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Abstract

We propose a new two level interconnection network topology, hierarchical star networks, HSn, that uses the star

graphs as building blocks. Two level networks have been previously proposed that use hypercube and its variants as

building blocks; it has been shown that these two level networks are superior to the networks, that are used as building

blocks, in terms of various performance metrics including diameter, cost, fault tolerance, fault diameter etc. Our re-

sults show that the proposed family of hierarchical star networks perform very competitively in comparison to star

graphs; in addition, the proposed network outperforms all of the two level hierarchical networks proposed earlier that

uses hypercubes (or its variations) as building blocks. Thus, our results further reinforce the notion that the star

graphs are strong competitors of hypercubes for large multiprocessor design. We also investigate various topological

properties of the network including embedding, mapping of parallel algorithms, fault tolerance and broadcasting algo-

rithms.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

A suitable interconnection network is an inte-

gral part of any distributed computing system.

The network is usually modeled by a symmetric
(undirected) graph where the nodes (vertices) de-

note the processing elements and the edges (arcs)

denote the bidirectional communication channels.
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Interconnection topologies are evaluated in terms

of low degree, small diameter, high fault tolerance,

low fault diameter etc. One of the most efficient

interconnection network has been the well known

binary n-cubes or hypercubes; they have been used
to design various commercial multiprocessor ma-

chines and they have been extensively studied. In

search of a viable or even better alternative for

hypercubes, another family of regular graphs,

called the star graphs [1,2], are being extensively

studied; star graphs seem to enjoy most of the

desirable properties [5,16,18,19] of the hypercubes
ed.
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at considerably less cost; they accommodate more

nodes with less interconnection hardware and less

communication delay. It has also been shown

[8,14,15,17] that many parallel algorithms can be

efficiently mapped on these star graphs.
Investigators [4,10,13] have been studying two

level interconnection networks which take some

known networks and connect them in a complete

manner. Authors in [4] have proposed a two level

network, called hierarchical folded hypercube net-

work (HFN), using folded hypercubes of [7] as the

basic building blocks. In [9,10], authors proposed

hierarchical cube networks (HCN) which consist
of 2n basic modules each of which is a hypercube

of dimension n and showed that this network is

superior to hypercubes. Authors in [4] extended

this design concept to propose hierarchical folded

hypercube network (HFN) using folded hyper-

cubes of [7] as the basic building blocks; they

showed that HFN is superior to HCN in terms

of almost all the network parameters as much as
folded hypercubes were a topological improve-

ment over the regular hypercubes. Our objective

in the present paper is to design such two level

hierarchical networks using the star graphs as the

basic building blocks and to investigate the topo-

logical properties of the resulting family of net-

works. We show that our proposed network,

hierarchical star network (HS) is superior to the
original star graphs, hierarchical folded hypercube

networks, folded hypercubes in terms of cost of the

network, node degree and diameter as well as the

HS networks also retain other desired network

properties like simple routing strategy, maximal

fault tolerance (vertex connectivity) and optimal

broadcasting.
2. Hierarchical star network

2.1. Star graph

A star graph Sn, of order n, is defined to be a

symmetric graph G = (V,E) where V is the set of

n! vertices, each representing a distinct permuta-
tion of n elements and E is the set of symmetric

edges such that two permutations (nodes) are con-
nected by an edge iff one can be reached from the

other by interchanging its first symbol with any

other symbol [2]. For example, in S3, the node rep-

resenting permutation abc have edges to two other

permutations (nodes) bac and cba. Throughout
our discussion we denote the nodes by permuta-

tions of English alphabets. These star graphs are

members of the family of Cayley group graphs.

For a star graph Sn of dimension n, there are

n � 1 generators, swap2, swap3, . . . ,swapn, where

swapi swaps the first symbol with the i-th symbol

of any permutation. Each generator is its own in-

verse, i.e., the star graph is symmetric. Sn is a
(n � 1)-regular graph with n! nodes and n!(n � 1)/

2 edges. These star graphs have many other inter-

esting topological properties and they compete

well with the popular hypercubes in many aspects;

see [2,6] for details.

Note: The generator swapn for the star graph Sn

has a special role to play in this paper; so, for an

arbitrary node x = x1,x2, . . . ,xn in Sn, we denote
the node swapn(x) = xn,x2, . . . ,x1 by x̂ in this

paper.
2.2. Hierarchical star graph

A hierarchical star graph network HS(n, n) of

dimension n for any integer n P 2 consists of n!

modules (each module is a star graph of dimension
n) interconnected by additional edges. Each node

in HS(n, n) is denoted by a two-tuple address (x,y)

where both x and y are arbitrary permutations of

n distinct symbols. For each node (x,y), x identi-

fies the module the node belongs to and y further

identifies the node within the module; thus, for

each node (x,y) in HS(n, n), x is the module identifier

and y is the local identifier. There are two types of
edges (links) in HS(n, n): local links that connect two

nodes in the same module and external links that

connect nodes from two different modules.

Definition 1. Consider two arbitrary nodes (x,y)
and (x 0,y 0) in HS(n, n); there exists an edge between

these two nodes iff one of the following three

conditions is satisfied.

(1) x = x 0 and y 0 = swapi(y) for some i,

2 6 i 6 n;
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(2) x 6¼ x 0 � x 6¼ y and x = y 0 � x 0 = y.

(3) x 6¼ x 0 � x = y and x0 ¼ y0 ^ x ¼ x̂0.

Remark 1

� The links derived from the first condition are

called local links since they link the two nodes

with the same module identifier, while the links

derived from the last two conditions are the

external links since they connect nodes from dif-

ferent modules.

� The external links are further divided into two
categories: links derived from the condition (2)

are called non-diameter external links while the

diameter external links are those derived from

condition (3).

� Two nodes on a non-diameter external link

switches their respective module and local iden-

tifiers; two nodes on a diameter external link

have identical module and local identifiers.
(abc, abc

(abc, bac)

(abc, cab)

(abc, acb

(

(

(bac, abc)

(cab, abc)

(acb, ab

(bac, *)

(cab, *)

(acb, *)

Non-diameter external link

(acb, acb
Internal Link

Fig. 1. Hierarchical star
Example 1. Fig. 1 shows a HS(3, 3). Here, n = 3;
HS(3, 3) consists of six modules each of which is a

star graph S3 of dimension 3. Each node has a

two part address (x,y), where both x and y is an

arbitrary permutation of three letters ‘‘a’’, ‘‘b’’

and ‘‘c’’.

For notational purposes in the sequel, we use

the following symbols to denote different types of

edges in HS(n, n):

� !: Single local link.

� ): A group of local links.

� ´: An external link. It may be diameter or non-

diameter external link.

� W: Non-diameter external link.

� [: Diameter external link.

Each node in HS(n, n) is assigned a label

((x1x2 � � �xn), (y1y2 � � �yn)) where (x1x2 � � �xn) is a

permutation of n distinct symbols and (y1y2 � � �yn)
is also a permutation (not necessarily distinct from

ems Architecture 51 (2005) 1–14 3
)

)

abc, cba)

abc, bca)
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network HS(3, 3).
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(x1x2 � � �xn)) of the same n distinct symbols. We re-

fer to (x1x2 � � �xn) as the module-id and (y1y2 � � �yn)
as the local-id of any node in HS(n, n). The edges of

the HS(n, n) graph are defined by the following n

generators:
h1ððx1x2 � � �xnÞ; ðy1y2 � � �ynÞÞ

¼

ððxnx2 � � �xn�1x1Þ; ðyny2 � � �yn�1y1ÞÞ

if xi ¼ yi;8i;16 i6n

ððy1y2 � � �ynÞ; ðx1x2 � � �xnÞÞ

otherwise

8>>>>><
>>>>>:

hiððx1x2 � � �xnÞ; ðy1y2 � � �ynÞÞ

¼ ðx1x2 � � �xnÞ; ðyiy1y2 � � �yi�1yiþ1 � � �ynÞ; 8i;26 i6n

Remark 2

� The set of n generators of the graph HS(n, n)
X = {hi, 1 6 i 6 n} is closed under inverse; in

particular hi for all i is its own inverse; thus

the edges in HS(n, n) are bidirectional.
� For an arbitrary n, n P 2, for any arbitrary

node (u,v) of the graph HS(n, n) d(u,v) 6¼ (u,v)

where d 2 X; also, for any two d1,d2 2 X,
d1(u,v) 6¼ d2(u,v).

� HS(n, n) has n! distinct modules, each module is a

star graph Sn; a module of HS(n, n) with module-

id x is denoted by [x, *].

Theorem 1. HS(n, n) is a regular graph of degree n.

Proof. Consider an arbitrary node (x,y) in HS(n, n).

It has exactly n � 1 local links incident to its n � 1

local neighbors in the same basic module. It also

has exactly one external link, either diameter exter-

nal link for the node which has same module and
local id (x = y), or non-diameter external link for

the node which has different module and local id

(x 6¼ y). Thus, each node has exactly n edges inci-

dent on it in a HS(n, n). h

Theorem 2. HS(n, n) contains (n!)2 nodes and nðn!Þ2
2

edges.
Proof. From definition, HS(n, n) consists of n! basic

modules, each of which is a star graph Sn of

dimension n. A star graph Sn has n! nodes and

hence, HS(n, n) consists of n! · n! nodes. Using The-

orem 1 the number of edges n HS(n, n) is given by
nðn!Þ2

2
. h

Remark 3. Throughout the paper we have used n

to denote the dimension (order) of the graph; it is

also to be noted that each node in HS(n, n) has a

node degree n.
2.3. Simple routing and diameter

Since HS(n, n) consists of n! modules, each of

which is a star graph Sn of dimension n, we can uti-

lize the shortest routing scheme in a star graph [2]
to develop a simple point to point routing scheme

in HS(n, n). We start with the following two re-

marks.

Remark 4. (Diameter and shortest routing in star

graph Sn) Let u and v be two arbitrary nodes

(permutations of n distinct symbols) in Sn and

D(u,v) is the distance of the node u from the node

v. It is known [2] that D(u,v) 6 º3(n � 1)/2ß, i.e.,
the diameter of the star graph DðSnÞ ¼ b3ðn�
1Þ=2c. Given two arbitrary nodes u and v in Sn, the

algorithm to compute the shortest path from u v is
also given in [2]. Since the star graph is node-

symmetric, in routing between two nodes, the

destination node is commonly assumed to have the

identity permutation I as its label. The routing

between two nodes then is accomplished according

to the following two rules [1]:

1. If ‘‘a’’ is the leftmost symbol, move it to any

position not occupied by the correct symbol,

and

2. If ‘‘x’’ (any symbol other than ‘‘a’’) is the left-

most symbol, move it to its correct position.

Remark 5. Consider two arbitrary nodes (us,vs)

and (ud,vd) in HS(n, n) where us = ud, i.e., the source
node belongs to the same module as the destina-

tion node. Then, a simple path from (us,vs) to the
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destination node (ud,vd) is computed by the

shortest routing scheme in a star graph Sn and

the distance between the nodes is always

6 º3(n � 1)/2ß.

Now, consider two arbitrary nodes (us,vs) and

(ud,vd) in HS(n, n) where us 6¼ ud. The following

algorithm Simple_Route computes two simple

paths from (us,vs) to the destination node (ud,vd)

in HS(n, n).

Algorithm Simple_Route

Path P1:

� Use ‘‘shortest routing scheme in star Sn’’ to go

from node (us,vs) to (us,ud) in the module with

module-id us.

� Follow the external link from node (us,ud) to

(ud,us) (note that this external link is always a
non-diameter link since us 6¼ ud).

� Use ‘‘shortest routing scheme in star Sn’’ to go

from node (ud,us) to the destination node

(ud,vd) in the module with module-id ud.

Thus the path P1 generated can be expressed as

ðus; vsÞ ) ðus; udÞ,!ðud; usÞ ) ðud; vdÞ

Path P2:

� Use ‘‘shortest routing scheme in star Sn’’ to go
from node (us,vs) to (us,vd) in the module with

module-id us.

� Follow the external link from node (us,vd) to

(vd,us) (assuming us 6¼ vd this external link is

non-diameter; if us = vd, this link is not needed).

� Use ‘‘shortest routing scheme in star Sn’’ to go

from node (vd,us) to the node (vd,ud) in the

module with module-id vd.
� Follow the external link from node (vd,ud) to

the destination node (ud,vd) (assuming ud 6¼ vd
this external link is non-diameter; if ud = vd, this

link is not needed).

Thus the path P2 generated can be expressed as

ðus; vsÞ ) ðus; vdÞ,!ðvd; usÞ ) ðvd; udÞ,!ðud; vdÞ

Example 2. Consider the source node (abc,abc)

and the destination node (bca,cba) in HS(3, 3).
Algorithm Simple_Route computes the following

paths.

P1 : ðabc; abcÞ ! ðabc; cbaÞ ! ðabc; bcaÞ
,!ðbca; abcÞ ! ðbca; cbaÞ

P2 : ðabc; abcÞ ! ðabc; cbaÞ,!ðcba; abcÞ
! ðcba; cbaÞ ! ðcba; bcaÞ,!ðbca; cbaÞ

The length of the path P1 is 4, while that of path

P2 is 5.

Remark 6. Note that neither of the paths gener-

ated by algorithm Simple_Route in Example 2 is

optimal since there exists a path of length 3 from

node (abc,abc) to node (bca,cba) in HS(3, 3) as fol-

lows:

ðabc; abcÞ,ðcba; cbaÞ ! ðcba; bcaÞ,!ðbca; cbaÞ
Thus the routing algorithm, although a simple

one, is not a shortest routing algorithm.

Theorem 3. For two arbitrary nodes (us, vs) and

(ud,vd) in HS(n, n), the algorithm Simple_Route gen-
erates a path of length 6 3n � 2.

Proof. Consider the two paths generated by the

algorithm: path P1 consists of two shortest routes

in Sn and an external link while the path P2 con-

sists of two shortest routes in Sn and two external

links. It immediately follows from Remark 4 that

the length of the shorter path of P1 and P2 is at
most 2 · º3(n � 1)/2ß + 1 6 3n � 2. h

Theorem 4. The diameter of the hierarchical star

graph HS(n, n) is at most 3n � 2.

Proof. It directly follows from Theorem 3. h
2.4. Comparison with other networks

HS(n, n) of dimension n is an n-regular (regular

with node degree n) graph of diameter at most
3n � 2. In this section, we compare the proposed

network with existing families of networks with re-

spect to node degree, diameter and cost. The net-

works with smaller degrees have larger diameters

than networks (of comparable number of nodes)

with larger node degrees. In order to reflect this
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trade-off between node degree and diameter in net-

work design, authors in [3,4,7] have traditionally

used the concept of cost of a network. Cost of a

network is defined to be the product of node de-

gree and the diameter of the network and for net-
works of comparable number of nodes this

concept of cost provides a good performance

measure of the network design. We compare the
Table 1

Comparison of four different graph families

HS(n, n) Sn

Nodes (n!)2 n!

Degree n n � 1

Diameter 2
3ðn�1Þ

2

j k
þ 1

3ðn�1Þ
2

j k

Cost n� 2
3ðn�1Þ

2

j k
þ 1

� �
ðn� 1Þ � 3ðn�1Þ

2

j k

Table 2

Detailed numerical comparison

Hierarchical star HS(n, n)
Value of n 4 6 8 10 12

Nodes 576 5.18 · 103 1.63 · 109 1.32 · 1013 2.29 · 1017

Degree 4 6 8 10 12

Diameter 9 15 21 27 33

Cost 36 90 168 270 396

Star graph Sn

Value of n 6 9 13 16 19

Nodes 720 3.62 · 105 6.23 · 109 2.09 · 1013 1.22 · 1017

Degree 5 8 12 15 18

Diameter 7 12 18 22 27

Cost 35 96 216 330 486

Folded hypercube FHn

Value of n 9 19 30 43 57

Nodes 512 5.24 · 105 1.07 · 109 8.8 · 1012 1.44 · 1017

Degree 10 20 31 44 58

Diameter 5 10 16 22 29

Cost 50 200 496 968 1682

Hierarchical folded hypercube HFN(n, n)

Value of n 5 9 15 22 29

Nodes 1024 2.62 · 105 1.07 · 109 1.76 · 1013 2.88 · 1017

Degree 7 11 17 24 31

Diameter 7 11 17 25 31

Cost 49 121 289 600 961
various performance metrics of four different

graphs, e.g., our proposed HS(n, n), star graphs

Sn, folded hypercubes FHn [7], and hierarchical

folded hypercubes HFN(n, n) in Table 1. Detailed

numerical comparisons for different sized net-
works are shown in Table 2 while Figs. 2–4 show

the summary comparison of the different families

in graphical form in terms of the parameters node
FHn HFN(n, n)

2n 22n

n + 1 n + 2
nþ1
2

� �
2 nþ1

2

� �
þ 1

ðnþ 1Þ � nþ1
2

� �
ðnþ 2Þ � 2 nþ1

2

� �
þ 1

� �

14 16 18 20 22

7.6 · 1021 4.38 · 1026 4.1 · 1031 5.92 · 1036 1.26 · 1042

14 16 18 20 22

39 45 51 57 63

546 720 918 1140 1386

22 26 29 33 36

1.12 · 1021 4.03 · 1026 8.84 · 1030 8.68 · 1036 3.72 · 1041

21 25 28 32 35

31 37 42 48 52

651 925 1176 1536 1820

73 88 105 122 140

9.94 · 1021 3.09 · 1026 4.06 · 1031 5.32 · 1036 1.39 · 1042

74 89 106 123 141

37 45 53 62 71

2738 4005 5618 7627 10,011

36 44 52 61 70

4.72 · 1021 3.09 · 1026 2.02 · 1031 5.32 · 1036 1.39 · 1042

38 46 54 63 72

39 47 55 63 73

1482 2162 2970 3969 5256



Fig. 2. Comparison of node degrees with size.
Fig. 4. Comparison of cost with size.

Fig. 3. Comparison of diameters with size.
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degree, diameter and cost. We can readily make

the following observations.

� For networks of any size, the node degree of the

hierarchical star graphs HS(n, n) is always smal-
ler than that of any of the other three networks

under consideration and the difference becomes

more prominent as the size of the networks

grow larger.
� Hierarchical star graphs HS(n, n) and the star

graphs Sn have sub-logarithmic diameter while

the folded hypercubes FHn and the hierarchical

folded hypercubes HFN(n, n) have logarithmic
diameters. Note that the diameter of HS(n, n) is

higher than that of other graphs when the size

of the network is relatively small, but as the net-

work size grows, diameter of HS(n, n) becomes

smaller than that of FHn and HFN(n, n) while

the diameter of Sn remains always the smallest.

� Cost of HS(n, n) is always the lowest among

that of all four networks for networks of all
sizes.
3. Embedding in HS(n, n)

3.1. Cycles in HS(n, n)

First, we note that a star graph Sn of dimension

n contains all cycles of even length ‘, 6 6 ‘ 6 n!

[12]. More specifically, we have the following

lemma.

Lemma 1. Given two arbitrary adjacent nodes u

and v in Sn ((u, v) is an edge in Sn), we can construct

a cycle of length ‘ in Sn containing the edge (u,v) for

all even ‘, 6 6 ‘ 6 n!
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Proof. See [12]. h

Corollary 1. Given two arbitrary adjacent nodes u

and v in Sn ((u, v) is an edge in Sn), there exists a

path of length ‘ � 1 between nodes u and v for all
even ‘, 6 6 ‘ 6 n!

Theorem 5. The hierarchical star graph HS(n, n)
contains a Hamiltonian cycle.

Proof. Consider two arbitrary nodes X1 and X2 in

a star graph Sn such that X1 = swapn(X2). By Lem-

ma 1, there exists a Hamiltonian cycle in Sn con-
taining the edge (X1,X2) in Sn; number the nodes

in this Hamiltonian cycle as X1,X2, . . . ,Xn!; we de-

note this Hamiltonian by )H. Each module in

HS(n, n) is a star graph Sn and hence contains the

Hamiltonian X1,X2, . . .Xn!; also, HS(n, n) has n!

modules [Xi, *] each with module-id Xi, 1 6 i 6 n!

We construct the Hamiltonian cycle in HS(n, n) as

follows:

ðX 1;X 3Þ,!ðX 3;X 1Þ)HðX 3;X 2Þ,!ðX 2;X 3Þ
! ðX 2;X 4Þ,!ðX 4;X 2Þ)HðX 4;X 1Þ,!ðX 1;X 4Þ
! ðX 1;X 5Þ,!� � � ; � � � ðXn!;X 2Þ)HðXn!;X 1Þ
,!ðX 1;Xn!Þ ! ðX 1;X 1Þ,ðX 2;X 2Þ ! ðX 2;X 1Þ
,!ðX 1;X 2Þ ! ðX 1;X 3Þ

We start with the node (X1,X3) in module (X1,*),

follow a non-diameter external link to module
(X3,*), traverse all nodes in the module (X3,*)

(by traversing the local Hamiltonian cycle), follow

a non-diameter external link to the node (X2,X3) in

module (X2,*) and continue the pattern. This path

always comes back to the module [X1,*] or [X2,*]

after traversing all nodes in the module Xi and

then goes to traverse nodes in module [Xi + 1,*],

3 6 i 6 n! The remaining four nodes (X1,X1),
(X1,X2), (X2,X1), and (X2,X2), are visited after

all the other nodes in HSN(n, n) are visited. Note

that there are two external links between modules

[X1,*] and [X2,*]; one is a non-diameter external

link between nodes (X1,X2) and (X2,X1), the other

is a diameter external link between nodes (X1,X1)

and (X2,X2). The above path starts from (X1,X3)

and ends at (X1,X3) and travels all nodes in HS(n, n)
exactly once. h
Example 3. Fig. 5 shows one Hamiltonian in

HS(3, 3) constructed along the line of the proof of

the above theorem. In this example, n = 3, and

X1 = abc and X2 = cba = swap3(abc). Also note

that the Hamiltonian )H in a basic module is
(abc,cba,bca,acb,cab,bac) as well as there are six

modules, each a star graph of dimension 3.

Lemma 2. For any even ‘, 6 6 ‘ 6 n!, the hierar-

chical star graph HS(n, n), n P 3, contains n! mutu-

ally pairwise disjoint cycles of length ‘.

Proof. The graph HS(n, n) contains n! mutually dis-
joint modules, each of which is a star graph Sn of

dimension n. This, coupled with Lemma 1, yields

the desired result. h

Lemma 3. For any even ‘, 12 6 ‘ 6 4 * n!, there

exists a cycle of length ‘ in HS(n, n), for n P 3

(i.e.,HS(n, n) can embed the ring of length ‘ with dila-
tion 1 and link congestion 1).

Proof. Consider four arbitrary nodes X1,X2,X3,

and X4 in a star graph Sn such that X1 and X3

are neighbor nodes and X2 and X4 are neighbor

nodes. We can immediately get a cycle of length

8 in HS(n, n) as follows.

ðX 1;X 4Þ ! ðX 1;X 2Þ7!ðX 2;X 1Þ
! ðX 2;X 3Þ7!ðX 3;X 2Þ
! ðX 3;X 4Þ7!ðX 4;X 3Þ
! ðX 4;X 1Þ7!ðX 1;X 4Þ

This cycle involves nodes in four modules [X1,*],

[X2,*], [X3,*], [X4,*] and it consists of four local
links and four external links. From Corollary 1,

each local link in the above cycle can be independ-

ently substituted by a simple path of length ‘ � 1

for any even ‘, 6 6 ‘ 6 n!; Thus, for any even

‘, if we can solve the following equation

x1 þ x2 þ x3 þ x4 ¼ ‘; xi ¼ 2; 6; 8; � � � ; n! ð1Þ
then we get a cycle of length ‘. It can be eas-

ily shown that the above equation has at least

one set of solution when ‘ is even and 12 6 ‘
6 4 * n!, and n P 3. h
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Fig. 5. Hamiltonian in HS(3, 3).
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Example 4. Consider a HS(3, 3) in which we try

to find a cycle of length 12. From Eq. (1), we

can choose x1 = 6 and x2 = x3 = x4 = 2. So, the cy-

cle could be (abc,acb) ! (abc,cab)! (abc,bac) !
(abc,abc) ! (abc,cba) ! (abc,bca)´ (bca,abc)

! (bca,cba)´ (cba,bca) ! (cba,acb) ´ (acb,cba)
! (acb,abc)´ (abc,acb).

If we are trying to find a cycle of length 20, we

can choose x1 = x2 = x3 = 6 and x4 = 2. The cycle

can be constructed accordingly.

Lemma 4. For any even ‘, 4 * n! 6 ‘ 6 (n!)2,

there exists a cycle of length ‘ in HS(n, n), for
n P 3.

Proof. Consider the Hamiltonian cycle in HS(n, n)
we constructed in the proof of Theorem 5:
ðX 1;X 3Þ,!ðX 3;X 1Þ)HðX 3;X 2Þ,!ðX 2;X 3Þ
! ðX 2;X 4Þ,!ðX 4;X 2Þ)HðX 4;X 1Þ,!ðX 1;X 4Þ
! ðX 1;X 5Þ,!� � � ; � � � ðXn!;X 2Þ)HðXn!;X 1Þ
,!ðX 1;Xn!Þ ! ðX 1;X 1Þ,ðX 2;X 2Þ ! ðX 2;X 1Þ
,!ðX 1;X 2Þ ! ðX 1;X 3Þ

This cycle visits all nodes in module [Xi, *],

3 6 i 6 n! along the Hamiltonian path of a star

graph Sn. Similarly, as we did in proving Lemma

3, we can substitute each of these Hamiltonian

paths independently by a path of even length 2

or 6 to n! In addition, incorporating all the
2 · n! nodes in modules [X1,*] and [X2,*], we get

all even cycles of length between 4 · n! and

n! · n! h

Theorem 6. For any even ‘, 6 6 ‘ 6 (n!)2, there

exists a cycle of length ‘ in HS(n, n), where n P 3.



10 W. Shi, P.K. Srimani / Journal of Systems Architecture 51 (2005) 1–14
Proof. Combining Lemmas 2–4, the proof readily

follows. h
3.2. 2D Mesh in HS(n, n)

We prove that HS(n, n) embeds the largest possi-

ble meshes with dilation 3 and link congestion 4.

An embedding of networks is an one-to-one map-

ping u from node set of source network to the
node set of destination network. Thus, a link in

the source network is mapped to one or a group

of links in destination network. The dilation of a

mapping u is defined as the maximal distance be-

tween u(l) and u(m) for any two nodes l, m in

the source network. For each link e in destination

network, we use c(e) to denote the number of links

in source network whose corresponding path in
target network contains e. The link congestion of

a mapping u is defined as the maximal value of

c(e) for all edges e in the target network.

Theorem 7. A n! · n! 2D mesh can be embedded in

HS(n, n) with dilation 3 and link congestion 4.

Proof. Consider a Hamiltonian path in a star
graph Sn; number the n! nodes on this path as

X1,X2, . . . ,Xn!; we view the nodes of HS(n, n) as

(Xi,Xj), where 1 6 i, j 6 n! (note that nodes

(Xi,Xj) and (Xi,Xj + 1) in HS(n, n), 1 6 i 6 n!,

1 6 j < n!, is connected by a local link). Now con-

sider a 2D mesh with n! rows and n! columns and

denote by M(i, j) the node on the i-th row and j-th

column of this mesh. We map the node M(i, j) of
the mesh onto the node (Xi,Xj) of an HS(n, n) for

1 6 i, j 6 n!

There are two kinds of edges in a mesh. For

each edge (M(i, j), M(i, j + 1)) in the 2D mesh,

there exists a direct edge between the nodes (Xi,Xj)

and (Xi,Xj + 1) in HS(n, n), 1 6 i 6 n!, 1 6 j < n!

To simulate the edge between M(i, j) and

M(i + 1, j) in the mesh, 1 6 i < n!, 1 6 j 6 n!,
the path between nodes (Xi,Xj) and (Xi,Xj + 1) in

HS(n, n) can be computed as follows.

� Case [i = j]: (Xi,Xj)! (Xi,Xj + 1) W(Xj + 1,Xi).

� Case [i + 1 = j]: (Xi,Xj)W(Xj, Xi) ! (Xj,Xi + 1).

� Case [i 6¼ j � j 6¼ i + 1]: (Xi,Xj) W(Xj,Xi) ! (Xj, -

Xi + 1) W(Xi + 1,Xj).
Therefore, HS(n, n) embeds a n! · n! mesh with

dilation 3.

To compute the congestion we first note that
only the internal links and the non-diameter

external links in HS(n, n) are used in this embedding

of meshes. (1) Consider a local link that connects

(Xi,Xj) and (Xi,Xj + 1). For any edge e of this type,

there are exactly two edges in the guest network

(e.g, the mesh) whose corresponding paths con-

tains e: the edge between (M(i, j) and M(i, j + 1))

and the other between M(j, i) and M(j + 1,i); (2)
Consider a non-diameter external link. Any edge e

of this type in HS(n, n) is used at most four times as

the four links (M(i, j),M(i, j + 1)), (M(i, j),

M(i + 1, j)), (M(j, i), M(j, i + 1)), and (M(j, i),

M(j + 1,i)) in the mesh are mapped to the paths

in HS(n, n). So, for any e in HSN(n, n), c(e) does not

exceed four. Hence, HS(n, n) embeds a n! · n! mesh

with congestion 4. h

From Lemma 4 and Theorem 7, we can at once

conclude the following theorem (similar to that in

[4]):

Theorem 8. Any algorithm that executes on a ring

of even length ‘, 4 * n! 6 ‘ 6 (n!)2, or a 2D mesh of

size n! · n! using FðnÞ time steps, will also execute

on an HSN(n, n) in at most cFðnÞ time steps, where c
is a constant; asymptotic complexity of the algo-

rithm will remain the same.
4. Fault tolerance of HS(n, n)

The node fault tolerance of an undirected graph

is measured by the vertex connectivity of the

graph. A graph G is said to have a vertex connec-

tivity n if the graph G remains connected when an

arbitrary set of less than n nodes are faulty (i.e., in
the fault free graph there are n many node disjoint

paths between any two arbitrary nodes). Obvi-

ously, the vertex connectivity of a graph G cannot

exceed the minimum degree of a node in G. A

graph is called maximally fault tolerant if vertex

connectivity of the graph equals the minimum de-

gree of a node. We know that the vertex connectiv-

ity of a star graph Sn is n � 1 [2]; since Sn is
(n � 1)-regular, the star graphs are maximally fault
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tolerant; authors in [20] establish that the fault

diameter of a star graph Sn is º3(n � 1)/2ß + 2

and they provide algorithms to compute the

(n � 1) node-disjoint paths in a star graph Sn given

an arbitrary source node and (n � 1) distinct arbi-
trary destination nodes. Our purpose in this sec-

tion is to show that the proposed graph HS(n, n)
has a vertex connectivity of n and hence these

graphs are maximally fault tolerant.

Theorem 9. Between any two arbitrary nodes

(Xs,Ys) and (Xd,Yd) in HS(n, n) there exist n node

disjoint paths.

Proof. Consider two arbitrary nodes (Xs,Ys) and

(Xd,Yd) in HS(n, n). We need to consider three

cases:

Case 1: [Xs = Xd] Both the source node and the
destination node are in the same module [Xs, *].

The module [Xs, *] is a star graph Sn of dimension

n and hence there exist n � 1 node disjoint paths

between the source and the destination node––

each node belonging to all of these paths are in the

module [Xs, *]. To get the last (n-th) node disjoint

path, we consider three sub-cases:

Sub-case (a): [Xs = Ys � Xs 6¼ Yd] The path is

given by

ðX s;X sÞ,ðbX s; bX sÞ ) ðbX s; Y dÞ,!ðY d; bX sÞ

! ðY d;X sÞ,!ðX s; Y dÞ

Sub-case (b): [Xs = Yd � Xs 6¼ Ys] The path is
given by

ðX s; Y sÞ,!ðY s;X sÞ ! ðY s; bX sÞ,!ðbX s; Y sÞ

) ðbX s; bX sÞ,ðX s;X sÞ

Note: In case Y s ¼ bX s, the second external link
and the adjacent group of local links are not

needed.

Sub-case (c): [Xs 6¼ Yd � Xs 6¼ Ys] The path is

given by

ðX s; Y sÞ,!ðY s;X sÞ ) ðY s; Y dÞ,!ðY d; Y sÞ

) ðY d;X sÞ,!ðX s; Y dÞ
This last path, in either of the three sub-cases, does

not contain any node from the module [Xs, *] ex-

cept the source and the destination nodes; so, this

path is node-disjoint from the earlier (n � 1) node

disjoint paths.

Case 2: [Xs 6¼ Xd] In this case, the source node and

the destination node belongs to different modules

[Xs, *] and [Xd,*]. Each module is a star graph Sn

which has a node connectivity n � 1. Choose an

arbitrary set of (n � 1) nodes {Xj, 1 6 j 6 n � 1}

in an Sn such that X i 62 fX s; Y s;X d; X̂ s; Ŷ sg, 1 6 j

6 n � 1––this is always possible for n > 3. In an
Sn, we can construct node disjoint paths from node

Ys (or from node Ys) to the (n � 1) nodes {Xj,

1 6 j 6 n � 1}. Consider the following (n � 1)

paths from (Xs,Ys) to (Xd,Yd), each corresponding

to one {Xj, 1 6 j 6 n � 1}.

ðX s; Y sÞ ) ðX s;X jÞ,!ðX j;X sÞ

) ðX i;X dÞ,!ðX d;X jÞ ) ðX d; Y dÞ

These (n � 1) paths are node disjoint except the
source and the destination nodes. Note that any

intermediate node in any of these paths are from

only the modules [Xs, *], [Xd,*] and [Xj, *], 1 6 j

6 n � 1. To get the last (n-th) node disjoint path,

we consider four sub-cases:

Sub-case (a): [Xs = Ys � Xd 6¼ Yd] The path is

given by

ðX s;X sÞ,ðbX s; bX sÞ ) ðbX s; Y dÞ,!ðY d; bX sÞ

) ðY d;X dÞ,!ðX d; Y dÞ

Sub-case (b): [Xs = Ys � Xd = Yd] The path is

given by

ðX s;X sÞ,ðbX s; bX sÞ ) ðbX s; Ŷ dÞ,!ðŶ d; bX sÞ

) ðŶ d; Ŷ dÞ,ðY d; Y dÞ

Sub-case (c): [Xs 6¼ Ys � Xd 6¼ Yd] The path is

given by

ðX s; Y sÞ,!ðY s;X sÞ ) ðY s; Y dÞ,!ðY d; Y sÞ

) ðY d;X dÞ,!ðX d; Y dÞ

Sub-case (d): [Xs 6¼ Ys � Xd = Yd] The path is
given by
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ðX s; Y sÞ,!ðY s;X sÞ ) ðY s; Ŷ dÞ,!ðŶ d; Y sÞ
) ðŶ d; Ŷ dÞ,!ðY d; Y dÞ

This last path, in either of the four sub-cases, does

not contain any node from the modules [Xs, *],

[Xd,*] or [Xj, *], 1 6 j 6 n � 1 except the source

and the destination nodes; so, this path is node-
disjoint from the earlier (n � 1) node disjoint

paths. h

Corollary 2. The hierarchical star graph HS(n, n) of

dimension n has a vertex connectivity of n and hence

it is maximally fault tolerant.

Remark 7. The constructive proof for the theo-

rem on vertex connectivity (Theorem 9) readily

suggests an optimal routing scheme in the network

in the presence of maximal number of allowable
faults (such that the system is not disconnected).
5. One-to-all broadcast in HS(n, n)

One-to-all broadcast is very important to algo-

rithm design on any network [11]; this is a fre-

quently used communication pattern in which a

message (or a data set) is transmitted from a

source node to all other nodes in the network. This

one-to-all broadcast is often a necessary step in

designing parallel and distributed algorithms on
networks. In what follows, we assume that all links

in the network are bidirectional so that the node

on either side of the link can send messages to

the node on the other side. In addition, we assume

that at any time, one node can only communicate

with at most one other node which is adjacent to it.

That is, we use the one port model of communica-

tion as was used in [7] unlike the all-port model of
communication [11].

Remark 8. In one-port communication model,

any one-to-all broadcast algorithm for a network
of N nodes has a lower bound of OðlogNÞ on the

broadcast time steps; this easily follows from the

fact that the number of informed nodes at the end

of any step can increase by a factor of 2 over that

in the previous step.
Thus, any broadcast algorithm which uses

OðlogNÞ time for any network of N nodes, is

asymptotically optimal. Our purpose is to design

an optimal broadcast algorithm for our proposed

network HS(n, n). We use the optimal broadcast
algorithm of [15] for a star graph Sn of dimension

n that uses Oðlogðn!ÞÞ ¼ Oðn log nÞ time.

Optimal broadcast in star graph Sn: The algo-

rithm can broadcast a message to n! processors in

Sn using Oðlogðn!ÞÞ ¼ Oðn logðnÞÞ time. The algo-

rithm is based on the hierarchical structure of a star

graph. An Sn can be divided into n � 1 many sub-

stars Sn � 1 each of dimension n � 1; the sub-stars
can be further subdivided and so on. The broadcast-

ing algorithm has n � 1 recursive steps. The first

step distributes the message from the source node

to all (n � 1) sub-stars Sn � 1. In the subsequent k-

th step, 2 6 k < n � 1, there are
Qn

i¼n�kþ1i many

parallel instances of the broadcast algorithm run-

ning on
Qn

i¼n�kþ1i many disjoint sub-stars Sn � k.

There are two logical phases in each step of the algo-
rithm. In phase 1, the message is sent to a sequence

of nodes in such a way that each node (permutation

of symbols) in the sequence would have a distinct

symbol in the first position. Since such a sequence

can be found such that all nodes in were embedded

in a binary tree, the time required in phase 1 is

OðlogðnÞÞ. In phase 2, each node which received

the message in phase 1 sends the message to its
neighboring node obtained by swapping the

first and last symbols in the node permutation.

See [15] for details of the algorithm and its

correctness proof. Call this algorithm Broad-

cast_Star.

We design an optimal broadcast algorithm for

our proposed hierarchical star graph HS(n, n) by

using the above algorithm Broadcast_Star as a
subroutine. Consider an arbitrary node (x,y) in

HS(n, n); the following algorithm Broadcast_HS

broadcasts a message to all other nodes in

HS(n, n).

Algorithm Broadcast_HS (x,y)

Step 1: Consider the module [x, *] given the source

node (x,y); use algorithm Broadcast_Star to trans-

mit the message to all nodes in this basic module.

This step takes Oðn log nÞ time.
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Step 2: Each node (x,v) in the module [x, *] trans-

mits the message to node (v,x) via an external link

in one unit time. Since each node has one external

link and all these external links lead to distinct

modules, each module in HS(n, n) has at least one
informed node after this step.

Step 3: The informed node in each module [v, *],

v 6¼ x, broadcast the message in the module [v, *]

using the algorithm Broadcast_Star. For different

modules, this broadcast is done concurrently.

Thus, this step takes Oðn log nÞ time. After this

step, all nodes in HS(n, n) have received the mes-

sage.

Theorem 10. The algorithm Broadcast_HS is an

optimal one-to-all broadcast procedure for the graph
HS(n, n).

Proof. The three steps in the above algorithm take

Oðn log nÞ, Oð1Þ and Oðn logðnÞÞ time respectively.

Thus, the entire algorithm takes Oðn logðnÞÞ time.

The number of nodes in HS(n, n) is N = (n!)2 and

hence the algorithm is optimal taking OðNÞ
time. h
6. Conclusion

We have proposed a new two level hierarchical

network using the well known star graphs as build-

ing blocks and compared its topological properties

with the networks in the same category. We have

shown that the proposed hierarchical star graphs

HS(n, n) are superior to star graphs, folded hyper-

cubes and the hierarchical folded hypercubes in
terms of node degree, diameter and cost of the net-

work. Specifically, we showed the following.

1. For networks of any size, the node degree of the

hierarchical star graphs HS(n, n) is always smal-
ler than that of any of the other three networks

under consideration and the difference becomes

more prominent as the size of the networks

grow larger.

2. Cost of HS(n, n) is always the lowest among that

of all four networks for networks of all sizes.
3. Hierarchical star graphs HS(n, n) and the star

graphs Sn have sub-logarithmic diameter while

the folded hypercubes FHn and the hierarchical

folded hypercubes HFN(n, n) have logarithmic

diameters.

We have proposed simple routing in the net-

work, showed the network is optimally fault toler-

ant as well as proposed an optimal broadcast

algorithm. The proposed family of networks is

interesting in its own terms and adds to the already

established attractiveness of the star graphs as

compared to hypercubes.
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