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Abstract

The star graph Sn is one of the most famous interconnection networks. It has been shown by Li [T.-K. Li, Cycle embed-
ding in star graphs with edge faults, Appl. Math. Comput. 167 (2005) 891–900] that Sn contains a cycle of length from 6 to
n! when the number of fault edges in the graph does not exceed n � 3. In this paper, we improve this result by showing that
for any edge subset F of Sn with jFj 6 n � 3 every edge of Sn � F lies on a cycle of every even length from 6 to n! provided
n P 3.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In interconnection networks, the problem of simulating one network by another is modelled as a graph
embedding problem. There are several reasons why such an embedding is important [11]. For example, there
are a number of efficient algorithms for solving some application problems and best communication patterns
for their executions. For these algorithms, the existence of certain topological structures guarantee the desired
performance. Thus, for such applications, it is desired to provide logically a specific topological structure
throughout the execution of the algorithm in the network design.

Among all embedding problems, cycle embedding problem is one of the most popular problems, that is,
finding a cycle of given length in a graph. A graph G is called pancyclic [3] if there exists a cycle of every length
from 3 to jV(G)j. A graph is bipartite graph if its vertex-set can be partitioned into two disjoint subsets such
that each edge is incident to two vertices from different subsets. A bipartite graph G is called bipancyclic if
there exists a cycle of every even length from 4 to jV(G)j. The pancyclicity is an important metric in embedding
cycles of any length into the topology of network. The concept of pancyclicity was extended to vertex-pancyc-
licity by Hobbs [6] and edge-pancyclicity by Alspach and Hare [2]. A graph G is called vertex-pancyclic if for
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any vertex u, there exists a cycle of every length from 3 to jV(G)j containing u; and edge-pancyclic if for any
edge e, there exists a cycle of every length from 3 to jV(G)j containing e. Obviously, every edge-pancyclic graph
is vertex-pancyclic. A bipartite graph G is vertex-bipancyclic if for any vertex u, there exists a cycle of every
even length from 4 to jV(G)j containing u. Similarly, a bipartite graph G is called edge-bipancyclic if for
any edge e, there exists a cycle of every even length from 4 to jV(G)j containing e. A graph G is said to be
Hamiltonian connected if there exists a Hamiltonian path between any two vertices of G. It is easy to see that
any bipartite graph with at least three vertices is not Hamiltonian connected. For this reason, Simmons [10]
introduced the concept of Hamiltonian laceable for Hamiltonian bipartite graphs. A Hamiltonian bipartite
graph is Hamiltonian laceable if there is a Hamiltonian path between any two vertices in different bipartite sets.
Obviously, a Hamilton cycle can be embedded in the Hamiltonian connected graphs. Then the Hamiltonian
connectivity is also important metric in embedding Hamitonian cycles into the topology of network. Since
some components in a network would sometimes fail, it’s more practical to study graphs with faults.

Star graphs, proposed by Akers and Krishnamurthy [1], is a famous interconnection networks. In this
paper, we explore the embedding problems on star graphs. They proved that the star graphs are Cayley
graphs, thus they are vertex symmetric. Furthermore, the star graphs have many other nice properties such
as recursiveness, edge-symmetry [1]. Since the star graphs are bipartite graphs, odd cycles cannot be embedded
into it. Jwo et al. [7] showed that any cycle of even length from 6 to n! can be embedded into Sn. Hsieh et al. [5]
and Li et al. [9], proved that the n-dimensional star graph Sn is (n � 3)-edge-fault tolerant Hamiltonian lace-
able for n P 4. Recently, Li [8] considered the edge-fault tolerance of star graphs and showed that cycles of
even length from 6 to n! can be embedded into the n-dimensional star graphs when the number of the fault
edges are less than n � 3. In this paper, we improve this result by showing that for any edge subset F of Sn

with jFj 6 n � 3 and any edge e 2 Sn � F, there exists a cycle of even length from 6 to n! in Sn � F containing
e provided n P 3.

The rest of this paper is organized as follows. In Section 2, we give the definition and basic properties of the
n-dimensional star graph Sn. In Section 3, we discuss the edge-fault-tolerant edge-bipancyclicity of the star
graphs.

2. Star graphs

In this section, we give the definition and some properties of the star graphs. We follow [4] for graph-the-
oretical terminologies and notations not defined here.

The n-dimensional star graph, denoted by Sn, is a bipartite graph. The vertex-set is V(Sn) = {vjv is a per-
mutation of 1,2, . . . ,n} and the edge-set is E(Sn) = {(u,v)ju = u1u2� � �ui� � �un, v = uiu2� � �ui�1u1 ui+1� � �un}.
Fig. 1 shows the four-dimensional star graph where the black vertices and the white vertices make the desired
partition of vertex-set. There are some nice properties about the star graphs.
Fig. 1. Four-dimensional star graph S4.
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Lemma 1 (Li [8]). There are n vertex-disjoint Sn�1’s in Sn for n P 2.

Indeed, let Hi : j = (Vi : j,Ei : j), where Vi : j = {u 2 V(Sn)ju = u1u2� � �ui� � �un, ui = j} and Ei : j = {(u,v) 2
E(Sn)ju,v 2 Vi : j} for 1 6 j 6 n. Then {Vi:1,Vi:2, . . . ,Vi : n} is a partition of V(Sn) and Hi : j is isomorphic to
Sn�1. For convenience, we will use Si:j

n�1 to denote the subgraph Hi : j in the above partition. Specifically, we
use Sj

n�1 as the abbreviation of Sn:j
n�1 and call it the jth (n � 1)-dimensional subgraph of Sn. For a vertex x,

we use xi to denote the ith digits of vertex x. For a set of distinct edges e1 = (x1,y1),
e2 = (x2,y2), . . . ,em = (xm,ym) in Si

n�1 for n P 3 with x1
1 ¼ x2

1 ¼ � � � ¼ xm
1 ¼ j and y1

1 ¼ y2
1 ¼ � � � ¼ ym

1 ¼ k, we call
the edge set {e1,e2, . . . ,em} a set of (i, j,k)-edges. Obviously, a set of (i, j,k)-edges is also a set of (i,k, j)-edges
since the edges we discuss in this paper have no direction.

The following theorem was independently proved by Hsieh et al. [5] and Li et al. [9].

Theorem 2 (Hsieh et al. [5], Li et al. [9]). The n-dimensional star graph Sn is (n � 3)-edge-fault Hamiltonian

laceable for n P 4.

Lemma 3. For any edge e and e 0 of S4, there exists a cycle of even length from 6 to 24 in S4 � e 0 containing e.

Proof. Since Sn is edge-symmetric, without loss of generality, we assume that e = (1234, 3214). By Theorem 2,
there exists a Hamiltonian path P connecting the vertices 1234 and 3214 in Sn � e 0. Then P + e is a cycle of
length 24 containing e in S4 � e 0. Let ‘ be any even integer with 6 6 ‘ 6 22. To complete the proof of the
lemma, we need to construct a set of cycles of length ‘ such that the intersection of their edge sets is e. We
give the construction detail in Appendix. h

Lemma 4. For any edge e and an edge set F with jFj = n � 3 and n P 5, there exists a subgraph Si:j
n�1 ¼ ðV i:j;Ei:jÞ

such that e 2 Ei : j and jEi : k \ Fj 6 n � 4 for all 1 6 k 6 n.

Proof. Without loss of generality, we assume e = (a1a2� � �ai� � �an,aia2� � �a1� � �an). Consider the n � 2 subgraphs
S2:a2

n�1; S3:a3
n�1; . . . ; Si�1:ai�1

n�1 ; Siþ1:aiþ1

n�1 ; . . . ; Sn:an
n�1. Obviously, e 2 \k 6¼1;iEk:ak . Then for each j where 2 6 j 6 n, j 5 i,

{Vj:1,Vj:2, . . . ,Vj : n} is a partition of V(Sn). If none of these partitions satisfies Lemma 4 then the endpoints
of all the edges in F have the same digit value in bit position from 2 to n excluding bit position i. This condition
can only be satisfied when there is only one edge in the set F. Since jFj = n � 3 > 1 for n P 5, we get a con-
tradiction. So Lemma 4 holds. h

In [8], Li proposed the following algorithm for constructing (n � 2)-disjoint paths from which they proved
Lemma 6.

Algorithm 5

Input m, n, where n P 4 and 3 6 m 6 n.
Output (n � 2) disjoint paths.

1. Select arbitrary (n � 2) vertices, say a1,a2, . . . ,an�2 from V ðSm
n�1Þ with the first digits equal to 1 //Note that

the last bits of a1,a1, . . . ,an�2 are m.
2. For i 1 to (n � 2)
3. Pi haiiFor j 2 to m
4. v lastVertex(Pi) //Suppose that v = v1v2� � �vn�1vn.
5. //lastVertex(Pi) returns the last vertex in Pi.
6. Append vnv2� � �vn�1v1 to Pi

7. Append vlv2� � �v l�1vnvl+1� � �vn�1v1 to Pi where vl = j

8. Append vnv2� � �vn�1v1 to Pi, where v is the last vertex in Pi

9. Output P1,P2, . . . ,Pn�2.

Lemma 6 (Li [8]). There are (n � 2) disjoint paths of length (2m � 1) crossing S1
n�1; S2

n�1; . . . ; Sm
n�1 such that the

endpoints of these paths are in Sm
n�1 for n P 3 and 3 6 m 6 n. The endpoints of these paths are adjacent for m = 3,4.
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Let e1 = (x1,y1), e2 = (x2,y2), . . . ,en�2 = (xn�2,yn�2) be a set of (1,2,m)-edges in S1
n�1 for n P 3 with x1

1 ¼
x2

1 ¼ � � � ¼ xn�2
1 ¼ m and y1

1 ¼ y2
1 ¼ � � � ¼ yn�2

1 ¼ 2. In the step 1 of Algorithm 5, if we choose ai ¼ xi
nxi

2 � � �
xi

n�1xi
1 when xi ¼ xi

1xi
2 � � � xi

n�1xi
n for 1 6 i 6 n � 2, then we can get n � 2 disjoint paths P1,P2, . . . ,Pn�2 of length

(2m � 1) crossing S1
n�1; S2

n�1; . . . ; Sm
n�1 such that the endpoints of these paths are in Sm

n�1 for n P 3 and
3 6 m 6 n by the Algorithm 5. Furthermore, we have EðP iÞ \ EðS1

n�1Þ ¼ ei for 1 6 i 6 n � 2.
Since Sn is vertex-symmetric and edge-symmetric, by the construction of above paths, we can get the fol-

lowing lemma easily.

Lemma 7. Let {e1, e2, . . . , en�2} be a set of (i1, i2, im)-edges in Si1
n�1. Then there exists n � 2 disjoint paths

P1,P2, . . . ,Pn�2 of length 2m � 1 crossing Si1
n�1; S

i2
n�1; . . . ; Sim

n�1 such that ei 2 Pi and the endpoints of these paths

are in Sim
n�1 for n P 3 and 3 6 m 6 n. The endpoints of these paths are adjacent for m = 3,4.

The above lemma guarantees the existence of a fault-free path when the number of fault edges in Sn does
not exceed (n � 3).

Lemma 8. Let F � E(Sn) with jFj 6 n � 3 for n P 3 and {e1, e2, . . . , en�2} be a set of (i1, i2, im)-edges in Si1
n�1.

Then there exists a path P in Sn � F of length (2m � 1) crossing Si1
n�1, Si2

n�1; . . . ; Sim
n�1 such that the endpoints of P

are in Sim
n�1 for n P 3 and 3 6 m 6 n. Furthermore, jE(P) \ {e1, e2, . . . , en�2}j = 1. The endpoints of these paths

are adjacent for m = 3,4.
3. Edge-pancyclicity of star graphs with edge-fault

In this section, we will give the proof of our main result.

Theorem 9. For any edge subset F of Sn with jFj 6 n � 3 and any edge e 2 Sn � F, there exists a cycle of even

length from 6 to n! in Sn � F containing e provided n P 3.

Proof. We prove the theorem by induction on n P 3. For n = 3, the star graph S3 is a cycle of length six. Since
jFj 6 n � 3 = 0, the theorem holds for n = 3.

For n = 4, the theorem holds by Lemma 3.
Assume now that the theorem is true for all integer k, 3 6 k < n. Let F be any edge subset of Sn with

jFj 6 n � 3, e be any edge of Sn � F and ‘ be any even integer with 6 6 ‘ 6 n!, where n is an integer no less than
5. Since Sn is vertex-symmetric and edge-symmetric, we assume that e = (a1a2� � �ai�1aiai+1� � �an,
aia2� � �ai�1a1ai+1� � �an) for 2 6 i < n and jF \ EðSm

n�1Þj 6 n� 4 for 1 6 m 6 n by Lemma 6. Obviously,
e 2 EðSan

n�1Þ. To complete the proof of the theorem, we need to show that there exists a cycle of length ‘ in
Sn � F containing e.

Case 1. 6 6 ‘ 6 (n � 1)! By the induction hypothesis, there exists a cycle C of length ‘ in San
n�1 containing e.

Specially, we use C1 and C2 to denote the cycles of length (n � 1)! � 2 and (n � 1)!, respectively.
Case 2. (n � 1)! + 2 6 ‘ 6 3(n � 1)! In this case, we can write ‘ = ‘1 + ‘2 + ‘3 where ‘1, ‘2 and ‘3 satisfy the

following conditions:
‘1 ¼ ðn� 1Þ!� 2 or ðn� 1Þ!
‘2 ¼ 2 or 6 6 ‘2 6 ðn� 1Þ!
‘3 ¼ 2 or 6 6 ‘3 6 ðn� 1Þ!
We consider the cycle C 0 in San
n�1 where C 0 = C1 if ‘1 = (n � 1)! � 2, and C 0 = C2 otherwise. Since

2�ððn�1Þ!�2Þ
ðn�1Þðn�2Þ

l m
P n� 1 for n P 5, then there are at least n � 2 edges in a set of (an,xj,xk)-edges E where e 62 E

and 1 6 xj, xk 6 n, xj 5 an, xk 5 an. By Lemma 8, there exists a cycle C* of length six crossing San
n�1, Sxj

n�1

and Sxk
n�1 in Sn � F containing an edge e 0 where e 0 2 E, E(C*) \ E(C 0) = e 0, EðC�Þ \ EðSxj

n�1Þ ¼ ej and
EðC�Þ \ EðSxk

n�1Þ ¼ ek. By the induction hypothesis, there exists a cycle Ck of length ‘2 in Sxj

n�1 � F containing
ej if ‘2 P 6 and exists a cycle of length ‘3 in Sxk

n�1 � F containing ek if ‘3 P 6.
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In the cycle C*, we replace the edge e 0 by the cycle C 0 � e 0. Replace the edge ej by the cycle Cj � ej if ‘j P 6.
Replace the edge ek by the cycle Ck � ek if ‘k P 6. Then, we get the cycle of length ‘ in Sn � F containing e.

Case 3. 3(n � 1)! + 2 6 ‘ 6 n! In this case, we can write ‘ = ‘1 + ‘2 + ‘3 +� � �+ ‘n where ‘1 P ‘2 P
‘3 P� � �P ‘n and the following restrictions should be satisfied:
‘1 ¼ ðn� 1Þ!� 2 or ðn� 1Þ!
‘2 ¼ ðn� 1Þ!� 2 or ðn� 1Þ!
‘3 ¼ 2 or 6 6 ‘3 6 ðn� 1Þ!
‘4 ¼ 0 or 2 or6 6 ‘3 6 ðn� 1Þ!
� � �

‘n ¼ 0 or 2 or 6 6 ‘n 6 ðn� 1Þ!
Let M = {‘i : ‘i 5 0, 1 6 i 6 n} and m = jMj. We consider the cycle C 0 in San
n�1 where C 0 = C1 if

‘1 = (n � 1)! � 2, otherwise C 0 = C2. Since 2�ððn�1Þ!�2Þ
ðn�1Þðn�2Þ

l m
> n� 1 for n P 5, then there are at least n � 2 edges

in a set of (an,xj,xk)-edges E where e 62 E and 1 6 xj, xk 6 n, xj 5 an, xk 5 an. By Lemma 8, there exists a path
P in Sn � F of length (2m � 1) crossing Sxk

n�1; S
an
n�1; S

xj

n�1; S
b4
n�1; . . . ; Sbm

n�1 such that the endpoints of path P are in
Sxk

n�1 for n P 5 and 4 6 m 6 n. Furthermore, the path P contains an edge e 0 2 E where EðPÞ \ EðSan
n�1Þ ¼ e0 and

EðP Þ \ EðSxj

n�1Þ ¼ e00 and EðPÞ \ EðSbi
n�1Þ ¼ ei for 4 6 i 6 m. By Theorem 2, there exists a Hamiltonian path Pk

of length (n � 1)! � 1 in Sxk
n�1 � F joining the endpoints of P. And by the induction hypothesis, there exists a

cycle C00 of length ‘3 in Sxj

n�1 � F containing e00 if ‘3 P 6 and a cycle Ci of length ‘i in Sbi
n�1 � F containing ei for

4 6 i 6 m if ‘i P 6.
We now produce a cycle of length ‘ in Sn � F containing e by substituting some edges in path P as follows:

Joint the endpoints of P by path Pk, that makes a cycle and then replace edge e 0 2 P by the path C 0 � e 0. Next
replace the edge e00 by the cycle C00 � e00 if ‘3 P 6 and replace the edge ei by the cycle Ci � ei for 4 6 i 6 m if
‘i P 6. As a result we obtain the cycle of desired length.

Then the theorem holds. h
4. Conclusion

In this paper, we show that for any edge subset F of Sn with jFj 6 n � 3 and any edge e 2 Sn � F, there
exists a cycle of even length from 6 to n! in Sn � F containing e provided n P 3. If the (n � 2) faulty edges
are incident with the same vertex, then the faulty Sn contains no cycle of length n!. And since the length of
shortest cycle in Sn is six, then our result is optimal.

Appendix. Construction details of desired cycles

If ‘ = 6, the cycles h1234, 3214, 2314, 1324, 3124,2134, 1234i and h1234, 3214, 4213, 1243, 3241, 4231,1234i
are the desired cycles. See Fig. 2.
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Fig. 2. The desired cycles of length 6.
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Fig. 3. The desired cycles of length 8.
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If ‘ = 8, the cycles h1234, 3214, 2314, 1324, 4321, 3421, 2431, 4231, 1234i and h1234, 3214,4213,2413,
3412, 1432, 4132, 2134, 1234i are the desired cycles. See Fig. 3.

If ‘ = 10, the cycles h1234,3214,2314, 1324, 3124, 4123, 1423, 3421, 2431, 4231, 1234i and h1234, 3214,
4213, 1243, 3241, 2341, 1342, 3142,4132,2134,1234i are the desired cycles. See Fig. 4.

If ‘ = 12, the cycles h1234, 3214, 2314, 1324, 3124,4123,1423, 3421, 4321, 2341, 3241, 4231, 1234i and h1234,
3214, 4213, 1243, 2143, 3142, 1342,4312,3412,1432, 4132, 2134, 1234i are the desired cycles. See Fig. 5.

If ‘ = 14, the cycles h1234, 3214, 2314,1324,3124, 4123, 2143, 1243, 4213, 2413, 3412, 1432, 4132, 2134,1234i,
h1234, 3214, 2314, 4312, 1342,3142,2143, 4123, 1423, 3421, 4321, 2341, 3241, 4231, 1234i and h1234,3214, 4213,
1243, 2143, 3142, 4132, 1432, 2431,3421,4321,2341, 3241, 4231, 1234i are the desired cycles. See Fig. 6.
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Fig. 4. The desired cycles of length 10.
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Fig. 5. The desired cycles of length 12.
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Fig. 6. The desired cycles of length 14.
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Fig. 7. The desired cycles of length 16.
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If ‘ = 16, the cycles h1234, 3214, 2314, 1324, 3124, 2134, 4132,1432,3412, 4312, 1342, 3142, 2143, 1243, 3241,
4231,1234i, h1234, 3214, 4213, 2413, 3412, 4312, 1342, 3142,4132,1432,2431, 3421, 4321, 2341, 3241, 4231, 1234i,
h1234,3214, 4213, 1243, 2143, 4123, 1423, 2413, 3412, 1432,2431,3421,4321, 1324, 3124, 2134, 1234i are the
desired cycles. See Fig. 7.

If ‘ = 18, the cycles h1234, 3214, 2314, 4312, 1342, 3142, 2143,4123,1423, 2413, 4213, 1243, 3241, 2341, 4321,
3421,2431,4231, 1234i, h1234, 3214, 4213, 2413, 1423,3421,4321,2341, 1342, 3142, 4132, 1432, 3412, 4312, 2314,
1324,3124,2134, 1234i and h1234, 3214, 2314, 1324, 3124,2134,4132,3142, 2143, 1243, 3241, 2341, 1342, 4312,
3412,1432,2431, 4231, 1234i are the desired cycles. See Fig. 8.

If ‘ = 20, the cycles h1234, 3214, 4213, 1243, 2143, 4123, 1423,2413,3412, 4312, 1342, 3142, 4132, 1432, 2431,
3421,4321,2341, 3241, 4231, 1234i, h1234, 3214, 2314,1324,3124,2134, 4132, 1432, 3412, 4312, 1342, 3142, 2143,
4123,1423,2413, 4213, 1243, 3241, 4231, 1234i, h1234,3214,4213,2413, 1423, 4123, 2143, 1243, 3241, 4231, 2431,
3421,4321,2341, 1342, 4312, 2314, 1324, 3124, 2134, 1234i and h1234,3214, 2314, 1324, 3124, 2134, 4132, 1432,
3412,4312,1342, 3142, 2143, 1243, 3241, 2341, 4321, 3421, 2431, 4231,1234i are the desired cycles. See Fig. 9.

If ‘ = 22, the cycles h1234, 3214, 2314, 1324, 3124, 4123, 2143,1243,4213, 2413, 3412, 4312, 1342, 3142, 4132,
1432,2431,3421, 4321, 2341, 3241, 4231, 1234i, h1234,3214,2314,1324, 3124, 2134, 4132, 3142, 1342, 4312, 3412,
2413,4213,1243, 2143, 4123, 1423, 3421, 4321, 2341, 3241, 4231, 1234i, h1234, 3214, 4213, 2413, 1423, 4123, 2143,
3142,4132,1432, 3412, 4312, 1342, 2341, 3241, 4231, 2431, 3421, 4321,1324,3124, 2134, 1234i, h1234, 3214, 4213,
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Fig. 8. The desired cycles of length 18.
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Fig. 9. The desired cycles of length 20.
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Fig. 10. The desired cycles of length 22.
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1234i, h1234, 3214, 2314,1324,3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 2431, 4231,3241,2341, 1342, 4312,
3412, 1432,4132, 2134, 1234i, h1234, 3214, 2314, 1324, 4321, 3421, 2431, 4231,3241,2341, 1342, 3142, 4132, 1432,
3412, 2413, 4213, 1243, 2143, 4123,3124,2134,1234i, h1234, 3214, 2314, 1324, 3124, 4123,1423,2413, 4213, 1243,
2143, 3142, 4132, 1432, 3412, 4312,1342,2341,4321, 3421, 2431, 4231,1234i and h1234,3214,2314, 1324, 4321,
2341, 3241, 4231, 2431,1432,3412,4312, 1342, 3142, 2143, 1243, 4213, 2413, 1423, 4123,3124,2134,1234i are the
desired cycles. See Fig. 10.
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