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Abstract. We have recently described a new conformational search strategy for protein
folding algorithms, called the CGU (convex global underestimator) method. Here we use
a simplified protein chain representation and a differentiable form of the Sun/Thomas/Dill
energy function to test the CGU method. Standard search methods, such as Monte Carlo
and molecular dynamics are slowed by kinetic traps. That is, the computer time depends
more strongly on the shape of the energy landscape (dictated by the amino acid sequence)
than on the number of degrees of freedom (dictated by the chain length). The CGU
method is not subject to this limitation, since it explores the underside of the energy
landscape, not the top. We find that the CGU computer time is largely independent of the
monomer sequence, for different chain folds, and scales &% W@ith chain length. By

using different starting points, we show that the method appears to find global minima.
Since we can currently find stable states of 36-residue chains in 2.4 hours, the method may
be practical for small proteins.
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1. Introduction

To develop a computer algorithm that will predict the watstructure of a protein

given only its amino acid sequence requires three ingredients: a suitable chain rep-
resentation, an accurate egyerfunction, and aast search stragg that can find

the globally optimal levest enagy conformations. Our aim here is not to attempt

to sole all these problems or towadop a protein folding algorithm. Our aim is
more modest. Here we use an imperfect simplified chain representation and
enegy function to test a me conformational search method. Our model is a dif-
ferentiable form of the Sun/Thomas/Dill chain representation andjerfanc-

tion. It is protein-lile in the follaving respects: it includes chain conneityi,
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steric constraintshy preferences, andydrophobic and ydrogen bonding inter-
actions. Hence chains collapse to compact states wilophobic cores and
some lydrogen bonded structure. The modelvieer, is not suficient to predict
native folds correctly from amino acid sequencegnethough it does well in
some limited tests [10]. Thus our aim is not to fold proteins; our aim is to test a
method of searching for\est enagy states in a protein-kkmodel.

Standard search methods, including molecular dynamics, Monte Carlo, simu-
lated annealling, and genetic algorithms, often get stuck in kinetic traps. The chal-
lenge in deeloping Bst search strajees is in understanding what &t® them
down. Proteins are ditult for two reasons. First, we require the global optimum,
rather than one of the g& number of local optima. Second, an algorithm must be
able to deal with ery different shapes of erggrlandscapes, and the shape is often
a stronger determinant of computer time than the size of the landscape. The shape
of the landscape is dependent on the amino acid sequence. The size is dependent
on the chain length. Often there is no simple scaling with the chain length.

Our current method tals a rather diérent approach. Rather than meandering
over the tops of engy landscapes, our CGU methadattmws under it, and should
therefore not be #dcted by the heights of kinetic barriers. As a test, here we
explore the dependence of the CGU search time on chain length and monomer
sequence. Also weawy the starting conformations in order to check that the
method is finding global optima, rather than local optima. The method does not
get stuck in kinetic traps, and appears to find global optima in a time that depends
on rf*, where n is the chain length, independently of the monomer sequence. It
may be a practical search method for more realistiggranctions.

2. Protein Model and Global Search Strategy

Practical search stragies for the protein folding problem currently require a sim-
plified, yet suficiently realistic, molecular model with an associated potential
enegy function representing the dominant forcesluwed in protein folding [9].

In our present model, each residue in the primary sequence of a protein is charac-
terized by its backbone components NFHaC'O and one of 20 possible amino
acid sidechains attached to the centrglabm. The three-dimensional structure

of the chain is determined by internal molecular coordinates consisting of bond
lengthsl, bond angle®, and the backbone dihedral anglesy, andw. Fortu-
nately these 86 parameters (for anresidue structure) do not alry indepen-
dently Some of these (# of them) are garded as figd since thg are found to

vary within only a ery small neighborhood of arxgerimentally determined
value. Among these are the Bbackbone bond lengthsthe 3-2 backbone bond
anglesd, and ther-1 peptide bond dihedral angleqfixed in the trans conforma-
tion). This leaes only the-1 backbone dihedral angle paidsy() in the reduced
representation model. These also are not completely independentarene



PROTEINSTRUCTUREAND ENERGY LANDSCAPE DEPENDENCEON SEQUENCE 3

severely constrained by kmm chemical data (the Ramachandran plot) for each of

the 20 amino acid residues. Furthermore, since the atoms from,dogh@ net

C, along the backbone can be grouped into mtgcar peptide units, there are no

extra parameters required topeess the three-dimensional position of the
attached O and H peptide atoms. Hence, these bond lengths and bond angles are
also knavn and fixed. Figure 1 illustrates this model.

Figure 1 Simple Polypeptide M odel

Another ley element of this simplified polypeptide model is that each
sidechain is classified as eithgidhophobic or polarand is represented by only a
single “virtual” center of mass atom. Since each sidechain is represented by only
the single center of mass “virtual atomg, @o etra parameters are needed to
define the position of each sidechain with respect to the backbone mainchain. The
twenty amino acids are thus classified int@ tgroups, kidrophobic and polar
according to the scalewgin by Miyazava and Jernign [5].

Corresponding to this simplified polypeptide model is a simpleggrieinc-
tion. This function includes four components: a contactggnterm fvoring pair-
wise tydrophobic residues, a second contact temorfng hydrogen bond
formation between donor NH and acceptér@ pairs, a steric repuls term
which rejects ayconformation that wuld permit unreasonably small interatomic
distances, and a main chain torsional term thawvallonly certain presetalues
for the backbone dihedral angle paipglf). Since the residues in this model come
in only two forms, lydrophobic and polarwhere the ydrophobic monomers



4 K.A. DILL, A.T. PHILLIPS, AND J.B. ROSEN

exhibit a strong pairwise attraction, themMest free engyy state imolves those
conformations with the greatest number pditophobic “contacts” [1] and intras-
trand lydrogen bonds. Simplified potential functiorvideen successful in stud-
ies by Sun, Thomas, and Dill [10], by Suiasan and Rose [7], and byérand
Dill [11]. We used here a simple modification of the Sun/Thomas/Dillggner
function.

One practical means for finding the global minimum of the polypeptide’
potential enagy function is to use a global underestimator to localize the search in
the ragion of the global minimum. This CGU (ogax global underestimator)
method is designed to fit all kwo local minima with a carex function which
underestimates all of themytwhich difers from them by the minimum possible
amount in the discrete;lnorm (see Figure 2). The minimum of this underestima-

\

Enegy

Figure 2 The Convex Global
Underestimator (CGU)

tor is used to predict the global minimum for the functionwaiig a more local-

ized conformer search to be performed based on the predicted minimum. More
precisely given anr-residue structure with n=2r backbone dihedral angles, we
denote a conformation of this simplified modelgy R", and the corresponding
simplified potential engy function \alue byF(g). Then, assuming thatk2n+1

local minimum conformationg®, for j=1,....k, hae been computed, a c@x
guadratic underestimating functi®#(¢) is fitted to these local minima so that it
underestimates all the local minima, and normally interpolB(e®) at Z+1
points. This is accomplished by determining the fa@ehts in the function(op)

so that

(1) 5, = F(gl)) - W(¢) 20

for j=1,...,k, and where ‘.‘z d; is minimized. That is, the ddrence betweeR(¢) and
W(@) is minimized in the discrete;lnorm over the set ok local minima(p(J), i=1,....k. The
underestimating functiof(¢) used in this CGU method isvgin by

(2) W) = o+ 3 Ko+ 30020
i=1

Note thatc; andd; appear linearly in the constraints of (1) for each local mini-
mumg?. Corvexity of this quadratic function is guaranteed by requiring dhat
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0 fori=1,...n. Other linear combinations of ocgex functions could also be used,
but this quadratic function is the simplest.

A new set of conformers generated by the localized search theessasva
basis for another quadratic underestimatioerdhe reduced space. Aftevegal
repetitions, the global minimum conformatipg and its associated global mini-
mum enegy F(¢g) can be found with reasonable assurance.fore specific
details of the CGU method and its computational results, see [2], [3], [4], and [6].

3. Global Underestimation of the Energy L andscape

As summarized in the prious section, the CGU algorithm will determine a glo-
bal minimum backbone torsion anglector ¢ and corresponding global mini-
mum enegy function alue Fg = F(¢g). As part of the CGU algorithm, a
relatively lage number of local minima@, j =1,....k, of the functiorF(¢) will

also be computed. denote the corresponding functicalues byF; = F(eD) =

Fg for j=1,....k. pically we hae k= 2n+1, where n is the number of backbone
torsion angles since this is a necessary condition for constructing the minimum L1
corvex global underestimatotsing all of these local minima, a final ¥ex qua-
dratic global underestimating function is determined, similar to (2), by solving a
linear program formulated so th@g, the global minimum of the potential func-
tion F(g), is also the global minimum of themglobal underestimating/(p), and
soW(gg) = Fg. The codicientsd; of this final underestimating function are deter-
mined by constructing the underestimating function such that

(3) W(@) = Fg+ %((p—ch)TDw—(pG)

1. 2
= Fg+ Ei Zldi((pI - ®g;)

where the diagonal matrR=diag(d;) 0 R™", and then solving the linear program

k
pbL
(4) =

subject to
& = Fj - W(¢¥) 2 0 and 0< 0} < Ay for i=1,...,0.

The \alued, 4 is a lage specified upper bound. This yeats the underestimating
function from increasing too rapidly as a function of theiateon of ary torsion
angleq from its global minimum alue(qgg);.

The solution to (4) will hae the property that at least 2n+1 of the local minima
F; will be interpolated by the underestimaté(g). All remaining local minima
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will be strictly underestimatedubwill differ from W(¢) by the minimum possi-
ble, as measured in the L1 norm. A dm&ént d; can be zero only if the global
minimum function @lue Fg is attained at tev different conformationg. The
CGU algorithm eliminates isomers, saept for very small molecules, we do not
obsere this. Therefore, typically at}, > 0.

On the other hand, if a particular torsion angle, gakias the alue(¢g); for
every local minimum, then the correspondidg= d,,4. This simply means that
there is a lage penalty for changing from its global minimum alue(qgg);.

The true engy landscape can be thought of as aam#rfabge an n-dimen-
sional horizontal yperplane, with each point in theggerplane representing a
conformationg. The enagy F(¢) - Fg is then represented by the height of the sur-
face abwe the lyperplane, as gen by the (n+1) coordinate. Each local minimum
¢V of F(¢) has an (n+1) coordinatelue ofFj- Fg.

It is important to note that computing nydocal minima is a crucial aspect of
the CGU algorithm, and is also essential in determining the global underestimat-
ing functionW(g) as gven by (3) and (4). The distrtion of local minima, in
effect, represents the eggrsurfice F(g), and therefore is the most eemient
way to visualize the engy landscape.

To further simplify the visualization of the eggrlandscape, we moshav
how it can be represented in avebtwo-dimensional plot. @ do this we represent
the deviation of ¢ from ¢g in a suitable mannewe define the Root Mean Square
Weighted Degiation (RMSWD) by

(5) 8¢ = Jl(9-9s) D(9-95)] -

We then uség as the horizontal coordinate of a plot, with the gpetifference
from Fg as the ertical coordinate. Specificallwe hae

(6) W) -Fg = 3(59)°

so that plotting¥(¢) andF;, j=1,...,k, vs.Ap shavs the engy landscape and its
relationship to the underestimating emesurfice. The global minimum confor-
mationgg, and its corresponding eggr¥(¢s) = Fg are shan on the plot as a
point at the origin. Those local minima which lie on theaef and those ab®
it, can also be clearly distinguished. This is illustrated in Figure 3. Thgyegsy
between the global minimufig and all other local minimg, j=1,...,k, is shan
by the \ertical distances of the points representing the local minima.

Based on the computational results for small proteins (described inxhe ne
section), we are moable to compute the global minimum conformatpgycorre-
sponding to a functioR(g) for each specific protein with up to 50 residuesyHo
ever, the conformationp; computed in this ay will not be the same ag, the
known native conformation for the same protein. Imgd enegy functionsk(g)
are needed in order to accomplish this.
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We can, hwever, use the kneledge ofgy to modifyF(g) in a simple bt non-
physical way so that the modifieB(¢) (denotedF(g)) has its global minimum
wheneo = @y. This requires only a simple shift of coordinates te@ghe modified
function

(7) F(o) = F(o—(oy—9g)) -

ClearlyF(¢) attains its global minimumalueFg atg = @y. Therefore the shifted
enegy functionF(¢) attains the knon native statepy at its global minimunig

so this preides a shifted engy landscape for the corresponding protein mole-
cule. It should be noted vaver that we must kve @y to construcF(g), so that
this does not solrthe natie structure prediction problem.

4. Physical Interpretation of the Global Undeestimator Coefficients

The CGU method ges a ery simple gpression for the fluctuations around the
native structure. The probabilit§(¢?) of finding a molecule in conformatiag
is given by the Boltzmann distuibion lav

—(F;—Fg)/kgT

@

(8) PV =

e_(Fi - FG)/ kBT

|||\/|z

i=0
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wherekgT is Boltzmanns constant multiplied by temperature, and k is the total
number of conformations that are local minim&@f). Thus, higher engy states
are less probable thantter enegy ones.

Note that the CGU method will find only k of thitotal local minima of(¢),
and that k« N is expected. Hwever, for thoseN-k local minima not found, the
corresponding engies are alsox@ected to satisff; » Fg, so that their ééct on
the total sum in (8) is idigible.

If (¢0); represents thd angle in thel} conformation, then the weighted mean
of thei®™ angle is gien by

N . .
o=y Pe) dey

j=0

and the corresponding mean squangat®n in <> is gven by

N ) )
He-mwa’o= 5 Pe?) ae)i- wma’

j=0

Thus a small mean squarevi@dion demonstrates the increased reliability @<
Also a small mean squarewiition should gie <> = (¢g);. If all such mean
square deations are small, then the computed global minimum an@lgs
should gve a good approximation to the true matconformatiorn(qy);.

Since the final corex global underestimato¥(g) agrees with the global mini-
mum potential engly Fg at the computed global minimum conformatigy then
as stated in (3)

WO -Fg = 3 3 dlo-(0e))".
i=1

Now, if ¢ denotes a conformation with all anglgsexcept forq, fixed at their
respectie global minimum &lues(gg);, then the enegy difference directly attrib-
uted to ag q is clearly

9) Wg) ~Fg = 3[a-(96)]°-

Finally, with a suitable assumptibrby applying (9) to (8), the Boltzmann distri-
bution of angley is then proportional to (ignoring the denominator in (8))

1 For each conformatioqb(j_), the CGU function aluelIJ((p(j)) matches the corresponding potential
enegy functionFj = F(cp(J)). Even if this assumption is not satisfied, an upper bound on the stan-
dard deiation given in (10) may be obtained.
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—}d[ —(Pg) 1%/ KT __12[41—@]2
Pgy=e’ =
whereq is the mean, and,? is the \ariance. Therefore, we can interpgag), as
the mean &lue ofq, andkgT/d; as the ariance ofg obtained directly from the
corvex global underestimatoNote that a laye \alue ofd, implies a small a&ri-
ance in the angle. Also a high temperatur€ as well as a smallalue ofd,
implies a lage \ariance in the angle, agpected. The standardwdation ofq is

(10) 0y = (kgT/dy) Y2

Note a@in that this result depends on the property that the CGU algorithm com-
putes a lage set of local minima, in addition to the global minimum.

5. Computational Results

We hare studied small peptide sequences ranging in size from 5 residues to 36
residues. These sample peptides are: 5 residue meghaalin (MET), 9 residue
oxytocin (1XY1), a 23 residue beta-beta-alpha motif [8] ARB a 30 residue
zinc-finger (7ZNF), and 36 residugian pancreatic polypeptide (1PPT). In some
cases the nate structures for these peptides are alsoMn(XY1, 7ZNF and
1PPT). BRble 1 shws the results obtained from applying the CGU method on a 32
processor Cray T3E at the San gmeSupercomputer Center

Table1l CGU Resultsfor Five Small Peptide Sequences on a 32 Node Cray T3E

Compound Residues CGU Natve Enegy S_?_:umtgm
MET 5 -178.11 kcal/mol 6s
1XY1 9 -355.02 kcal/mol 64 s
BBAl 23 -1424.96 kcal/mol 14 m
7ZNF 30 -1302.67 kcal/mol 53m
1PPT 36 -2332.64 kcal/mol 24h

The method does not correctly predict thewnaatve structures, it this is
not our goal here. The search stggtaways finds conformationswer in enegy
than the true nate structure, indicating limits of the eggrfunction, not the
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search stratgy. The lavest enggy conformations in the model Ve properties
common to true naté structures: compact states widiophobic clusters and
hydrogen bonded secondary structure. Hence wevediimt the CGU method is
efficiently finding global solutions using our simple model and ggnéunction,
but that the engly function requires imprement.

As an éample, the knan natiwe structure for 7ZNF (zinc-finger motif) con-
sists of a single “tight” alpha helix, a hgim turn, and then another hairpin turn
(Figure 4), whereas the corresponding CGU computed structuves sirdy a

Figure 4 Known Native Structure for 7ZNF

slight tendeng toward forming the first alpha helix, folleed by a hairpin turn,

and then tw more hairpin turns (Figure 5). Figure 6 wisathis same structure
which highlights the éécts of the ery paverful attraction between thg/dhropho-

bic amino acid sidechains responsible for the compact clustering at the bottom of
the figure. Clearly theyldrophobic attraction in this case dominates tydrdgen

bond formation required for the construction of the tight alpha helix, and also con-
tributes to the formation of thetea hairpin turn. W attritute this error not to the
CGU search stragy, but instead to limitations in the accuyaof the potential
function.

The CGU search straje is finding global, or at least near global, solutions for
the gven model. &ble 2shavs the probability distriltion of all local minima
obtained for each of the peptide sequences.af test cases, the eggrgap
between the “best” computed structure and all other structures igedHat the
probability that a peptide auld be obserd in the global minimum state is 1. In
addition, the landscape projections, based on the RMSWD metric, such as the one
shown in Figure 3, indicate that the landscape CGU is a tight underestimator for
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Figure5 CGU Computed Structurefor 7ZNF

Figure 6 Ball and Stick Representation of the CGU
Computed Structurefor 7ZNF

mary local minima and the ergyr gap between the global minimum and all oth-
ers is significant.

Finally, based on the computational results obtainedrsthe aerage running
time, as a function of peptide length n, is $(8]. This function has been com-
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Table 2 Probability Distribution for All Local Minima

Number of Local Minima in Probability Range
Compound >.99 .99-.01 <.01
MET 1 0 5
1XY1 1 0 22
BBA1 1 0 62
7ZNF 1 0 93
1PPT 1 0 119

puted (based on the results presented in both this anddth&esgon) to be T(ny
(8.8e-5)f minutes for an n residue structure on a 32 node Cray Talte B
shaws the g&act \alues of T(n) for arious \alues of n and Figure 7 sk a plot of

T(n
cooft

400+

300¢

200¢

100t

10

30

an

g N

Figure 7 Solution Time, T(n), in Minutes as a Function of the

T(n) along with the results from the éwsample peptides.

Number of Residuesn
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Table 3 Average Running Time T(n) for Variousn, on a 32 Node Cray T3E

n 10 20 30 40 50 100
T(n) 2 15 70 220 539 8753
minutes (9 hrs) (6 days)

6. Effect of Sequence on Structure

The previous section shes that the @erage running time of the CGU algorithm is
dependent on the chain length n of the peptide sequenesvétpunlike mary
other search strag@s, the running time of the CGU methodnidependent of the
ordering of the residues within the sequence, andrés imdependent of the
monomer composition. This is not to say that the global solutions obtained by the
CGU method are unigfcted by sequenceaniations. Indeed tlyeare. Havever,
the running time remains insengdito the precise nature of the sequence.

Figures 8, 9, and 10 shathe computed global minimum conformations for

Fg = -797 kcal/mol

)
- ¥ &%Nﬁ% {__,g:‘_!é«:e@__ $
._w\ ‘f % g ;’
\ Ve

Figure 8 Global Minimum Structure of Permutation #1
of a 30 Residue Sequence

three permutations of the 7ZNF sequence (a 30 residue sequence). In each case,
the same set of residues were permuted twiggoa diferent ordering of those
residues. Hence, the percegtiophobicity remained constant in each case. From

the figures, it is clear that the model watstructures ary greatly as would be
expected with diierent monomer sequences. The solution times for these per-
muted test cases were 2430 s (requiring 3 iterations of the CGU method), 6293 s
(requiring 4 iterations), and 2432 s (requiring 3 iterations). Hencevirage

time and the werage time per iteration of the CGU method were 3718 s and 1065

s, respectiely.
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Fg = -801 kcal/mol

Figure 9 Global Minimum Structure of Permutation #2
of a 30 Residue Sequence

Fg =-1067 kcal/mol

Figure 10 Global Minimum Structure of
Permutation #3 of a 30 Residue Sequence

14
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In total, five permutations each of sequences of lengths 5, 9, 16, 23, and 30 res-
idues were tested. The results arenshan Tables 4, 5, 6, 7, and 8. In each case,

Table 4 5-Residue Permutation Results

Sequence Time (s) Iterations | Time/lteration (S) Fe
Smer #1 7 3 2.33 -178
Smer #2 15 7 2.14 -89
5mer #3 6 3 2.00 -89
Smer #4 5 3 1.67 -89
S5mer #5 4 6 0.67 +0
Average 7.4 4.4 1.76 -409

Table5 9-Residue Permutation Results

Sequence Time (s) Iterations | Time/lteration (s) Fe

9mer #1 125 3 41.67 -419
9mer #2 170 7 24.29 -267
9mer #3 50 4 12.50 -442
9mer #4 106 6 17.67 -470
9mer #5 207 3 69.00 -357
Average 132 4.6 33.03 -391

Table 6 16-Residue Permutation Results

Sequence Time (s) Iterations | Time/lteration (s) Fe
16mer #1 476 2 238 -89
16mer #2 402 3 134 -267
16mer #3 259 3 86 -178
16mer #4 834 7 119 -178
16mer #5 243 2 122 -178

Average 443 34 140 -178
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Table 7 23-Residue Permutation Results

Sequence Time (s) Iterations | Time/Iteration (s) Fe

23mer #1 848 2 424 -1588
23mer #2 1935 5 387 -1639
23mer #3 1290 4 323 -1560
23mer #4 1312 4 328 -1248
23mer #5 2027 5 405 -1640
Average 1428 4 373 -1535

Table 8 30-Residue Permutation Results

Sequence Time (s) Iterations | Time/Iteration (s) Fe

30mer #1 2430 3 810 -797
30mer #2 6292 4 1573 -801
30mer #3 2432 3 811 -1067
30mer #4 3966 2 1983 -712
30mer #5 8424 9 936 -1062
Average 4223 4.2 1222 -888

there is clear ariation in natre structures for each permuted sequenceueter,
there is no clear dependence of computational time on the sequence.
In addition, the running time of the CGU method igaiant with respect to
the residue types within a peptide sequence. In partidataa given sequence of
H and P type residues, the CGU algorithm is timeauiant with respect to the
specific H type residues and specific P type residues composing the sequence.
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Table 9 shas the results ofarying the H residues and P residues within a single

Table 9 23-Residue Permutations of H and P Residues Separ ately

Sequence Time (s) Iterations | Time/lteration (s) Fo

23HP #1 1328 3 443 -1723
23HP #2 2765 6 461 -1418
23HP #3 960 2 480 -1230
23HP #4 1037 3 346 -1156
23HP #5 1085 3 362 -1068
Average 1435 3.4 418 -1319

fixed sequence of length 23. In each case, the HP sequescted, ht the
choices of H and P amino acids were randomly selected from the sewaf kho
and P residues, respemtiy. Again, the time required to obtain the global mini-
mum structure is wariant with respect to sequence. Busiagthe sequence itself
affects the global solution greatlyn this case, since the ordering of the H and P
residues remained fxl, lut the types of H residues and P residues waried,

we would expectariation in the global solution due to thefeiences in the side
chain wlumes and theariable tydrophobic attractionx@ressed by each particu-
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lar H residue. Figures 11 and 12 demonstrate this structural difference between

Figure 11 23-Residue Permutation #1 of H and P
I ndependently

Figure 12 23-Residue Permutation #3 of H and P
Independently

permutations 23HP #1 and 23HP #3.
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7. Conclusions

The three principal results of this paper are: (1) to show that starting from many
different randomly chosen open starting conformations of the chain, the CGU
method converges on the same structure in each case, suggesting that the method
is probably reaching the global minimum of the energy function, (2) to show the
scaling of the solution time with the chain length, indicating that the method
seems practical for small protein-sized molecules, and (3) to show that the compu-
tation time required by the CGU method is approximately independent of mono-
mer sequence. The results also indicate that the energy landscapes are dominated
by asingle stable state which differsin energy by awide energy gap from all other
local energy states.

This paper isatest of aconformational search strategy, not an energy function.
The energy function is not yet an accurate model of real proteins: the best com-
puted structures differ from the true native structures. But similarly simple energy
functions have begun to show value in predicting protein structures ([ 7], [10], and
[11]). Therefore we believe improved energy functions used in conjunction with
the CGU search method may be useful in protein folding algorithms.
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