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Abstract. We have recently described a new conformational search strategy for protein
folding algorithms, called the CGU (convex global underestimator) method.  Here we use
a simplified protein chain representation and a differentiable form of the Sun/Thomas/Dill
energy function to test the CGU method.  Standard search methods, such as Monte Carlo
and molecular dynamics are slowed by kinetic traps.  That is, the computer time depends
more strongly on the shape of the energy landscape (dictated by the amino acid sequence)
than on the number of degrees of freedom (dictated by the chain length).  The CGU
method is not subject to this limitation, since it explores the underside of the energy
landscape, not the top.  We find that the CGU computer time is largely independent of the
monomer sequence, for different chain folds, and scales as O(n4) with chain length.  By
using different starting points, we show that the method appears to find global minima.
Since we can currently find stable states of 36-residue chains in 2.4 hours, the method may
be practical for small proteins.

Keywords: Molecular conformation, protein folding, global optimization

1.  Introduction

To develop a computer algorithm that will predict the native structure of a protein
given only its amino acid sequence requires three ingredients: a suitable chain rep-
resentation, an accurate energy function, and a fast search strategy that can find
the globally optimal lowest energy conformations. Our aim here is not to attempt
to solve all these problems or to develop a protein folding algorithm. Our aim is
more modest. Here we use an imperfect simplified chain representation and
energy function to test a new conformational search method. Our model is a dif-
ferentiable form of the Sun/Thomas/Dill chain representation and energy func-
tion. It is protein-like in the following respects: it includes chain connectivity,
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steric constraints,ϕψ preferences, and hydrophobic and hydrogen bonding inter-
actions. Hence chains collapse to compact states with hydrophobic cores and
some hydrogen bonded structure. The model, however, is not sufficient to predict
native folds correctly from amino acid sequences, even though it does well in
some limited tests [10]. Thus our aim is not to fold proteins; our aim is to test a
method of searching for lowest energy states in a protein-like model.

Standard search methods, including molecular dynamics, Monte Carlo, simu-
lated annealling, and genetic algorithms, often get stuck in kinetic traps. The chal-
lenge in developing fast search strategies is in understanding what slows them
down. Proteins are difficult for two reasons. First, we require the global optimum,
rather than one of the large number of local optima. Second, an algorithm must be
able to deal with very different shapes of energy landscapes, and the shape is often
a stronger determinant of computer time than the size of the landscape. The shape
of the landscape is dependent on the amino acid sequence. The size is dependent
on the chain length. Often there is no simple scaling with the chain length.

Our current method takes a rather different approach. Rather than meandering
over the tops of energy landscapes, our CGU method burrows under it, and should
therefore not be affected by the heights of kinetic barriers. As a test, here we
explore the dependence of the CGU search time on chain length and monomer
sequence. Also we vary the starting conformations in order to check that the
method is finding global optima, rather than local optima. The method does not
get stuck in kinetic traps, and appears to find global optima in a time that depends
on n4, where n is the chain length, independently of the monomer sequence. It
may be a practical search method for more realistic energy functions.

2.  Protein Model and Global Search Strategy

Practical search strategies for the protein folding problem currently require a sim-
plified, yet sufficiently realistic, molecular model with an associated potential
energy function representing the dominant forces involved in protein folding [9].
In our present model, each residue in the primary sequence of a protein is charac-
terized by its backbone components NH-CαH-C′O and one of 20 possible amino
acid sidechains attached to the central Cα atom. The three-dimensional structure
of the chain is determined by internal molecular coordinates consisting of bond
lengthsl, bond anglesθ, and the backbone dihedral anglesϕ, ψ, andω. Fortu-
nately, these 9r-6 parameters (for anr-residue structure) do not all vary indepen-
dently. Some of these (7r-4 of them) are regarded as fixed since they are found to
vary within only a very small neighborhood of an experimentally determined
value. Among these are the 3r-1 backbone bond lengthsl, the 3r-2 backbone bond
anglesθ, and ther-1 peptide bond dihedral anglesω (fixed in the trans conforma-
tion). This leaves only ther-1 backbone dihedral angle pairs (ϕ,ψ) in the reduced
representation model. These also are not completely independent; they are
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severely constrained by known chemical data (the Ramachandran plot) for each of
the 20 amino acid residues. Furthermore, since the atoms from one Cα to the next
Cα along the backbone can be grouped into rigidplanar peptide units, there are no
extra parameters required to express the three-dimensional position of the
attached O and H peptide atoms. Hence, these bond lengths and bond angles are
also known and fixed. Figure 1 illustrates this model.

Another key element of this simplified polypeptide model is that each
sidechain is classified as either hydrophobic or polar, and is represented by only a
single “virtual” center of mass atom. Since each sidechain is represented by only
the single center of mass “virtual atom” Cs, no extra parameters are needed to
define the position of each sidechain with respect to the backbone mainchain. The
twenty amino acids are thus classified into two groups, hydrophobic and polar,
according to the scale given by Miyazawa and Jernigan [5].

Corresponding to this simplified polypeptide model is a simple energy func-
tion. This function includes four components: a contact energy term favoring pair-
wise hydrophobic residues, a second contact term favoring hydrogen bond
formation between donor NH and acceptor C′=O pairs, a steric repulsive term
which rejects any conformation that would permit unreasonably small interatomic
distances, and a main chain torsional term that allows only certain preset values
for the backbone dihedral angle pairs (ϕ,ψ). Since the residues in this model come
in only two forms, hydrophobic and polar, where the hydrophobic monomers
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Figure 1 Simple Polypeptide Model
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exhibit a strong pairwise attraction, the lowest free energy state involves those
conformations with the greatest number of hydrophobic “contacts” [1] and intras-
trand hydrogen bonds. Simplified potential function have been successful in stud-
ies by Sun, Thomas, and Dill [10], by Srinivasan and Rose [7], and by Yue and
Dill [11]. We used here a simple modification of the Sun/Thomas/Dill energy
function.

One practical means for finding the global minimum of the polypeptide’s
potential energy function is to use a global underestimator to localize the search in
the region of the global minimum. This CGU (convex global underestimator)
method is designed to fit all known local minima with a convex function which
underestimates all of them, but which differs from them by the minimum possible
amount in the discrete L1 norm (see Figure 2). The minimum of this underestima-

tor is used to predict the global minimum for the function, allowing a more local-
ized conformer search to be performed based on the predicted minimum. More
precisely, given anr-residue structure with n=2r-2 backbone dihedral angles, we
denote a conformation of this simplified model byφ ∈ Rn, and the corresponding
simplified potential energy function value byF(φ). Then, assuming that k≥ 2n+1
local minimum conformationsφ(j), for j=1,...,k, have been computed, a convex
quadratic underestimating functionΨ(φ) is fitted to these local minima so that it
underestimates all the local minima, and normally interpolatesF(φ(j)) at 2n+1
points. This is accomplished by determining the coefficients in the functionΨ(φ)
so that

(1)

for j=1,...,k, and where is minimized. That is, the difference betweenF(φ) and
Ψ(φ) is minimized in the discrete L1 norm over the set ofk local minimaφ(j), j=1,...,k. The
underestimating functionΨ(φ) used in this CGU method is given by

(2) .

Note thatci anddi appear linearly in the constraints of (1) for each local mini-
mumφ(j). Convexity of this quadratic function is guaranteed by requiring thatdi ≥

Figure 2 The Convex Global
Underestimator (CGU)
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0 for i=1,...,n. Other linear combinations of convex functions could also be used,
but this quadratic function is the simplest.

A new set of conformers generated by the localized search then serves as a
basis for another quadratic underestimation over the reduced space. After several
repetitions, the global minimum conformationφG and its associated global mini-
mum energy F(φG) can be found with reasonable assurance. For more specific
details of the CGU method and its computational results, see [2], [3], [4], and [6].

3.  Global Underestimation of the Energy Landscape

As summarized in the previous section, the CGU algorithm will determine a glo-
bal minimum backbone torsion angle vectorφG and corresponding global mini-
mum energy function value FG = F(φG). As part of the CGU algorithm, a
relatively large number of local minimaφ(j), j =1,...,k, of the functionF(φ) will
also be computed. We denote the corresponding function values byFj = F(φ(j)) ≥
FG for j=1,...,k. Typically we have k ≥ 2n+1, where n is the number of backbone
torsion angles since this is a necessary condition for constructing the minimum L1
convex global underestimator. Using all of these local minima, a final convex qua-
dratic global underestimating function is determined, similar to (2), by solving a
linear program formulated so thatφG, the global minimum of the potential func-
tion F(φ), is also the global minimum of the new global underestimatingΨ(φ), and
soΨ(φG) = FG. The coefficientsdi of this final underestimating function are deter-
mined by constructing the underestimating function such that

(3)

where the diagonal matrixD=diag(di) ∈ Rnxn, and then solving the linear program

(4)

subject to
δi = Fj - Ψ(φ(j)) ≥ 0 and 0≤ di ≤ dmax for i=1,...,n.

The valuedmax is a large specified upper bound. This prevents the underestimating
function from increasing too rapidly as a function of the deviation of any torsion
angleφi from its global minimum value(φG)i.

The solution to (4) will have the property that at least 2n+1 of the local minima
Fj will be interpolated by the underestimatorΨ(φ). All remaining local minima
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will be strictly underestimated, but will differ from Ψ(φ) by the minimum possi-
ble, as measured in the L1 norm. A coefficient di can be zero only if the global
minimum function value FG is attained at two different conformationsφ. The
CGU algorithm eliminates isomers, so except for very small molecules, we do not
observe this. Therefore, typically alldi > 0.

On the other hand, if a particular torsion angle, sayφi, has the value(φG)i for
every local minimum, then the correspondingdi = dmax. This simply means that
there is a large penalty for changingφi from its global minimum value(φG)i.

The true energy landscape can be thought of as a surface above an n-dimen-
sional horizontal hyperplane, with each point in the hyperplane representing a
conformationφ. The energy F(φ) - FG is then represented by the height of the sur-
face above the hyperplane, as given by the (n+1) coordinate. Each local minimum
φ(j) of F(φ) has an (n+1) coordinate value ofFj- FG.

It is important to note that computing many local minima is a crucial aspect of
the CGU algorithm, and is also essential in determining the global underestimat-
ing functionΨ(φ) as given by (3) and (4). The distribution of local minima, in
effect, represents the energy surfaceF(φ), and therefore is the most convenient
way to visualize the energy landscape.

To further simplify the visualization of the energy landscape, we now show
how it can be represented in a novel two-dimensional plot. To do this we represent
the deviation ofφ from φG in a suitable manner. We define the Root Mean Square
Weighted Deviation (RMSWD) by

(5) .

We then use∆φ as the horizontal coordinate of a plot, with the energy difference
from FG as the vertical coordinate. Specifically, we have

(6)

so that plottingΨ(φ) andFj, j=1,...,k, vs.∆φ shows the energy landscape and its
relationship to the underestimating energy surface. The global minimum confor-
mationφG, and its corresponding energy Ψ(φG) = FG are shown on the plot as a
point at the origin. Those local minima which lie on the surface, and those above
it, can also be clearly distinguished. This is illustrated in Figure 3. The energy gap
between the global minimumFG and all other local minimaFj, j=1,...,k, is shown
by the vertical distances of the points representing the local minima.

Based on the computational results for small proteins (described in the next
section), we are now able to compute the global minimum conformationφG corre-
sponding to a functionF(φ) for each specific protein with up to 50 residues. How-
ever, the conformationφG computed in this way will not be the same asφN, the
known native conformation for the same protein. Improved energy functionsF(φ)
are needed in order to accomplish this.
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We can, however, use the knowledge ofφN to modifyF(φ) in a simple but non-
physical way so that the modifiedF(φ) (denotedF(φ)) has its global minimum
whenφ = φN. This requires only a simple shift of coordinates to give the modified
function

(7) .

ClearlyF(φ) attains its global minimum valueFG at φ = φN. Therefore the shifted
energy functionF(φ) attains the known native stateφN at its global minimumFG
so this provides a shifted energy landscape for the corresponding protein mole-
cule. It should be noted however that we must know φN to constructF(φ), so that
this does not solve the native structure prediction problem.

4.  Physical Interpretation of the Global Underestimator Coefficients

The CGU method gives a very simple expression for the fluctuations around the
native structure. The probabilityP(φ(j)) of finding a molecule in conformationφ(j)

is given by the Boltzmann distribution law

(8)

Figure 3 Example RMSWD Energy
Landscape Projection Obtained from a 30-

Residue Peptide Sequence
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wherekBT is Boltzmann’s constant multiplied by temperature, and k is the total
number of conformations that are local minima ofF(φ). Thus, higher energy states
are less probable than lower energy ones.

Note that the CGU method will find only k of theN total local minima ofF(φ),
and that k« N is expected. However, for thoseN-k local minima not found, the
corresponding energies are also expected to satisfyFj » FG, so that their effect on
the total sum in (8) is negligible.

If (φ(j))i represents theith angle in the jth conformation, then the weighted mean
of theith angle is given by

and the corresponding mean square deviation in <φi> is given by

.

Thus a small mean square deviation demonstrates the increased reliability of <φi>.
Also a small mean square deviation should give <φi> ≈ (φG)i. If all such mean
square deviations are small, then the computed global minimum angles(φG)i
should give a good approximation to the true native conformation(φN)i.

Since the final convex global underestimatorΨ(φ) agrees with the global mini-
mum potential energy FG at the computed global minimum conformationφG, then
as stated in (3)

.

Now, if φ′ denotes a conformation with all anglesφi, except forφl, fixed at their
respective global minimum values(φG)i, then the energy difference directly attrib-
uted to any φl is clearly

(9) .

Finally, with a suitable assumption1, by applying (9) to (8), the Boltzmann distri-
bution of angleφl is then proportional to (ignoring the denominator in (8))

1 For each conformationφ(j), the CGU function valueΨ(φ(j)) matches the corresponding potential
energy functionFj ≡ F(φ(j)). Even if this assumption is not satisfied, an upper bound on the stan-
dard deviation given in (10) may be obtained.
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whereφl is the mean, andσl
2 is the variance. Therefore, we can interpret(φG)l as

the mean value ofφl, andkBT/dl as the variance ofφl obtained directly from the
convex global underestimator. Note that a large value ofdl implies a small vari-
ance in the angleφl. Also a high temperatureT, as well as a small value ofdl,
implies a large variance in the angle, as expected. The standard deviation ofφl is

(10) σl = (kBT/dl)
1/2.

Note again that this result depends on the property that the CGU algorithm com-
putes a large set of local minima, in addition to the global minimum.

5.  Computational Results

We have studied small peptide sequences ranging in size from 5 residues to 36
residues. These sample peptides are: 5 residue met-enkephalin (MET), 9 residue
oxytocin (1XY1), a 23 residue beta-beta-alpha motif [8] (BBA1), a 30 residue
zinc-finger (7ZNF), and 36 residue avian pancreatic polypeptide (1PPT). In some
cases the native structures for these peptides are also known (1XY1, 7ZNF, and
1PPT). Table 1 shows the results obtained from applying the CGU method on a 32
processor Cray T3E at the San Diego Supercomputer Center.

The method does not correctly predict the known native structures, but this is
not our goal here. The search strategy always finds conformations lower in energy
than the true native structure, indicating limits of the energy function, not the

Table 1  CGU Results for Five Small Peptide Sequences on a 32 Node Cray T3E

Compound Residues CGU Native Energy
Solution

Time

MET 5 -178.11 kcal/mol 6 s

1XY1 9 -355.02 kcal/mol 64 s

BBA1 23 -1424.96 kcal/mol 14 m

7ZNF 30 -1302.67 kcal/mol 53 m

1PPT 36 -2332.64 kcal/mol 2.4 h

P φ'( ) e

1
2
---– d l φl φG( )l–[ ]2

kBT⁄
e

1–

2σl
2

--------- φl φl–[ ]2
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search strategy. The lowest energy conformations in the model have properties
common to true native structures: compact states with hydrophobic clusters and
hydrogen bonded secondary structure. Hence we believe that the CGU method is
efficiently finding global solutions using our simple model and energy function,
but that the energy function requires improvement.

As an example, the known native structure for 7ZNF (zinc-finger motif) con-
sists of a single “tight” alpha helix, a hair-pin turn, and then another hairpin turn
(Figure 4), whereas the corresponding CGU computed structure shows only a

slight tendency toward forming the first alpha helix, followed by a hairpin turn,
and then two more hairpin turns (Figure 5). Figure 6 shows this same structure
which highlights the effects of the very powerful attraction between the hydropho-
bic amino acid sidechains responsible for the compact clustering at the bottom of
the figure. Clearly the hydrophobic attraction in this case dominates the hydrogen
bond formation required for the construction of the tight alpha helix, and also con-
tributes to the formation of the extra hairpin turn. We attribute this error not to the
CGU search strategy, but instead to limitations in the accuracy of the potential
function.

The CGU search strategy is finding global, or at least near global, solutions for
the given model. Table 2 shows the probability distribution of all local minima
obtained for each of the peptide sequences. For all test cases, the energy gap
between the “best” computed structure and all other structures is so large that the
probability that a peptide would be observed in the global minimum state is 1. In
addition, the landscape projections, based on the RMSWD metric, such as the one
shown in Figure 3, indicate that the landscape CGU is a tight underestimator for

Figure 4 Known Native Structure for 7ZNF
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many local minima and the energy gap between the global minimum and all oth-
ers is significant.

Finally, based on the computational results obtained so far, the average running
time, as a function of peptide length n, is O(n4) [3]. This function has been com-

Figure 5 CGU Computed Structure for 7ZNF

Figure 6 Ball and Stick Representation of the CGU
Computed Structure for 7ZNF
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puted (based on the results presented in both this and the next section) to be T(n)≈
(8.8e-5)n4 minutes for an n residue structure on a 32 node Cray T3E. Table 3
shows the exact values of T(n) for various values of n and Figure 7 shows a plot of

T(n) along with the results from the five sample peptides.

Table 2  Probability Distribution for All Local Minima

Number of Local Minima in Probability Range

Compound >.99 .99-.01 <.01

MET 1 0 5

1XY1 1 0 22

BBA1 1 0 62

7ZNF 1 0 93

1PPT 1 0 119

n

T(n)

Figure 7 Solution Time, T(n), in Minutes as a Function of the
Number of Residues n
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6.  Effect of Sequence on Structure

The previous section shows that the average running time of the CGU algorithm is
dependent on the chain length n of the peptide sequence. However, unlike many
other search strategies, the running time of the CGU method isindependent of the
ordering of the residues within the sequence, and is even independent of the
monomer composition. This is not to say that the global solutions obtained by the
CGU method are unaffected by sequence variations. Indeed they are. However,
the running time remains insensitive to the precise nature of the sequence.

Figures 8, 9, and 10 show the computed global minimum conformations for

three permutations of the 7ZNF sequence (a 30 residue sequence). In each case,
the same set of residues were permuted to provide a different ordering of those
residues. Hence, the percent hydrophobicity remained constant in each case. From
the figures, it is clear that the model native structures vary greatly, as would be
expected with different monomer sequences. The solution times for these per-
muted test cases were 2430 s (requiring 3 iterations of the CGU method), 6293 s
(requiring 4 iterations), and 2432 s (requiring 3 iterations). Hence the average
time and the average time per iteration of the CGU method were 3718 s and 1065
s, respectively.

Table 3  Average Running Time T(n) for Various n, on a 32 Node Cray T3E

n 10 20 30 40 50 100

T(n)

minutes

2 15 70 220 539

(9 hrs)

8753

(6 days)

Figure 8 Global Minimum Structure of Permutation #1
of a 30 Residue Sequence

FG = -797 kcal/mol
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Figure 9 Global Minimum Structure of Permutation #2
of a 30 Residue Sequence

FG = -801 kcal/mol

Figure 10 Global Minimum Structure of
Permutation #3 of a 30 Residue Sequence

FG = -1067 kcal/mol
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In total, five permutations each of sequences of lengths 5, 9, 16, 23, and 30 res-
idues were tested. The results are shown in Tables 4, 5, 6, 7, and 8. In each case,

Table 4  5-Residue Permutation Results

Sequence Time (s) Iterations Time/Iteration (s) FG

5mer #1 7 3 2.33 -178

5mer #2 15 7 2.14 -89

5mer #3 6 3 2.00 -89

5mer #4 5 3 1.67 -89

5mer #5 4 6 0.67 +0

Average 7.4 4.4 1.76 -409

Table 5  9-Residue Permutation Results

Sequence Time (s) Iterations Time/Iteration (s) FG

9mer #1 125 3 41.67 -419

9mer #2 170 7 24.29 -267

9mer #3 50 4 12.50 -442

9mer #4 106 6 17.67 -470

9mer #5 207 3 69.00 -357

Average 132 4.6 33.03 -391

Table 6  16-Residue Permutation Results

Sequence Time (s) Iterations Time/Iteration (s) FG

16mer #1 476 2 238 -89

16mer #2 402 3 134 -267

16mer #3 259 3 86 -178

16mer #4 834 7 119 -178

16mer #5 243 2 122 -178

Average 443 3.4 140 -178
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there is clear variation in native structures for each permuted sequence. However,
there is no clear dependence of computational time on the sequence.

In addition, the running time of the CGU method is invariant with respect to
the residue types within a peptide sequence. In particular, for a given sequence of
H and P type residues, the CGU algorithm is time invariant with respect to the
specific H type residues and specific P type residues composing the sequence.

Table 7  23-Residue Permutation Results

Sequence Time (s) Iterations Time/Iteration (s) FG

23mer #1 848 2 424 -1588

23mer #2 1935 5 387 -1639

23mer #3 1290 4 323 -1560

23mer #4 1312 4 328 -1248

23mer #5 2027 5 405 -1640

Average 1428 4 373 -1535

Table 8  30-Residue Permutation Results

Sequence Time (s) Iterations Time/Iteration (s) FG

30mer #1 2430 3 810 -797

30mer #2 6292 4 1573 -801

30mer #3 2432 3 811 -1067

30mer #4 3966 2 1983 -712

30mer #5 8424 9 936 -1062

Average 4223 4.2 1222 -888
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Table 9 shows the results of varying the H residues and P residues within a single

fixed sequence of length 23. In each case, the HP sequence was fixed, but the
choices of H and P amino acids were randomly selected from the set of known H
and P residues, respectively. Again, the time required to obtain the global mini-
mum structure is invariant with respect to sequence. But again, the sequence itself
affects the global solution greatly. In this case, since the ordering of the H and P
residues remained fixed, but the types of H residues and P residues were varied,
we would expect variation in the global solution due to the differences in the side
chain volumes and the variable hydrophobic attraction expressed by each particu-

Table 9  23-Residue Permutations of H and P Residues Separately

Sequence Time (s) Iterations Time/Iteration (s) FG

23HP #1 1328 3 443 -1723

23HP #2 2765 6 461 -1418

23HP #3 960 2 480 -1230

23HP #4 1037 3 346 -1156

23HP #5 1085 3 362 -1068

Average 1435 3.4 418 -1319
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lar H residue. Figures 11 and 12 demonstrate this structural difference between

permutations 23HP #1 and 23HP #3.

Figure 11 23-Residue Permutation #1 of H and P
Independently

Figure 12 23-Residue Permutation #3 of H and P
Independently
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7.  Conclusions

The three principal results of this paper are: (1) to show that starting from many
different randomly chosen open starting conformations of the chain, the CGU
method converges on the same structure in each case, suggesting that the method
is probably reaching the global minimum of the energy function, (2) to show the
scaling of the solution time with the chain length, indicating that the method
seems practical for small protein-sized molecules, and (3) to show that the compu-
tation time required by the CGU method is approximately independent of mono-
mer sequence. The results also indicate that the energy landscapes are dominated
by a single stable state which differs in energy by a wide energy gap from all other
local energy states.

This paper is a test of a conformational search strategy, not an energy function.
The energy function is not yet an accurate model of real proteins: the best com-
puted structures differ from the true native structures. But similarly simple energy
functions have begun to show value in predicting protein structures ([7], [10], and
[11]). Therefore we believe improved energy functions used in conjunction with
the CGU search method may be useful in protein folding algorithms.
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