
Accepted Manuscript

New Efficient Algorithms for the LCS and Constrained LCS
Problems

Costas S. Iliopoulos, M. Sohel Rahman

PII: S0020-0190(07)00272-4
DOI: 10.1016/j.ipl.2007.09.008
Reference: IPL 3743

To appear in: Information Processing Letters

Received date: 16 May 2007
Revised date: 18 September 2007
Accepted date: 18 September 2007

Please cite this article as: C.S. Iliopoulos, M.S. Rahman, New Efficient Algorithms for the LCS and
Constrained LCS Problems, Information Processing Letters (2007), doi: 10.1016/j.ipl.2007.09.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ipl.2007.09.008

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

New Efficient Algorithms for the LCS and Constrained LCS

Problems�

Costas S. Iliopoulos�� and M. Sohel Rahman� � �,†

Algorithm Design Group

Department of Computer Science

King’s College London

Strand, London WC2R 2LS, England

{csi,sohel}@dcs.kcl.ac.uk
http://www.dcs.kcl.ac.uk/adg

Abstract. In this paper, we study the classic and well-studied longest common subsequence

(LCS) problem and a recent variant of it, namely the constrained LCS (CLCS) problem. In

the CLCS problem, the computed LCS must also be a supersequence of a third given string.

In this paper, we first present an efficient algorithm for the traditional LCS problem that runs

in O(R log log n + n) time, where R is the total number of ordered pairs of positions at which

the two strings match and n is the length of the two given strings. Then, using this algorithm,

we devise an algorithm for the CLCS problem having time complexity O(pR log log n + n) in

the worst case, where p is the length of the third string.

Keywords: algorithms, combinatorial problems, longest common subsequence.

1 Introduction

The longest common subsequence (LCS) problem is one of the classical and well-studied problems
in computer science having extensive applications in diverse areas. In this paper, we study the
traditional LCS problem along with an interesting and newer variant of it, namely the Constrained
LCS problem (CLCS). In the CLCS problem, the computed LCS must also be a supersequence of
a third string (given). This problem finds its motivation from bioinformatics: in the computation of
the homology of two biological sequences it is important to take into account a common specific or
putative structure [18].

The longest common subsequence problem for k strings (k > 2) was first shown to be NP-hard [12]
and later proved to be hard to be approximated [10]. The restricted but probably the more studied
problem that deals with two strings has been studied extensively. The classic dynamic programming
solution to LCS problem, invented by Wagner and Fischer [19], has O(n2) worst case running time,
where n is the length of the two strings. Masek and Paterson [13] improved this algorithm using the
“Four-Russians” technique [1] to reduce the worst case running time to O(n2/ log n)1. Since then
� A preliminary version appeared in [9].

�� Supported by EPSRC and Royal Society grants.
� � � Supported by the Commonwealth Scholarship Commission in the UK under the Commonwealth Scholar-

ship and Fellowship Plan (CSFP).
† On Leave from Department of CSE, BUET, Dhaka-1000, Bangladesh.
1 Employing different techniques, the same worst case bound was achieved in [7]. In particular, for most

texts, the achieved time complexity in [7] is O(hn2/ log n), where h ≤ 1 is the entropy of the text.

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

not much improvement in terms of n can be found in the literature. However, several algorithms
exist with complexities depending on other parameters. For example, Myers in [14] and Nakatsu et
al. in [15] presented an O(nD) algorithm, where the parameter D is the simple Levenshtein distance
between the two given strings [11]. Another interesting and perhaps more relevant parameter for
this problem is R, where R is the total number of ordered pairs of positions at which the two strings
match. Hunt and Szymanski [8] presented an algorithm running in O((R+ n) log n) time. They also
cited applications where R ∼ n and thereby claimed that for these applications the algorithm would
run in O(n log n) time. Very recently, Rahman and Iliopoulos presented an improved LCS algorithm
running in O(R log log n+n) time [17]. For a comprehensive comparison of the well-known algorithms
for LCS problem and study of their behaviour in various application environments the readers are
referred to [4].

The CLCS problem, on the other hand, was introduced quite recently by Tsai in [18], where an
algorithm was presented solving the problem in O(pn4) time, where p is the length of the third string
which applies the constraint. Later, Chin et al. [6] and independently, Arslan and Eğecioğlu [2, 3]
presented improved algorithms with O(pn2) time and space complexity.

In this paper, similar to the work of [8], we devise efficient algorithms for LCS and CLCS problems
having running time dependent on the parameter R. The main goal of this paper is to present an
efficient algorithm to solve Problem CLCS. To do that, we first devise an efficient algorithm for
the traditional LCS problem that runs in O(R log log n + n) time. Then, using this algorithm, we
devise an algorithm for the CLCS problem running in O(pR log log n + n) time in the worst case.
It is clear that, in the worst case, we have R = O(n2). Therefore, in the worst case, due to the
log log n term, our algorithm will behave slightly worse than the existing algorithms. In particular,
in the extreme cases, the running time of our LCS and CLCS algorithms could be O(n2 log log n)
and O(pn2 log log n) respectively. However, it is clear that, if R < n2/ log log n, our CLCS algorithm
will outperform the (best) O(pn2) time algorithm in the literature. For the same upper bound of R,
our LCS algorithm would beat the classic O(n2) algorithm. Our LCS algorithm also outperforms
the celebrated O((R + n) log n) algorithm of Hunt and Szymanski [8]. Furthermore, it is worth-
mentioning that there are large number of applications for which we have R ∼ n. Typical of such
applications include finding the longest ascending subsequence of a permutation of integers from 1
to n, finding a maximum cardinality linearly ordered subset of some finite collection of vectors in
2-space etc (for more details see [8] and references therein). Hence, in these situations, our algorithms
will exhibit significant speed-up over the existing ones.

The rest of the paper is organized as follows. In Section 2, we present the preliminary concepts.
Section 3 is devoted to a new O(R log log n + n) time algorithm for the LCS problem. In Section 4,
using the algorithm of section 3, we devise a new efficient algorithm to solve the CLCS problem,
which runs in O(pR log log n + n) time. Finally, we briefly conclude in Section 5.

2 Preliminaries

Suppose we are given two strings X [1..n] = X [1] X [2] . . . X [n] and Y [1..n] = Y [1] Y [2] . . . Y [n]. A
subsequence S[1..r] = S[1] S[2] ...S[r] of X is obtained by deleting n−r symbols from X . A common
subsequence of two strings X and Y , denoted CS(X, Y), is a subsequence common to both X and

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Y . The longest common subsequence of X and Y , denoted LCS(X, Y), is a common subsequence
of maximum length. We denote the length of LCS(X, Y) by L(X, Y).

Problem “LCS”. Given 2 strings X and Y , we want to find out an LCS(X, Y).

Given two strings X [1..n] and Y [1..n] and a third string Z[1..p], a CS(X, Y) is said to be con-
strained by Z if, and only if, Z is a subsequence of that CS(X, Y). We use CSZ(X, Y) to denote a
common subsequence of X and Y constrained by Z. Then, the longest common subsequence of X

and Y , constrained by Z, is a CSZ(X, Y) of maximum length and is denoted by LCSZ(X, Y). We
denote the length of LCSZ(X, Y) by LZ(X, Y). It is easy to note that LZ(X, Y) ≤ L(X, Y).

Problem “CLCS”. Given 2 strings X and Y and another string Z, we want to find an LCSZ(X, Y).

T C C A C AX =

Y = A C C A A G

T C C A C AX =

Y = A C C A A G

Z = A C

Fig. 1. LCS(X, Y) and LCSZ(X, Y) of Example 1.

Example 1. Suppose X = TCCACA, Y = ACCAAG and Z = AC. As is evident from Fig. 1,
S1 = CCAA is an LCS(X, Y). However, S1 is not an LCSZ(X, Y) because Z is not a subsequence
of S1. On the other hand, S2 = ACA is an LCSZ(X, Y). Note that, in this case rZ(X, Y) < r(X, Y).

In this paper, we use the following notions. We say a pair (i, j), 1 ≤ i, j ≤ n, defines a match, if
X [i] = Y [j]. The set of all matches, M , is defined as follows:

M = {(i, j) | X [i] = Y [j], 1 ≤ i, j ≤ n}

We define |M | = R. In what follows, we assume that |X | = |Y | = n. But our results can be easily
extended when |X | �= |Y |.

3 A new Algorithm for Problem LCS

In this section, we present a new efficient algorithm to solve Problem LCS combining an interesting
data structure of [5] with the techniques of [16]. The resulting algorithm will be applied to get an
efficient algorithm for Problem CLCS in Section 4. We follow the simple dynamic programming
formulation of [16] and improve its running time of O(n2 + R) to O(R log log n + n). The dynamic
programming formulation from [16] is as follows:

T [i, j] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Undefined if (i, j) /∈ M,

1 if (i = 1 or j = 1) and (i, j) ∈ M

1 + max 1≤�i<i
1≤�j<j

(�i,�j)∈M

{T [�i, �j]} if (i, j �= 1) and (i, j) ∈ M.
(1)

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Here, we have used the tabular notion T [i, j] to denote L(X [1..i], Y [1..j]). In our new Algorithm,
referred to as AlgLCSNew henceforth, we use a preprocessing step (Algorithm 1 in [16]), requiring
O(R log log n + n) time2, to calculate the set M in the ‘prescribed’ row by row order. Then the
algorithm processes each (i, j) ∈ M in that order using Equation 1. The efficient implementation of
Equation 1 utilizes the following facts from [16].

Fact 1. ([16]) Suppose (i, j) ∈ M . Then for all (i′, j), i′ > i (resp. (i, j′), j′ > j) we must have
T [i′, j] ≥ T [i, j] (resp. T [i, j′] ≥ T [i, j]).

Fact 2. ([16]) The calculation of a T [i, j], (i, j) ∈ M, 1 ≤ i, j ≤ n is independent of any T [i, q], (i, q) ∈
M, 1 ≤ q ≤ n.

Along with the above two facts, we use the ‘BoundedHeap’ data structure of [5], that supports the
following operations:

Insert(H, Pos, Value, Data): Insert into the BoundedHeap H the position Pos with value Value and
associated information Data.

IncreaseValue(H, Pos, Value, Data): If H does not already contain the position Pos, perform Insert(H,

Pos, Value, Data). Otherwise, set this position’s value to max{Value, Value′}, where Value′ is its
previous value. Also, update Data accordingly.

BoundedMax(H, Pos): Return the item (with additional data) that has maximum value among all
items in H with position smaller than Pos. If H does not contain any items with position smaller
than Pos, return 0.

The following theorem from [5] presents the time complexity of the BoundedHeap data structure.

Theorem 1. ([5]) BoundedHeap data structure can support each of the above operations in O(log log n)
amortized time, where keys are drawn from the set {1, . . . , n}. The data structure requires O(n) space.

The algorithm AlgLCSNew proceeds as follows. Recall that we perform a row by row operation.
We always deal with two BoundedHeap data structures simultaneously. While considering row i, we
already have the BoundedHeap data structure Hi−1 at our hand; now we construct the BoundedHeap
data structure Hi. At first Hi is initialized to Hi−1. Assume that we are considering the match
(i, j) ∈ Mi, 1 ≤ j ≤ n, where Mi = {(i, j) | (i, j) ∈ M, 1 ≤ j ≤ n}. We calculate T [i, j] as follows:

T [i, j].Value = BoundedMax(Hi−1, j).Value + 1. (2)

T [i, j].Prev = BoundedMax(Hi−1, j).data3. (3)

Then we perform the following operation:

IncreaseValue(Hi, j, T [i, j].Value, (i, j)). (4)

2 In [16], the running time of this preprocessing step is reported as O(R log log n) under the implicit as-
sumption that R ≥ n.

3 Note that, we use the ‘data’ field to keep the ‘address’ of the match.

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

The correctness of the above procedure follows from Fact 1 and 2. Due to Fact 1, as soon as we
compute the T -value of a new match in a column j, we can forget about the previous matches of
that column. So, as soon as we compute T [i, j] in row i, we insert it in Hi to update it for the next
row, i.e. row i + 1. And, due to Fact 2, we can use Hi−1 for the computation of the T -values of the
matches in row i and do the update in Hi (initialized at first to Hi−1) to make Hi ready for row
i + 1.

Next, we analyze the running time of AlgLCSNew. The preprocessing requires O(R log log n +
n) time to get the set M in the required order [16]. Then, we calculate each (i, j) ∈ M using
Equations 2 to 4. Note carefully that, we need to use each of the two operations, BoundedMax() and
IncreaseValue(), once for each of the matches in M . Therefore, according to Theorem 1, in total,
the running time is O(R log log n + n). The space requirement is as follows. The preprocessing step
requires θ(max{R, n}) space [16]. And, in the main algorithm, we only need to keep track of two
BoundedHeap data structures at a time, requiring O(n) space (Theorem 1). So, in total the space
requirement is θ(max{R, n}).

Theorem 2. Problem LCS can be solved in O(R log log n + n) time requiring θ(max{R, n}) space.

Algorithm 1 formally presents the algorithm. Since we are not calculating all the entries of
the table, we, off course, need to use variables to keep track of the actual LCS. We remark that,
AlgLCSNew uses the same basic strategy used in [17], and has the same worst case running time
achieved there. However, AlgLCSNew turns out to be conceptually simpler and easier to use in
solving the CLCS problem, which is handled in the next section.

Algorithm 1 AlgLCSNew
1: Construct the set M using Algorithm 1 of [16]. Let Mi = {(i, j) | (i, j) ∈ M, 1 ≤ j ≤ n}.
2: globalLCS.Instance = ε
3: globalLCS.Value = ε
4: H0 = ε
5: for i = 1 to n do
6: Hi = Hi−1

7: for each (i, j) ∈ Mi do
8: maxresult = BoundedMax(Hi−1, j)
9: T [i, j].Value = maxresult.Value + 1

10: T [i, j].Prev = maxresult.Instance
11: if globalLCS.Value < T [i, j].Value then
12: globalLCS.Value = T [i, j].Value
13: globalLCS.Instance = (i, j)
14: end if
15: IncreaseValue(Hi, j, T [i, j].Value, (i, j)).
16: end for
17: Delete Hi−1.
18: end for
19: return globalLCS

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

4 CLCS Algorithm

In this section, we present a new efficient algorithm for Problem CLCS. We use the dynamic pro-
gramming formulation for CLCS presented in [2, 3]. Extending our tabular notion from Equation 1,
we use T [i, j, k], 1 ≤ i, j ≤ n, 0 ≤ k ≤ p to denote LZ[1..k](X [1..i], Y [1..j])4. We have the following
formulation for Problem CLCS from [2, 3].

T [i, j, k] = max{T ′[i, j, k], T ′′[i, j, k], T [i, j − 1, k], T [i − 1, j, k]} (5)

where

T ′[i, j, k] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + T [i − 1, j − 1, k − 1] if (k = 1 or

(k > 1 and T [i − 1, j − 1, k − 1] > 0))

and X [i] = Y [j] = Z[k].

0 otherwise.

(6)

and

T ′′[i, j, k] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + T [i − 1, j − 1, k] if (k = 0 or T [i − 1, j − 1, k] > 0)

and X [i] = Y [j].

0 otherwise.

(7)

The following boundary conditions are assumed in Equations 5 to 7:

T [i, 0, k] = T [0, j, k] = 0, 0 ≤ i, j ≤ n, 0 ≤ k ≤ p.

It is straightforward to give a O(pn2) algorithm realizing the dynamic programming formulation
presented in Equations 5 to 7. Our goal is to present a new efficient algorithm using the parameter
R. In line of Equation 1, we can reformulate Equations 6 and 7 as follows:

V1 = max
1≤�i<i
1≤�j<j

(�i,�j)∈M

{T [�i, �j, k − 1]} (8)

T ′[i, j, k] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + V1 if (k = 1 or

(k > 1 and V1 > 0))

and X [i] = Y [j] = Z[k].

0 otherwise.

(9)

V2 = max
1≤�i<i
1≤�j<j

(�i,�j)∈M

{T [�i, �j , k]} (10)

4 Recall that, p = |Z|.

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

T ′′[i, j, k] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if (i = 1 or j = 1) and (i, j) ∈ M

1 + V2 if (k = 0 or V2 > 0)

and (i, j) ∈ M.

0 otherwise.

(11)

Algorithm 2 AlgCLCSNew
1: Construct the set M using Algorithm 1 of [16]. Let Mi = (i, j) ∈ M, 1 ≤ j ≤ n.
2: globalCLCS.Instance = ε
3: globalCLCS.Value = ε
4: H−1

0 = ε
5: H0

0 = ε
6: for i = 1 to n do
7: for k = 0 to p do
8: Hk

i = Hk
i−1

9: for each (i, j) ∈ Mi do
10: max1 = BoundedMax(Hk−1

i−1 , j)
11: max2 = BoundedMax(Hk

i−1, j)
/*First, we consider Equations 10 and 11*/

12: Val2.Value = 0
13: Val2.Instance = ε
14: if ((k = 0) or (max2.Value > 0)) then
15: Val2 = max2

16: end if
/*Now, we consider Equations 8 and 9*/

17: Val1.Value = 0
18: Val1.Instance = ε
19: if (X [i] = Z[k])/*This means X [i] = Y [j] = Z[k]*/ then
20: if (k = 1) or ((k > 1) and (max1.Value > 0)) then
21: Val1 = max1

22: end if
23: end if

/*Finally, we consider Equation 5*/
24: maxresult = max{Val1, Val2}
25: Tk[i, j].Value = maxresult.Value + 1
26: Tk[i, j].Prev = maxresult.Instance
27: if globalLCS.Value < Tk[i, j].Value then
28: globalLCS.Value = Tk[i, j].Value
29: globalLCS.Instance = (i, j, k)
30: end if
31: IncreaseValue(Hk

i , j, T [i, j].Value, (i, j, k)).
32: end for
33: Delete Hk−1

i−1 .
34: end for
35: end for
36: return globalLCS

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Now, our goal is to implement the Equations 5, 8−11 efficiently with the help of AlgLCSNew.
In the tabular notion we used, T [i, j, k] can be thought of as a three dimensional matrix having
dimensions n, n and p + 1. However, it would be useful, in our algorithm, to visualize it as p + 1
2-dimensional matrices, instead of one 3-dimensional matrix. We slightly change the notation to
highlight this view and use Tk, 0 ≤ k ≤ p to denote the kth two dimensional matrix. Note that,
with this new notation we have T [i, j, k] = Tk[i, j], 1 ≤ i, j ≤ n, 0 ≤ k ≤ p. It is easy to realize that,
Fact 1 still holds for each of the matrices Tk, 1 ≤ k ≤ p. And we have the following facts, extended
from Fact 2, realizing the dependency between the matrices in the CLCS computation in light of
Equations 8 to 11.

Fact 3. The calculation of the matrix Tk, 0 ≤ k ≤ p, is independent of any matrix T� such that
� < k − 1.

Fact 4. The calculation of a Tk[i, j], (i, j) ∈ M, 1 ≤ i, j ≤ n, 1 ≤ k ≤ p is independent of any
Tk[i, q1] and Tk−1[i, q2] such that (i, q1), (i, q2) ∈ M, 1 ≤ q1, q2 ≤ n.

The algorithm, referred to as AlgCLCSNew henceforth, proceeds as follows. We consider all
the matches of row i for all p + 1 matrices and employ a slightly extended version of AlgLCSNew
(Algorithm 1). We consider row i + 1 only when the calculation of row i is completed for all Tk, 0 ≤
k ≤ p. Extending the idea of AlgLCSNew, in AlgCLCSNew, we always deal with 3 BoundedHeap
data structures Hk

i ,Hk
i−1 and Hk−1

i−1 :

– Hk
i−1 is required due to Equations 10 and 11.

– Hk−1
i−1 is required due to Equations 8 and 9.

– We update Hk
i , which is initialized to Hk

i−1 when we start row i. Hk
i is later used when we

consider the matches of row i + 1 of the two matrices Tk and Tk+1.

Due to Fact 4, while computing a Tk[i, j], (i, j) ∈ M, 1 ≤ i, j ≤ n, 1 ≤ k ≤ p, we can employ
the same technique with Hk

i , Hk
i−1 and Hk−1

i−1 used in AlgLCSNew (with Hi and Hi−1 to compute
T [i, j], (i, j) ∈ M, 1 ≤ j ≤ n). On the other hand, courtesy to Fact 3, to realize Equations 8−11, we
need only keep track of Hk−1

i−1 and Hk
i−1. The steps are formally stated in Algorithm 2. In light of

the analysis of AlgLCSNew, it is quite easy to see that the running time is O(pR log log n + n). The
space complexity, like AlgLCSNew, is dominated by the preprocessing step of [16], because in the
main algorithm, we only need to keep track of the 3 BoundedHeap data structures and the third
string Z, requiring in total O(n) space.

Theorem 3. Problem CLCS can be solved in O(pR log log n+n) time requiring θ(max{R, n}) space.

5 Conclusion

In this paper, we have studied the classic and well-studied longest common subsequence (LCS)
problem and a recent variant of it, namely the constrained LCS (CLCS) problem. In particular, we
have presented an efficient algorithm for the traditional LCS problem that runs in O(R log log n+n)
time. Then, using this algorithm, we have devised an algorithm for the CLCS problem having time
complexity O(pR log log n + n) in the worst case. It is clear that, in the worst case, we have R =

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

O(n2). Therefore, in the extreme cases, the running time for our LCS and CLCS algorithms could
be O(n2 log log n) and O(pn2 log log n) respectively. However, it is clear that, if R < n2/ log log n,
our CLCS algorithm will outperform the best O(pn2) time algorithm in the literature. For the same
upper bound of R, our LCS algorithm would beat the classic O(n2) algorithm. Our LCS algorithm
also outperforms the celebrated O((R + n) log n) algorithm of [8]. Finally, there are large number
of applications for which we have R ∼ n. In these cases, we achieve a very good running time of
O(pn log log n) for the CLCS problem and O(n log log n) for the traditional LCS problem. It would
be interesting to see whether our techniques can be used to other variants of LCS problem to devise
similar efficient algorithms.

Acknowledgement

The authors would like to express their gratitude to the anonymous reviewers and the editor for
their helpful suggestions.

References

1. V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economic construction of the transitive closure

of a directed graph. Soviet Physics - Doklady, 11:1209–1210, 1975. English Translation.

2. A. N. Arslan and Ö. Eğecioğlu. Algorithms for the constrained longest common subsequence problems.

In M. Simánek and J. Holub, editors, The Prague Stringology Conference, pages 24–32. Department of

Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University, 2004.

3. A. N. Arslan and Ö. Eğecioğlu. Algorithms for the constrained longest common subsequence problems.

International Journal of Foundations Computer Science, 16(6):1099–1109, 2005.

4. L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence algorithms. In String

Processing and Information Retrieval (SPIRE), pages 39–48. IEEE Computer Society, 2000.

5. G. S. Brodal, K. Kaligosi, I. Katriel, and M. Kutz. Faster algorithms for computing longest common in-

creasing subsequences. In M. Lewenstein and G. Valiente, editors, Annual Symposium on Combinatorial

Pattern Matching (CPM), volume 4009 of Lecture Notes in Computer Science, pages 330–341. Springer,

2006.

6. F. Y. L. Chin, A. D. Santis, A. L. Ferrara, N. L. Ho, and S. K. Kim. A simple algorithm for the

constrained sequence problems. Information Processing Letters, 90(4):175–179, 2004.

7. M. Crochemore, G. M. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence alignment algorithm for

unrestricted cost matrices. In Annual ACM-SIAM Symposium on Discrete Algorithms, pages 679–688,

2002.

8. J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest subsequences. Communications

of the ACM, 20(5):350–353, 1977.

9. C. S. Iliopoulos and M. S. Rahman. New efficient algorithms for LCS and constrained LCS problem.

In H. Broersma, S. S. Dantchev, M. Johnson, and S. Szeider, editors, ACiD, volume 9 of Texts in

Algorithmics, pages 83–94. King’s College, London, 2007.

10. T. Jiang and M. Li. On the approximation of shortest common supersequences and longest common

subsequences. SIAM Journal on Computing, 24(5):1122–1139, 1995.

11. V. Levenshtein. Binary codes capable of correcting spurious insertions and deletions of ones. Problems

in Information Transmission, 1:8–17, 1965.

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

12. D. Maier. The complexity of some problems on subsequences and supersequences. Journal of the ACM,

25(2):322–336, 1978.

13. W. J. Masek and M. Paterson. A faster algorithm computing string edit distances. Journal of Computer

and System Sciences, 20(1):18–31, 1980.

14. E. W. Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1(2):251–266, 1986.

15. N. Nakatsu, Y. Kambayashi, and S. Yajima. A longest common subsequence algorithm suitable for

similar text strings. Acta Informatica, 18:171–179, 1982.

16. M. S. Rahman and C. S. Iliopoulos. Algorithms for computing variants of the longest common subse-

quence problem. In T. Asano, editor, ISAAC, volume 4288 of Lecture Notes in Computer Science, pages

399–408. Springer, 2006.

17. M. S. Rahman and C. S. Iliopoulos. A new efficient algorithm for computing the longest common

subsequence. In M.-Y. Kao and X.-Y. Li, editors, AAIM, volume 4508 of Lecture Notes in Computer

Science, pages 82–90. Springer, 2007.

18. Y.-T. Tsai. The constrained longest common subsequence problem. Information Processing Letters,

88(4):173–176, 2003.

19. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of the ACM, 21(1):168–

173, 1974.

