [%]

Fig. 14. Matching accuracy.

same figure. Since the input images were reduced, the accuracy
of simple matching was not very high. When d > 10, the accu-
racy of ATM is better than that of simple matching.
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(e)

Fig. 15. Example of incorrect detection by the proposed method. (a) Template.
(b) Image generated by the polynomial. (c) Incorrect detection result by the pro-
posed method. (d) Correct detection result by simple matching. (e) Horizontally
enlarged image of the region detected by the proposed method.

The matching accuracy for FFT is theoretically the same as
that of simple matching. The matching accuracy for VFTM was
low for any degree d. When the template image is exactly the
same, or almost the same, as a part of the input image, VFTM
can detect the part very quickly using a low-order polynomial.
However, when the template image differs from the input image
by only a little, the accuracy decreases rapidly. This is because
the low-order polynomial cannot represent an image faithfully
as shown in Fig. 4. Moreover, since the approximation process
of VFTM is based on the least-square method, degradation
of the quality of the approximation may occur as described
in Section II-A. Therefore, it is difficult to use high-order
polynomial in the framework of VFTM.

However, the proposed method may fail when an image has a
high frequency content. Fig. 15 shows an example of incorrect
matching by the proposed method when d = 15. Fig. 15(a) and
(b) shows the original template image and the image generated
by the polynomial. Fig. 15(c) and (d) shows the matching re-
sults for the proposed method and simple matching. In order
to give an obvious image of the detected region by the pro-
posed method, Fig. 15(e) shows a horizontally enlarged image
of the detected region in Fig. 15(c). In this case, besides the
detected region is similar to the template image, the template
image has a high frequency content [white small buildings in
Fig. 15(a)] that cannot be represented by the proposed method.
Simple matching provides correct detection because these con-
tents can be used as an important feature of the template image.

C. Application to Object Detection in Scene Images

ATM was applied for the object detection in the scene images
to show the practical application of the proposed algorithm. Al-
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(d)

Fig. 16. Examples of object detection by the proposed method: (left) template
images, (center) images generated by the polynomial, and (right) the detection
results of the proposed method.

though the processing time of ATM is much smaller than that
of the other template matching techniques, the processing time
is still not small enough when the input image is large. For the
construction of a practical object detection system, ATM was
combined with the coarse-to-fine strategy, and the effectiveness
of the combined approach was tested with the real scene images.

Given a template and an input image, first the input image
was reduced to one-fourth of its original size by averaging the
values of 4 x 4 pixels. The ATM performed coarse matching
using the reduced image as the input image. Fine matching was
performed using the original input image, only when there was
a significant similarity in the coarse matching. The same poly-
nomial that approximates the template image was used for both
coarse and fine matching.

The experiment used 320 x 240 input images. A part of the
input image that included an object was extracted manually, and
the extracted or enlarged image was used as the template. Exam-
ples of the object detection are shown in Fig. 16. In each row, the
left image is the template image, the center image is the image
generated by the polynomial (d = 20), and the right image is
the detection result. For the images of Fig. 16(a)—(c), part of the
input image is used as the template. For the image of Fig. 16(d),
a horizontally enlarged portion of the input image is used as the
template.
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The object in the template image is detected correctly in all
cases. Fig. 16(d) displays a template with an aspect ratio dif-
ferent from that of the partial image in the input image. This
kind of template image, having a changed aspect ratio, is often
obtained by taking a picture of a road sign from a moving ve-
hicle. The figures show that the location, width, and height of
the partial image most similar to the template image were cor-
rectly detected. The sizes of the template image and the detected
partial image are 59 x 52 and 39 X 51, respectively.

V. CONCLUSION

In this paper, we have proposed a novel framework for
template matching. The proposed algebraic template matching
(ATM) uses a polynomial, which approximates a template
image, to match an input image instead of using the template
image. ATM efficiently calculates normalized cross correlations
between the template and partial images of varying widths and
heights by using recurrent formulae. The proposed algorithm is
effective especially when the width and height of the template
image are different from those of the input image. According to
the authors, no other algorithm has been proposed to calculate
similarities incrementally by changing the width and height of
the partial image.

For efficient approximation of the template image by the
polynomial, an algorithm using the Legendre polynomial was
proposed. The computational cost of the proposed method is
much less than that of the conventional least-square method.
Moreover, the proposed algorithm only calculates the inner
product and does not require the inverse matrix calculation thus
reduces the effects of the truncation error.

It has been shown theoretically and experimentally
that the computational cost of the proposed algorithm is
O(d*M N My Ny), where the size of the input image is M x N,
the maximum size of the partial image is M; X Ny, and the
degree of the polynomial is d. The proposed algorithm resolves
one of the shortcomings of the image-based approach where
the computational cost is huge, and expands the usefulness of
template matching.

In this paper, we focused only on image-based template
matching. For practical object detection, feature-based ap-
proaches are also effective, e.g., using color histogram [19],
[25] or detecting local feature points [11], [12]. It will be
important, in future work, to combine the proposed method
with the feature-based object detection algorithms to achieve a
practical object detection system.

The proposed algorithm only treats expansion, contraction
and translation of the partial image. To expand the ability of the
proposed framework, other geometrical transformations such
as rotation, affine transformation, and projective transformation
must be considered. Developing efficient template matching al-
gorithms for these kinds of transformations will be addressed in
a future work.
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