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Abstract—Sequential pattern mining is an important data mining problem with broad applications. However, it is also a difficult

problem since the mining may have to generate or examine a combinatorially explosive number of intermediate subsequences. Most of

the previously developed sequential pattern mining methods, such as GSP, explore a candidate generation-and-test approach [1] to

reduce the number of candidates to be examined. However, this approach may not be efficient in mining large sequence databases

having numerous patterns and/or long patterns. In this paper, we propose a projection-based, sequential pattern-growth approach for

efficient mining of sequential patterns. In this approach, a sequence database is recursively projected into a set of smaller projected

databases, and sequential patterns are grown in each projected database by exploring only locally frequent fragments. Based on an

initial study of the pattern growth-based sequential pattern mining, FreeSpan [8], we propose a more efficient method, called

PSP, which offers ordered growth and reduced projected databases. To further improve the performance, a pseudoprojection

technique is developed in PrefixSpan. A comprehensive performance study shows that PrefixSpan, in most cases, outperforms the a

priori-based algorithm GSP, FreeSpan, and SPADE [29] (a sequential pattern mining algorithm that adopts vertical data format), and

PrefixSpan integrated with pseudoprojection is the fastest among all the tested algorithms. Furthermore, this mining methodology can

be extended to mining sequential patterns with user-specified constraints. The high promise of the pattern-growth approach may lead

to its further extension toward efficient mining of other kinds of frequent patterns, such as frequent substructures.

Index Terms—Data mining algorithm, sequential pattern, frequent pattern, transaction database, sequence database, scalability,

performance analysis.

�

1 INTRODUCTION

SEQUENTIAL pattern mining, which discovers frequent
subsequences as patterns in a sequence database, is an

important data mining problem with broad applications,
including the analysis of customer purchase patterns or
Web access patterns, the analysis of sequencing or time-
related processes such as scientific experiments, natural
disasters, and disease treatments, the analysis of DNA
sequences, etc.

The sequential pattern mining problem was first intro-
duced by Agrawal and Srikant in [2]: Given a set of sequences,
where each sequence consists of a list of elements and each element
consists of a set of items, and given a user-specified min_support
threshold, sequential pattern mining is to find all frequent
subsequences, i.e., the subsequences whose occurrence frequency
in the set of sequences is no less than min_support.

Many previous studies contributed to the efficient
mining of sequential patterns or other frequent patterns in
time-related data [2], [23], [13], [24], [30], [14], [12], [5], [16],
[22], [7]. Srikant and Agrawal [23] generalized their
definition of sequential patterns in [2] to include time
constraints, sliding time window, and user-defined taxon-
omy, and presented an a priori-based, improved algorithm
GSP (i.e., generalized sequential patterns). Mannila et al. [13]
presented a problem of mining frequent episodes in a
sequence of events, where episodes are essentially acyclic
graphs of events whose edges specify the temporal
precedent-subsequent relationship without restriction on
interval. Bettini et al. [5] considered a generalization of
intertransaction association rules. These are essentially rules
whose left-hand and right-hand sides are episodes with
time-interval restrictions. Lu et al. [12] proposed intertran-
saction association rules that are implication rules whose
two sides are totally-ordered episodes with timing-interval
restrictions. Guha et al. [6] proposed the use of regular
expressions as a flexible constraint specification tool that
enables user-controlled focus to be incorporated into the
sequential pattern mining process. Some other studies
extended the scope from mining sequential patterns to
mining partial periodic patterns. Özden et al. [16] intro-
duced cyclic association rules that are essentially partial
periodic patterns with perfect periodicity in the sense that
each pattern reoccurs in every cycle, with 100 percent
confidence. Han et al. [7] developed a frequent pattern
mining method for mining partial periodicity patterns that
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are frequent maximal patterns where each pattern appears

in a fixed period with a fixed set of offsets and with

sufficient support.
Almost all of the above proposed methods for mining

sequential patterns and other time-related frequent patterns

are a priori-like, i.e., based on the a priori principle, which

states the fact that any super-pattern of an infrequent pattern

cannot be frequent, and based on a candidate generation-and-

test paradigm proposed in association mining [1].
A typical a priori-like sequential pattern mining method,

such as GSP [23], adopts a multiple-pass, candidate

generation-and-test approach outlined as follows: The first

scan finds all of the frequent items that form the set of single

item frequent sequences. Each subsequent pass starts with a

seed set of sequential patterns, which is the set of sequential

patterns found in the previous pass. This seed set is used to

generate new potential patterns, called candidate sequences,

based on the a priori principle. Each candidate sequence

contains one more item than a seed sequential pattern,

where each element in the pattern may contain one item or

multiple items. The number of items in a sequence is called

the length of the sequence. So, all the candidate sequences

in a pass will have the same length. The scan of the database

in one pass finds the support for each candidate sequence.

All the candidates with support no less than min_support in

the database form the set of the newly found sequential

patterns. This set is then used as the seed set for the next

pass. The algorithm terminates when no new sequential

pattern is found in a pass, or when no candidate sequence

can be generated.
The a priori-like sequential pattern mining method,

though reducing search space, bears three nontrivial,

inherent costs that are independent of detailed implementa-

tion techniques.

. A huge set of candidate sequences could be

generated in a large sequence database. Since the

set of candidate sequences includes all the possible

permutations of the elements and repetition of items

in a sequence, the a priori-based method may

generate a really large set of candidate sequences

even for a moderate seed set. For example, two

frequent sequences of length-1, hai and hbi, will

generate five candidate sequences of length-2: haai,
habi, hbai, hbbi, and hðabÞi, where hðabÞi represents that
two events, a and b, happen in the same time slot. If

there are 1,000 frequent sequences of length-1, such

as ha1i; ha2i; . . . ; ha1000i, an a priori-like algorithmwill

generate 1; 000� 1; 000þ 1;000�999
2 ¼ 1; 499; 500 candi-

date sequences. Notice that the cost of candidate

sequence generation, test, and support counting is

inherent to the a priori-based method, no matter

what technique is applied to optimize its detailed

implementation.
. Multiple scans of databases in mining. The length

of each candidate sequence grows by one at each
database scan. In general, to find a sequential pattern
of length l, the a priori-based method must scan the

database at least l times. This bears a nontrivial cost
when long patterns exist.

. The a priori-based method generates a combinato-
rially explosive number of candidates when
mining long sequential patterns. A long sequential
pattern contains a combinatorial explosive number
of subsequences, and such subsequences must be
generated and tested in the a priori-based mining.
Thus, the number of candidate sequences is expo-
nential to the length of the sequential patterns to be
mined. For example, let the database contain only
one single sequence of length 100, ha1a2 . . . a100i, and
the min_support threshold be 1 (i.e., every occurring
pattern is frequent). To (re)derive this length-100
sequential pattern, the a priori-based method has to
generate 100 length-1 candidate sequences (i.e., ha1i,
ha2i; . . . ; ha100i), 100� 100þ 100�99

2 ¼ 14; 950 length-2
candidate sequences, 100

3

� �
¼ 161; 700 length-3 candi-

date sequences,1 and so on. Obviously, the total
number of candidate sequences to be generated is
�100

i¼1
100
i

� �
¼ 2100 � 1 � 1030.

In many applications, such as DNA analysis or stock
sequence analysis, the databases often contain a large
number of sequential patterns and many patterns are long.
It is important to reexamine the sequential pattern mining
problem to explore more efficient and scalable methods.

Based on our observation, both the thrust and the
bottleneck of an a priori-based sequential pattern mining
method come from its step-wise candidate sequence
generation and test. Can we develop a method that may
absorb the spirit of a priori, but avoid or substantially
reduce the expensive candidate generation and test? This is
the motivation of this study.

In this paper, we systematically explore a pattern-growth
approach for efficient mining of sequential patterns in large
sequence database. The approach adopts a divide-and-
conquer, pattern-growth principle as follows: Sequence
databases are recursively projected into a set of smaller projected
databases based on the current sequential pattern(s), and
sequential patterns are grown in each projected databases by
exploring only locally frequent fragments. Based on this
philosophy, we first proposed a straightforward pattern
growth method, FreeSpan (for Frequent pattern-projected
Sequential pattern mining) [8], which reduces the efforts of
candidate subsequence generation. In this paper, we
introduce another and more efficient method, called
PrefixSpan (for Prefix-projected Sequential pattern mining),
which offers ordered growth and reduced projected
databases. To further improve the performance, a pseudo-
projection technique is developed in PrefixSpan. A compre-
hensive performance study shows that PrefixSpan, in most
cases, outperforms the a priori-based algorithm GSP,
FreeSpan, and SPADE [29] (a sequential pattern mining
algorithm that adopts vertical data format) and PrefixSpan,
integrated with pseudoprojection, is the fastest among all
the tested algorithms. Furthermore, our experiments show
that PrefixSpan consumes a much smaller memory space in
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comparison with GSP and SPADE. This pattern-growth
methodology can be further extended to mining multilevel,
multidimensional sequential patterns, and mining other
structured patterns.

The remainder of the paper is organized as follows: In
Section 2, the sequential pattern mining problem is defined,
and the a priori-based sequential pattern mining method,
GSP, is illustrated. In Section 3, our approach, projection-
based sequential pattern growth, is introduced, by first
summarizing FreeSpan, and then presenting PrefixSpan,
associated with a pseudoprojection technique for perfor-
mance improvement. Our experimental results and perfor-
mance analysis are reported in Section 4. Some extensions
of the method and future research issues are discussed in
Section 5, and our study is concluded in Section 6.

2 PROBLEM DEFINITION AND THE GSP ALGORITHM

In this section, the problem of sequential pattern mining is
defined, and the most representative a priori-based sequen-
tial pattern mining method, GSP [23], is illustrated using an
example.

2.1 Problem Definition

Let I ¼ fi1; i2; . . . ; ing be a set of all items. An itemset is a
subset of items. A sequence is an ordered list of itemsets. A
sequence s is denoted by hs1s2 � � � sli, where sj is an itemset.
sj is also called an element of the sequence, and denoted as
ðx1x2 � � �xmÞ, where xk is an item. For brevity, the brackets
are omitted if an element has only one item, i.e., element ðxÞ
is written as x. An item can occur at most once in an
element of a sequence, but can occur multiple times in
different elements of a sequence. The number of instances
of items in a sequence is called the length of the sequence. A
sequence with length l is called an l-sequence. A sequence
� ¼ ha1a2 � � � ani is called a subsequence of another sequence
� ¼ hb1b2 � � � bmi and � a supersequence of �, denoted as
� v �, if there exist integers 1 � j1 < j2 < � � � < jn � m such
that a1 � bj1 ; a2 � bj2 ; . . . ; an � bjn .

A sequence database S is a set of tuples hsid; si, where
sid is a sequence_id and s a sequence. A tuple hsid; si is
said to contain a sequence �, if � is a subsequence of s. The
support of a sequence � in a sequence database S is the
number of tuples in the database containing �, i.e.,

supportSð�Þ ¼ j fhsid; sijðhsid; si 2 SÞ ^ ð� v sÞg j :

It can be denoted as supportð�Þ if the sequence database is
clear from the context. Given apositive integermin_support as
the support threshold, a sequence � is called a sequential

pattern in sequencedatabaseS if supportSð�Þ � min support.

A sequential pattern with length l is called an l-pattern.

Example 1 (Running Example). Let our running sequence

database be S given in Table 1 and min support ¼ 2. The

set of items in the database is fa; b; c; d; e; f; gg.
A sequence haðabcÞðacÞdðcfÞi has five elements: ðaÞ,

ðabcÞ, ðacÞ, ðdÞ, and ðcfÞ, where items a and c appear
more than once, respectively, in different elements. It is a
9-sequence since there are nine instances appearing in that
sequence. Item a happens three times in this sequence, so
it contributes 3 to the length of the sequence. However,
the whole sequence haðabcÞðacÞdðcfÞi contributes only 1
to the support of hai. Also, sequence haðbcÞdfi is a
subsequence of haðabcÞðacÞdðcfÞi. Since both sequences 10
and 30 contain subsequence s ¼ hðabÞci, s is a sequential
pattern of length 3 (i.e., 3-pattern).

Problem Statement. Given a sequence database and the

min_support threshold, sequential pattern mining is to find

the complete set of sequential patterns in the database.

2.2 Algorithm GSP

As outlined in Section 1, a typical sequential pattern mining

method, GSP [23], mines sequential patterns by adopting a

candidate subsequence generation-and-test approach,

based on the a priori principle. The method is illustrated

using the following example:

Example 2 (GSP). Given the database S and min_support in

Example 1, GSP first scans S, collects the support for each

item, and finds the set of frequent items, i.e., frequent

length-1 subsequences (in the form of “item:support”):

hai : 4; hbi : 4; hci : 3; hdi : 3; hei : 3; hfi : 3; hgi : 1.
By filtering the infrequent item g, we obtain the first

seed set L1 ¼ fhai; hbi; hci; hdi; hei; hfig, each member in
the set representing a 1-element sequential pattern. Each
subsequent pass starts with the seed set found in the
previous pass and uses it to generate new potential
sequential patterns, called candidate sequences.

For L1, a set of 6 length-1 sequential patterns
generates a set of 6� 6þ 6�5

2 ¼ 51 candidate sequences,

C2 ¼ fhaai; habi; . . . ; hafi; hbai; hbbi; . . . ; hffi;
hðabÞi; hðacÞi; . . . ; hðefÞig:

The multiscan mining process is shown in Fig. 1. The
set of candidates is generated by a self-join of the
sequential patterns found in the previous pass. In the
kth pass, a sequence is a candidate only if each of its
length-ðk� 1Þ subsequences is a sequential pattern found
at the ðk� 1Þth pass. A new scan of the database collects
the support for each candidate sequence and finds the
new set of sequential patterns. This set becomes the seed
for the next pass. The algorithm terminates when no
sequential pattern is found in a pass, or when there is no
candidate sequence generated. Clearly, the number of
scans is at least the maximum length of sequential
patterns. It needs one more scan if the sequential
patterns obtained in the last scan still generate new
candidates.
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GSP, though benefits from the a priori pruning, still
generates a large number of candidates. In this example,
6 length-1 sequential patterns generate 51 length-
2 candidates, 22 length-2 sequential patterns generate
64 length-3 candidates, etc. Some candidates generated
by GSP may not appear in the database at all. For
example, 13 out of 64 length-3 candidates do not appear
in the database.

3 MINING SEQUENTIAL PATTERNS BY PATTERN

GROWTH

As analyzed in Section 1 and Example 2, the GSP algorithm

shares similar strengths and weaknesses as the a priori

method. For frequent pattern mining, a frequent pattern

growth method called FP-growth [9] has been developed for

efficient mining of frequent patterns without candidate
generation. The method uses a data structure called FP-tree

to store compressed frequent patterns in transaction

database and recursively mines the projected conditional

FP-trees to achieve high performance.
Can we mine sequential patterns by extension of the FP-tree

structure? Unfortunately, the answer cannot be so optimistic

because it is easy to explore the sharing among a set of

unordered items, but it is difficult to explore the sharing of
common data structures among a set of ordered items. For

example, a set of frequent itemsets fabc; cbad; ebadc; cadbg
share the same tree branch habcdei in the FP-tree. However, if

they were a set of sequences, there is no common prefix

subtree structure that can be shared among thembecause one

cannot change the order of items to form sharable prefix

subsequences.
Nevertheless, one can explore the spirit of FP-growth:

divide the sequential patterns to be mined based on the
subsequences obtained so far and project the sequence

database based on the partition of such patterns. Such a

methodology is called sequential pattern mining by pattern-

growth. The general idea is outlined as follows: Instead of

repeatedly scanning the entire database and generating and
testing large sets of candidate sequences, one can recursively
project a sequence database into a set of smaller databases
associated with the set of patterns mined so far and, then, mine
locally frequent patterns in each projected database.

In this section, we first outline a projection-based sequen-
tial pattern mining method, called FreeSpan [8], and then
systematically introduce an improved method PrefixSpan
[19]. Both methods generate projected databases, but they
differ at the criteria of database projection: FreeSpan creates
projected databases based on the current set of frequent
patternswithout aparticular ordering (i.e., growthdirection),
whereas PrefixSpan projects databases by growing frequent
prefixes. Our study shows that, although both FreeSpan and
PrefixSpan are efficient and scalable, PrefixSpan is substan-
tially faster than FreeSpan in most sequence databases.

3.1 FreeSpan: Frequent Pattern-Projected
Sequential Pattern Mining

For a sequence � ¼ hs1 � � � sli, the itemset s1 [ � � � [ sl is
called �’s projected itemset. FreeSpan is based on the
following property: If an itemset X is infrequent, any sequence
whose projected itemset is a superset of X cannot be a sequential
pattern. FreeSpan mines sequential patterns by partitioning
the search space and projecting the sequence subdatabases
recursively based on the projected itemsets.

Let f list ¼ hx1; . . . ; xni be a list of all frequent items in
sequence database S. Then, the complete set of sequential
patterns in S can be divided into n disjoint subsets: 1) the
set of sequential patterns containing only item x1, 2) those
containing item x2 but no item in fx3; . . . ; xng, and so on. In
general, the ith subset ð1 � i � nÞ is the set of sequential
patterns containing item xi but no item in fxiþ1; . . . ; xng.

Then, the database projection can be performed as
follows: At the time of deriving p’s projected database from
DB, the set of frequent items X of DB is already known.
Only those items in X will need to be projected into p’s
projected database. This effectively discards irrelevant
information and keeps the size of the projected database
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minimal. By recursively doing so, one can mine the
projected databases and generate the complete set of
sequential patterns in the given partition without duplica-
tion. The details are illustrated in the following example:

Example 3 (FreeSpan). Given thedatabaseS andmin support

inExample 1,FreeSpan first scansS, collects the support for
each item, and finds the set of frequent items. This step is
similar to GSP. Frequent items are listed in support
descending order (in the form of “item : support”), that is,
f list ¼ a : 4; b : 4; c : 4; d : 3; e : 3; f : 3. They form six
length-one sequential patterns:

hai :4; hbi :4; hci :4; hdi :3; hei :3; hfi :3:

According to the f list, the complete set of sequential
patterns in S can be divided into six disjoint subsets:

1. the ones containing only item a,
2. the ones containing item b but no item after b in

f list,
3. the ones containing item c but no item after c in

f list, and so on, and, finally,
4. the ones containing item f .

The sequential patterns related to the six partitioned
subsets can be mined by constructing six projected
databases (obtained by one additional scan of the original
database). Infrequent items, such as g in this example, are
removed from the projected databases. The process for
mining each projected database is detailed as follows:

. Mining sequential patterns containing only
item a. By mining the hai-projected database:
fhaaai; haai; hai; haig, only one additional sequen-
tial pattern containing only item a, i.e., haai :2, is
found.

. Mining sequential patterns containing item b but
no item after b in the f list. By mining the hbi-
projected database: fhaðabÞai; habai; hðabÞbi; habig,
four additional sequential patterns containing item
b but no item after b in f list are found. They are
fhabi :4; hbai :2; hðabÞi :2; habai :2g.

. Mining sequential patterns containing item c but
no itemafter c in the f list.Mining the hci-projected
database: fhaðabcÞðacÞci; hacðbcÞai; hðabÞcbi; hacbcig,
proceeds as follows:

One scan of the projected database generates
the set of length-2 frequent sequences, which are
fhaci : 4; hðbcÞi : 2; hbci : 3; hcci : 3; hcai : 2; hcbi : 3g.
One additional scan of the hci-projected database
generates all of its projected databases.

The mining of the haci-projected database:
fhaðabcÞðacÞci; hacðbcÞai; hðabÞcbi; hacbcig generates
the set of length-3 patterns as follows:

fhacbi : 3; hacci : 3; hðabÞci : 2; hacai : 2g:

Four projected database will be generated from
them.

The mining of the first one, the hacbi-projected
database: fhacðbcÞai; hðabÞcbi; hacbcig generates no
length-4 pattern. The mining along this line
terminates. Similarly, we can show that the

mining of the other three projected databases
terminates without generating any length-4 pat-
terns for the haci-projected database.

. Mining other subsets of sequential patterns.
Other subsets of sequential patterns can be mined
similarly on their corresponding projected data-
bases. This mining process proceeds recursively,
which derives the complete set of sequential
patterns.

The detailed presentation of the FreeSpan algorithm, the
proof of its completeness and correctness, and the perfor-
mance study of the algorithm are in [8]. By the analysis of
Example 3, we have the following observations on the
strength and weakness of FreeSpan, which are also verified
by our later experimental study.

On the one hand, the strength of FreeSpan is that it searches
a smaller projected database than GSP in each subsequent
database projection. This is because FreeSpan projects a large
sequence database recursively into a set of small projected
sequence databases based on the currently mined frequent
item-patterns, and the subsequent mining is confined to
each projected database relevant to a smaller set of
candidates.

On the other hand, the major overhead of FreeSpan is that it
may have to generate many nontrivial projected databases. If a
pattern appears in each sequence of a database, its projected
database does not shrink (except for the removal of some
infrequent items). For example, the ffg-projected database
in this example contains three of the same sequences as that
in the original sequence database, except for the removal of
the infrequent item g in sequence 40. Moreover, since a
length-k subsequence may grow at any position, the search
for length-ðkþ 1Þ candidate sequence will need to check
every possible combination, which is costly.

3.2 PrefixSpan: Prefix-Projected Sequential
Patterns Mining

Based on the analysis of the FreeSpan algorithm, one can see
that one may still have to pay high cost at handling
projected databases. Is it possible to reduce the size of projected
database and the cost of checking at every possible position of a
potential candidate sequence? To avoid checking every
possible combination of a potential candidate sequence,
one can first fix the order of items within each element. Since
items within an element of a sequence can be listed in any
order, without loss of generality, one can assume that they
are always listed alphabetically. For example, the sequence
in S with Sequence_id 10 in our running example is listed as
haðabcÞðacÞdðcfÞi instead of haðbacÞðcaÞdðfcÞi. With such a
convention, the expression of a sequence is unique.

Then, we examine whether one can fix the order of item
projection in the generation of a projected database.
Intuitively, if one follows the order of the prefix of a
sequence and projects only the suffix of a sequence, one can
examine in an orderly manner all the possible subsequences
and their associated projected database. Thus, we first
introduce the concept of prefix and suffix.

Definition 1 (Prefix). Suppose all the items within an element
are listed alphabetically. Given a sequence � ¼ he1e2 � � � eni
(where each ei corresponds to a frequent element in S), a
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sequence � ¼ he01e02 � � � e0mi ðm � nÞ is called a prefix of � if and
only if 1) e0i ¼ ei for ði � m� 1Þ; 2) e0m � em; and 3) all the
frequent items in ðem � e0mÞ are alphabetically after those in e0m.

For example, hai, haai, haðabÞi, and haðabcÞi are prefixes of
sequence s ¼ haðabcÞðacÞdðcfÞi, but neither habi nor haðbcÞi
is considered as a prefix if every item in the prefix haðabcÞi
of sequence s is frequent in S.

Definition 2 (Suffix). Given a sequence � ¼ he1e2 � � � eni
(where each ei corresponds to a frequent element in S). Let
� ¼ he1e2 � � � em�1e

0
mi ðm � nÞ be the prefix of �. Sequence

� ¼ he00memþ1 � � � eni is called the suffix of � with regards to
prefix �, denoted as � ¼ �=�, where e00m ¼ ðem � e0mÞ.

2 We
also denote � ¼ � � �. Note, if � is not a subsequence of �, the
suffix of � with regards to � is empty.

For example, for the sequence s ¼ haðabcÞðacÞdðcfÞi,
hðabcÞðacÞdðcfÞi is the suffix with regards to the prefix hai,
hð bcÞðacÞdðcfÞi is the suffix with regards to the prefix haai,
and hð cÞðacÞdðcfÞi is the suffix with regards to the prefix
haðabÞi.

Based on the concepts of prefix and suffix, the problem
of mining sequential patterns can be decomposed into a set
of subproblems as shown below.

Lemma 3.1 (Problem partitioning).

1. Let fhx1i; hx2i; . . . ; hxnig be the complete set of length-
1 sequential patterns in a sequence database S. The
complete set of sequential patterns in S can be divided
into n disjoint subsets. The ith subset ð1 � i � nÞ is
the set of sequential patterns with prefix hxii.

2. Let � be a length-l sequential pattern and
f�1; �2; . . . ; �mg be the set of all length-ðlþ 1Þ
sequential patterns with prefix �. The complete set of
sequential patterns with prefix �, except for � itself,
can be divided into m disjoint subsets. The jth subset
ð1 � j � mÞ is the set of sequential patterns prefixed
with �j.

Proof. We show the correctness of the second half of the
lemma. The first half is a special case where � ¼ hi.

For a sequential pattern � with prefix �, where � is of
length l, the length-ðlþ 1Þ prefix of � must be a
sequential pattern, according to the a priori heuristic.
Furthermore, the length-ðlþ 1Þ prefix of � is also with
prefix �, according to the definition of prefix. Therefore,
there exists some j ð1 � j � mÞ such that �j is the length-
ðlþ 1Þ prefix of �. Thus, � is in the jth subset. On the
other hand, since the length-k prefix of a sequence � is
unique, � belongs to only one determined subset. That is,
the subsets are disjoint. So, we have the lemma. tu

Based on Lemma 3.1, the problem can be partitioned
recursively. That is, each subset of sequential patterns can
be further divided when necessary. This forms a divide-and-
conquer framework. To mine the subsets of sequential
patterns, the corresponding projected databases can be
constructed.

Definition 3 (Projected database). Let � be a sequential
pattern in a sequence database S. The �-projected database,
denoted as Sj�, is the collection of suffixes of sequences in S
with regards to prefix �.

To collect counts in projected databases, we have the
following definition:

Definition 4 (Support count in projected database). Let �
be a sequential pattern in sequence database S, and � be a
sequence with prefix �. The support count of � in �-projected
database Sj�, denoted as supportSj�ð�Þ, is the number of
sequences � in Sj� such that � v � � �.

We have the following lemma regarding to the projected
databases.

Lemma 3.2 (Projected database). Let � and � be two
sequential patterns in a sequence database S such that � is a
prefix of �.

1. Sj� ¼ ðSj�Þj�,
2. for any sequence � with prefix �, supportSð�Þ ¼

supportSj�ð�Þ, and
3. the size of �-projected database cannot exceed that of S.

Proof sketch. The first part of the lemma follows the fact that,
for a sequence �, the suffix of � with regards to �, �=�,
equals to the sequence resulted from first doing projection
of � with regards to �, i.e., �=�, and then doing projection
�=�with regards to �. That is �=� ¼ ð�=�Þ=�.

The second part of the lemma states that to collect
support count of a sequence �, only the sequences in the
database sharing the same prefix should be considered.
Furthermore, only those suffixes with the prefix being a
super-sequence of � should be counted. The claim
follows the related definitions.

The third part of the lemma is on the size of a
projected database. Obviously, the �-projected database
can have the same number of sequences as S only if �
appears in every sequence in S. Otherwise, only those
sequences in S which are super-sequences of � appear in
the �-projected database. So, the �-projected database
cannot contain more sequences than S. For every
sequence � in S such that � is a super-sequence of �, �
appears in the �-projected database in whole only if � is
a prefix of �. Otherwise, only a subsequence of � appears
in the �-projected database. Therefore, the size of
�-projected database cannot exceed that of S. tu
Let us examine how to use the prefix-based projection

approach for mining sequential patterns based on our
running example.

Example 4 (PrefixSpan). For the same sequence database S
in Table 1 with min sup ¼ 2, sequential patterns in S can
be mined by a prefix-projection method in the following
steps:

1. Find length-1 sequential patterns. Scan S once
to find all the frequent items in sequences.
Each of these frequent items is a length-1
sequential pattern. They are hai : 4, hbi : 4,
hci : 4, hdi : 3, hei : 3, and hfi : 3, where the
notation “hpatterni : count” represents the pat-
tern and its associated support count.
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2. Divide search space. The complete set of sequen-
tial patterns can be partitioned into the following
six subsets according to the six prefixes: 1) the
ones with prefix hai, 2) the ones with prefix
hbi; . . . ; and 3) the ones with prefix hfi.

3. Find subsets of sequential patterns. The subsets
of sequential patterns can be mined by construct-
ing the corresponding set of projected databases
and mining each recursively. The projected
databases as well as sequential patterns found
in them are listed in Table 2, while the mining
process is explained as follows:

a. Find sequential patterns with prefix hai.
Only the sequences containing hai should be
collected. Moreover, in a sequence containing
hai, only the subsequence prefixed with the
first occurrence of hai should be considered.
For example, in sequence hðefÞðabÞðdfÞcbi,
only the subsequence hð bÞðdfÞcbi should be
considered for mining sequential patterns
prefixed with hai. Notice that ð bÞ means that
the last element in the prefix, which is a,
together with b, form one element.

The sequences in S containing hai are

projected with regards to hai to form the hai-
projected database, which consists of four suffix

sequences: hðabcÞðacÞdðcfÞi, hð dÞcðbcÞðaeÞi,
hð bÞðdfÞcbi, and hð fÞcbci.

By scanning the hai-projected database

once, its locally frequent items are a : 2,

b : 4, b : 2, c : 4, d : 2, and f : 2. Thus, all the

length-2 sequential patterns prefixed with hai
are found, and they are: haai : 2, habi : 4,
hðabÞi : 2, haci : 4, hadi : 2, and hafi : 2.

Recursively, all sequential patterns with

prefix hai can be partitioned into six subsets:

1) those prefixed with haai, 2) those with habi,
. . . , and, finally, 3) those with hafi. These

subsets can be mined by constructing respec-
tive projected databases and mining each
recursively as follows:

i. The haai-projected database consists of
two nonempty (suffix) subsequences pre-
fixed with haai: fhð bcÞðacÞdðcfÞi, fhð eÞig.
Since there is no hope to generate any
frequent subsequence from this projected
database, the processing of the haai-
projected database terminates.

ii. The habi-projected database consists of
three suffix sequences: hð cÞðacÞdðcfÞi,
hð cÞai, and hci. Recursively mining the
habi-projected database returns four se-
quential patterns: hð cÞi, hð cÞai, hai, and
hci (i.e., haðbcÞi, haðbcÞai, habai, and habci.)
They form the complete set of sequential
patterns prefixed with habi.

iii. The hðabÞi-projected database contains
only two sequences: hð cÞðacÞdðcfÞi and
hðdfÞcbi, which leads to the finding of the
following sequential patterns prefixed
with hðabÞi: hci, hdi, hfi, and hdci.

iv. The haci, hadi, and hafi-projected data-
bases can be constructed and recursively
mined similarly. The sequential patterns
found are shown in Table 2.

b. Find sequential patterns with prefix hbi, hci,
hdi, hei, and hfi, respectively. This can be
done by constructing the hbi, hci, hdi, hei, and
hfi-projected databases and mining them,
respectively. The projected databases as well
as the sequential patterns found are shown in
Table 2.

4. The set of sequential patterns is the collection of
patterns found in the above recursive mining
process. One can verify that it returns exactly the
same set of sequential patterns as what GSP and
FreeSpan do.
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Based on the above discussion, the algorithm of Prefix-

Span is presented as follows:

Algorithm 1 (PrefixSpan) Prefix-projected sequential pattern

mining.

Input: A sequence database S, and the minimum support

threshold min_support.

Output: The complete set of sequential patterns

Method: Call PrefixSpanðhi; 0; SÞ.

Subroutine PrefixSpanð�; l; Sj�Þ
The parameters are 1) � is a sequential pattern; 2) l is

the length of �; and 3) Sj� is the �-projected database if
� 6¼ hi, otherwise, it is the sequence database S.

Method:

1. Scan Sj� once, find each frequent item, b, such that

(a) b can be assembled to the last element of � to

form a sequential pattern; or

(b) hbi can be appended to � to form a sequential
pattern.

2. For each frequent item b, append it to � to form a

sequential pattern �0, and output �0.

3. For each �0, construct �0-projected database Sj�0 , and

call PrefixSpanð�0; lþ 1; Sj�0 Þ.

Analysis. The correctness and completeness of the algo-

rithm can be justified based on Lemma 3.1 and Lemma 3.2,
as shown in Theorem 3.1, later. Here, we analyze the

efficiency of the algorithm as follows:

. No candidate sequence needs to be generated by
PrefixSpan. Unlike a priori-like algorithms, Prefix-
Span only grows longer sequential patterns from the
shorter frequent ones. It neither generates nor tests
any candidate sequence nonexistent in a projected
database. Comparing with GSP, which generates
and tests a substantial number of candidate se-
quences, PrefixSpan searches a much smaller space.

. Projected databases keep shrinking. As indicated in
Lemma 3.2, a projected database is smaller than the
original one because only the suffix subsequences of
a frequent prefix are projected into a projected
database. In practice, the shrinking factors can be
significant because 1) usually, only a small set of
sequential patterns grow quite long in a sequence
database and, thus, the number of sequences in a
projected database usually reduces substantially
when prefix grows; and 2) projection only takes the
suffix portion with respect to a prefix. Notice that
FreeSpan also employs the idea of projected data-
bases. However, the projection there often takes the
whole string (not just suffix) and, thus, the shrinking
factor is less than that of PrefixSpan.

. The major cost of PrefixSpan is the construction of
projected databases. In the worst case, PrefixSpan
constructs a projected database for every sequential

pattern. If there exist a good number of sequential
patterns, the cost is nontrivial. Techniques for
reducing the number of projected databases will be
discussed in the next subsection.

Theorem 3.1 (PrefixSpan). A sequence � is a sequential pattern
if and only if PrefixSpan says so.

Proof sketch (Direction if). A length-l sequence � ðl � 1Þ is
identified as a sequential pattern by PrefixSpan if and
only if � is a sequential pattern in the projected database
of its length-ðl� 1Þ prefix ��. If l ¼ 1, the length-0 prefix
of � is �� ¼ hi and the projected database is S itself. So, �
is a sequential pattern in S. If l > 1, according to
Lemma 3.2, Sj�� is exactly the ��-projected database,
and supportSð�Þ ¼ supportSj�� ð�Þ. Therefore, if � is a
sequential pattern in Sj�� , it is also a sequential pattern
in S. By this, we show that a sequence � is a sequential
pattern if PrefixSpan says so.

(Direction only-if). Lemma 3.1 guarantees that Pre-
fixSpan identifies the complete set of sequential patterns
in S. So, we have the theorem. tu

3.3 Pseudoprojection

The above analysis shows that the major cost of PrefixSpan is
database projection, i.e., forming projected databases
recursively. Usually, a large number of projected databases
will be generated in sequential pattern mining. If the
number and/or the size of projected databases can be
reduced, the performance of sequential pattern mining can
be further improved.

One technique which may reduce the number and size of
projected databases is pseudoprojection. The idea is outlined
as follows: Instead of performing physical projection, one
can register the index (or identifier) of the corresponding
sequence and the starting position of the projected suffix in
the sequence. Then, a physical projection of a sequence is
replaced by registering a sequence identifier and the
projected position index point. Pseudoprojection reduces
the cost of projection substantially when the projected
database can fit in main memory.

This method is based on the following observation: For
any sequence s, each projection can be represented by a
corresponding projection position (an index point) instead
of copying the whole suffix as a projected subsequence.
Consider a sequence haðabcÞðacÞdðcfÞi. Physical projections
may lead to repeated copying of different suffixes of the
sequence. An index position pointer may save physical
projection of the suffix and, thus, save both space and time
of generating numerous physical projected databases.

Example 5 (Pseudoprojection). For the same sequence
database S in Table 1 with min sup ¼ 2, sequential
patterns in S can be mined by pseudoprojection method
as follows:

Suppose the sequence database S in Table 1 can be
held in main memory. Instead of constructing the
hai-projected database, one can represent the projected
suffix sequences using pointer (sequence_id) and
offset(s). For example, the projection of sequence s1 ¼
haðabcÞdðaeÞðcfÞi with regard to the hai-projection
consists of two pieces of information: 1) a pointer to
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s1 which could be the string_id s1 and 2) the offset(s),
which should be a single integer, such as 2, if there is
a single projection point; and a set of integers, such as
f2; 3; 6g, if there are multiple projection points. Each
offset indicates at which position the projection starts
in the sequence.

The projected databases for prefixes hai, hbi, hci, hdi,
hfi, and haai are shown in Table 3, where $ indicates the
prefix has an occurrence in the current sequence but its
projected suffix is empty, whereas ; indicates that there
is no occurrence of the prefix in the corresponding
sequence. From Table 3, one can see that the pseudo-
projected database usually takes much less space than its
corresponding physically projected one.

Pseudoprojection avoids physically copying suffixes.

Thus, it is efficient in terms of both running time and

space. However, it may not be efficient if the pseudoprojec-

tion is used for disk-based accessing since random access

disk space is costly. Based on this observation, the

suggested approach is that if the original sequence database

or the projected databases is too big to fit into main

memory, the physical projection should be applied, how-

ever, the execution should be swapped to pseudoprojection

once the projected databases can fit in main memory. This

methodology is adopted in our PrefixSpan implementation.
Notice that the pseudoprojection works efficiently for

PrefixSpan, but not so for FreeSpan. This is because for

PrefixSpan, an offset position clearly identifies the suffix and

thus the projected subsequence. However, for FreeSpan,

since the next step pattern-growth can be in both forward

and backward directions, one needs to register more

information on the possible extension positions in order to

identify the remainder of the projected subsequences.

Therefore, we only explore the pseudoprojection technique

for PrefixSpan.

4 EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

Since GSP [23] and SPADE [29] are the two most influential

sequential pattern mining algorithms, we conduct an

extensive performance study to compare PrefixSpan with

them. In this section, we first report our experimental

results on the performance of PrefixSpan in comparison with

GSP and SPADE and, then, present an indepth analysis on

why PrefixSpan outperforms the other algorithms.

4.1 Experimental Results

To evaluate the effectiveness and efficiency of the PrefixSpan
algorithm, we performed an extensive performance study
of four algorithms: PrefixSpan, FreeSpan, GSP, and SPADE,
on both real and synthetic data sets, with various kinds of
sizes and data distributions.

All experiments were conducted on a 750 MHz AMD PC
with 512 megabytes main memory, running Microsoft
Windows 2000 Server. Three algorithms, GSP, FreeSpan,
and PrefixSpan, were implemented by us using Microsoft
Visual C++ 6.0. The implementation of the fourth algorithm,
SPADE, is obtained directly from the author of the
algorithm [29]. Detailed algorithm implementation is
described as follows:

1. GSP. The GSP algorithm is implemented according
to the description in [23].

2. SPADE. SPADE is tested with the implementation
provided by the algorithm inventor [29].

3. FreeSpan. FreeSpan is implemented according to the
algorithm described in [8].

4. PrefixSpan. PrefixSpan is implemented as described
in this paper,3 with pseudoprojection turned on in
most cases. Only in the case when testing the role of
pseudoprojection, two options are adopted: one with
the pseudoprojection function turned on and the
other with it turned off.

For the data sets used in our performance study, we use
two kinds of data sets: one real data set and a group of
synthetic data sets.

For real data set, we have obtained the Gazelle data set
from Blue Martini. This data set has been used in KDD-
CUP’2000 and contains a total of 29,369 customers’ Web
click-stream data provided by Blue Martini Software
company. For each customer, there may be several sessions
of Web click-stream and each session can have multiple
page views. Because each session is associated with both
starting and ending date/time, for each customer, we can
sort its sessions of click-stream into a sequence of page
views according to the viewing date/time. This data set
contains 29,369 sequences (i.e., customers), 35,722 sessions
(i.e., transactions or events), and 87,546 page views (i.e.,
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TABLE 3
A Sequence Database and Some of Its Pseudoprojected Databases

3. Note that the previous version of the PrefixSpan algorithm published
in [19] introduces another optimization technique called bilevel projection
which performs physical database projection at every two levels. Based on
our recent substantial performance study, the role of bilevel projection in
performance improvement is only marginal in certain cases, but can barely
offset its overhead in many other cases. Thus, this technique is dropped
from the PrefixSpan options and also from the performance study.



products or items). There are in total 1,423 distinct page
views. More detailed information about this data set can be
found in [10].

For synthetic data sets, we have also used a large set of
synthetic sequence data generated by a data generator
similar in spirit to the IBM data generator [2] designed for
testing sequential pattern mining algorithms. Various kinds
of sizes and data distributions of data sets are generated
and tested in this performance study. The convention for
the data sets is as follows: C200T2:5S10I1:25means that the
data set contains 200k customers (i.e., sequences) and the
number of items is 10,000. The average number of items in a
transaction (i.e., event) is 2.5 and the average number of
transactions in a sequence is 10. On average, a frequent
sequential pattern consists of four transactions, and each
transaction is composed of 1.25 items.

To make our experiments fair to all the algorithms, our
synthetic test data sets are similar to that used in the
performance study in [29]. Additional data sets are used for
scalability study and for testing the algorithm behavior with
varied (and, sometimes, very low) support thresholds.

The first test of the four algorithms is on the data set
C10T8S8I8, which contains 10k customers (i.e., sequences)
and the number of items is 1,000. Both the average number of
items in a transaction (i.e., event) and the average number of
transactions in a sequence are set to 8. On average, a frequent
sequential pattern consists of four transactions, and each
transaction is composed of eight items. Fig. 2 shows the
distribution of frequent sequences of data set C10T8S8I8,
fromwhich one can see that whenmin_support is no less than
1 percent, the length of frequent sequences is very short (only
2-3), and themaximumnumber of frequent patterns in total is
less than 10,000. Fig. 3 shows the processing time of the four
algorithms at different support thresholds. The processing
times are sorted in time ascending order as “PrefixSpan <

SPADE < FreeSpan < GSP”. When min support ¼ 1%,
PrefixSpan (runtime ¼ 6.8 seconds) is about two orders of
magnitude faster than GSP (runtime ¼ 772.72 seconds).
When min_support is reduced to 0.5 percent, the data set
contains a large number of frequent sequences, PrefixSpan
takes 32.56 seconds, which is more than 3.5 times faster than

SPADE (116.35 seconds), while GSP never terminates on our

machine.
The second test is performed on the data set

C200T2:5S10I1:25, which is much larger than the first one

since it contains 200k customers (i.e., sequences) and the

number of items is 10,000. However, it is sparser than the

first data set since the average number of items in a

transaction (i.e., event) is 2.5 and the average number of

transactions in a sequence is 10. On average, a frequent

sequential pattern consists of four transactions, and each

transaction is composed of 1.25 items. Fig. 4 shows the

distribution of frequent sequences of the data set, from

which one can see that the number of longer frequent

sequences is almost always smaller than that of shorter ones

(except when min support ¼ 0:25%). Fig. 5 shows the

processing time of the four algorithms at different support

thresholds. The processing time maintains the same order

“PrefixSpan < SPADE < FreeSpan < GSP” when min_sup-

port is small. When min support ¼ 0.5-0.75 percent, GSP,

SPADE, and FreeSpan have very similar running time (but

PrefixSpan is still 2-3 times faster).
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Fig. 2. Distribution of frequent sequences of data set C10T8S8I8.
Fig. 3. Performance of the four algorithms on data set C10T8S8I8.

Fig. 4. Distribution of frequent sequences of data set C200T2:5S10I1:25.



The third test is performed on the data set

C200T5S10I2:5, which is substantially denser than the

second data set, although it still contains 200k customers

(i.e., sequences) and the number of items is 10,000. This is

because the average number of items in a transaction (i.e.,

event) is five, the average number of transactions in a

sequence is 10, and, on average, a frequent sequential

pattern consists of four transactions, and each transaction is

composed of 2.5 items. Fig. 6 shows the distribution of

frequent sequences of the data set, from which one can see

that the number of longer frequent sequences grows into

nontrivial range. Fig. 7 shows the processing time of the four

algorithms at different support thresholds. The testing result

makes clear distinction among the algorithms tested. It

shows almost the same ordering of the algorithms for

running time, “PrefixSpan < SPADE < FreeSpan < GSP”,

except SPADE is slightly faster than PrefixSpan when

min support ¼ 0:33%. However, when min support ¼
0.25 percent, the number of frequent sequences grows to

more than 4 million, and in this case, only PrefixSpan can run

it (with running time = 3539.78 seconds) and all the other

three algorithms cannot finish (and, thus, not shown in the
figure).

The performance study on the real data set Gazelle is
reported as follows: Fig. 8 shows the distribution of
frequent sequences of Gazelle data set for different support
thresholds. We can see that this data set is a very sparse
data set: Only when the support threshold is lower than
0.05 percent are there some long frequent sequences. Fig. 9
shows the performance comparison among the four algo-
rithms for Gazelle data set. From Fig. 9, we can see that
PrefixSpan is much more efficient than SPADE, FreeSpan,
and GSP. The SPADE algorithm is faster than both FreeSpan

and GSP when the support threshold is no less than
0.025 percent, but once the support threshold is no greater
than 0.018 percent, it cannot stop running.

Figs. 10, 11, and 12 show the results of scalability tests of
the four algorithms on data set T2:5S10I1:25, with the
database size growing from 200K to 1,000K sequences, and
with different min_support threshold settings. With
min support ¼ 1 percent, all the algorithms terminate with-
in 26 seconds, even with the database of 1,000K sequences,
and PrefixSpan has the best performance overall but GSP is
actually marginally better when the database size is
between 600K and 800K sequences. However, when the
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Fig. 5. Performance of the four algorithms on data setC200T2:5S10I1:25.

Fig. 6. Distribution of frequent sequences of data set C200T5S10I2:5.

Fig. 7. Performance of the four algorithms on data set C200T5S10I2:5.

Fig. 8. Distribution of frequent sequences of data set Gazelle.



min_support drops down to 0.25 percent, PrefixSpan has the

clear competitive edge. For the database of 1,000K

sequences, PrefixSpan is about nine times faster than GSP,

but SPADE cannot terminate.
To test the effectiveness of pseudoprojection, a perfor-

mance test was conducted to compare three algorithms:

1. PrefixSpan with the pseudoprojection function
turned on,

2. PrefixSpan with pseudoprojection turned off, and
3. SPADE.

The test data is the same data set C10T8S8I8, used in the

experiment of Fig. 3. However, the min_support threshold is

set low at the range of 0.25 percent to 0.5 percent. Notice that

the previous test was between 0.5 percent and 3 percent,

which was the range that FreeSpan and GSP can still run

within a reasonable amount of time, althoughGSP cannot run

when min_support is reduced down to 0.5 percent. The

distribution of frequent sequences of data set C10T8S8I8,

with very low min_support is shown in Fig. 13. It shows that

the total number of frequent patterns grows up to around

4 million frequent sequences when min support ¼ 0:25%.

The testing result is shown inFig. 14,whichdemonstrates that

PrefixSpan with pseudoprojection is consistently faster than

that without pseudoprojection although the gap is not big in

most cases, but is about40percentperformance improvement

when min support ¼ 0:25%. Moreover, the performance of

SPADE is clearly behind PrefixSpanwhenmin_support is very

low and the sequential patterns are dense.
Finally, we compare the memory usage among the three

algorithms, PrefixSpan, SPADE, and GSP using both real

data set Gazelle and synthetic data set C200T5S10I2.5. Fig. 15

shows the results for Gazelle data set, from which we can

see that PrefixSpan is efficient in memory usage. It consumes

almost one order of magnitude less memory than both

SPADE and GSP. For example, at support 0.018 percent,

GSP consumes about 40 MB memory and SPADE just

cannot stop running after it has used more than 22 MB

memory while PrefixSpan only uses about 2.7 MB memory.
Fig. 16 demonstrates the memory usage for data set

C200T5S10I2.5, from which we can see that PrefixSpan is not

only more efficient, but also more stable in memory usage

than both SPADE and GSP. At support 0.25 percent, GSP

cannot stop running after it has consumed about 362 MB
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Fig. 9. Performance of the four algorithms on data set Gazelle.

Fig. 10. Scalability test of the four algorithms on data set T2:5S10I1:25,

with min_support 1 percent.

Fig. 11. Scalability test of the four algorithms on data set T2:5S10I1:25,
with min_support 0.5 percent.

Fig. 12. Scalability test of the four algorithms on data set T2:5S10I1:25,
with min_support 0.25 percent.



memory and SPADE reported an error message, “memory::

Array: Not enough memory,” when it tried to allocate another

bulk of memory after it has used about 262 MB memory,

while PrefixSpan only uses 108 MB memory. This also

explains why in several cases in our previous experiments

when the support threshold becomes really low, only

PrefixSpan can finish running.
Based on our analysis, PrefixSpan only needs memory

space to hold the sequence data sets plus a set of header

tables and pseudoprojection tables. Since the data set

C200T5S10I2.5 is about 46 MB, which is much bigger than

Gazelle (less than 1MB), it consumes more memory space

than Gazelle, but the memory usage is still quite stable

(from 65 MB to 108 MB for different thresholds in our

testing). However, both SPADE and GSP need memory

space to hold candidate sequence patterns as well as the

sequence data sets. When the min_support threshold drops,

the set of candidate subsequences grows up quickly, which

causes memory consumption upsurge and sometimes both

GSP and SPADE cannot finish processing.

In summary, our performance study shows that Prefix-

Span has the best overall performance among the four

algorithms tested. SPADE, though weaker than PrefixSpan

in most cases, outperforms GSP consistently, which is

consistent with the performance study reported in [29]. GSP

performs fairly well only when min_support is rather high,

with good scalability, which is consistent with the perfor-

mance study reported in [23]. However, when there are a

large number of frequent sequences, its performance starts

deteriorating. Our memory usage analysis also shows part

of the reason why some algorithms become really slow

because the huge number of candidate sets may consume a

tremendous amount of memory. Also, when there are a

large number of frequent subsequences, all the algorithms

run slow (as shown in Fig. 7). This leaves some room for

performance improvement in the future.

4.2 Why Does PrefixSpan Have High Performance?

With the above comprehensive performance study, we are

convinced that PrefixSpan is the clear winner among all the

four tested algorithms. The question becomes why Prefix-

Span has such high performance: Is it because of some

implementation tricks, or is it inherently in the algorithm

itself? We have the following analysis:
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Fig. 13. Distribution of frequent sequences of data set C10T8S8I8, with

very low min_support (ranging from 0.25 percent to 0.5 percent).

Fig. 14. Performance of PrefixSpan(with versus without pseudoprojec-

tion) versus SPADE on data C10T8S8I8, with very low min_support.

Fig 15. Memory usage comparison among PrefixSpan, SPADE, and

GSP for data set Gazelle.

Fig. 16. Memory usage: PrefixSpan, SPADE, and GSP for synthetic

data set C200T5S10I2.5.



. Pattern-growth without candidate generation. Pre-
fixSpan is a pattern growth-based approach, similar
to FP-growth [9]. Unlike traditional a priori-based
approach which performs candidate generation-and
test, PrefixSpan does not generate any useless
candidate and it only counts the frequency of local
1-itemsets. Our performance shows that when
min_support drops, the number of frequent se-
quences grows up exponentially. As a candidate
generation-and-test approach, like GSP, handling
such exponential number of candidates is the must,
independent of optimization tricks. It is no wonder
that GSP costs an exponential growth amount of
time to process a pretty small database (e.g., only
10K sequences) since it must take a great deal of
time to generate and test a huge number of
sequential pattern candidates.

. Projection-based divide-and-conquer as an effec-
tive means for data reduction. PrefixSpan grows
longer patterns from shorter ones by dividing the
search space and focusing only on the subspace
potentially supporting further pattern growth. The
search space of PrefixSpan is focused and is confined
to a set of projected databases. Since a projected
database for a sequential pattern � contains all and
only the necessary information for mining the
sequential patterns that can grow from �, the size
of the projected databases usually reduces quickly as
mining proceeds to longer sequential patterns. In
contrast, the a priori-based approach always
searches the original database at each iteration.
Many irrelevant sequences have to be scanned and
checked, which adds to the overhead. This argument
is also supported by our performance study.

. PrefixSpan consumes relatively stable memory
space because it generates no candidates and
explores the divide-and-conquer methodology. On
the other hand, the candidate generation-and-test
methods, including both GSP and SPADE, require a
substantial amount of memory when the support
threshold goes low since it needs to hold a
tremendous number of candidate sets.

. PrefixSpan applies prefix-projected pattern growth
which is more efficient than FreeSpan that uses
frequent pattern-guided projection. Comparing
with frequent pattern-guided projection, employed
in FreeSpan, prefix-projected pattern growth (Prefix-
Span) saves a lot of time and space because
PrefixSpan projects only on the frequent items in
the suffixes, and the projected sequences shrink
rapidly. When mining in dense databases where
FreeSpan cannot gain much from the projections,
PrefixSpan can still reduce substantially both the
length of sequences and the number of sequences in
projected databases.

5 EXTENSIONS AND DISCUSSIONS

Comparing with mining (unordered) frequent patterns,

mining sequential patterns is one step toward mining more

sophisticated frequent patterns in large databases. With the

successful development of pattern-growth-based sequential
patternminingmethod, such as PrefixSpan, it is interesting to
explore how such a method can be extended to handle more
sophisticated cases. It is straightforward to extend this
approach to mining multidimensional, multilevel sequential
patterns [21]. In this section, wewill discuss constraint-based
mining of sequential patterns and a few research problems.

5.1 Constraint-Based Mining of Sequential Patterns

For many sequential pattern mining applications, instead of
finding all the possible sequential patterns in a database, a
user may often like to enforce certain constraints to find
desired patterns. The mining process which incorporates
user-specified constraints to reduce search space and derive
only the user-interested patterns is called constraint-based

mining.
Constraint-based mining has been studied extensively in

frequent pattern mining, such as [15], [4], [18]. In general,
constraints can be characterized based on the notion of
monotonicity, antimonotonicity, succinctness, as well as
convertible and inconvertible constraints, respectively,
depending on whether a constraint can be transformed
into one of these categories if it does not naturally belong to
one of them [18]. This has become a classical framework for
constraint-based frequent pattern mining.

Interestingly, such a constraint-based mining framework
can be extended to sequential pattern mining. Moreover,
with pattern-growth framework, some previously not-so-
easy-to-push constraints, such as regular expression con-
straints [6], can be handled elegantly. Let us examine one
such example.

Example 6 (Constraint-based sequential pattern mining).

Suppose our task is to mine sequential patterns with a
regular expression constraint C ¼ ha � fbbjðbcÞdjddgiwith
min support ¼ 2, in a sequence database S (Table 1).

Since a regular expression constraint, like C, is neither
antimonotone, nor monotone, nor succinct, the classical
constraint-pushing framework [15] cannot push it deep.
To overcome this difficulty, Guha et al. [6] develop a set
of four SPIRIT algorithms, each pushing a stronger
relaxation of regular expression constraint R than its
predecessor in the pattern mining loop. However, the
basic evaluation framework for sequential patterns is still
based on GSP [23], a typical candidate generation-and-
test approach.

With the development of the pattern-growth metho-
dology, such kinds of constraints can be pushed deep
easily and elegantly into the sequential pattern mining
process [20]. This is because, in the context of PrefixSpan,
a regular expression constraint has a nice property called
growth-based antimonotonic. A constraint is growth-
based antimonotonic if it has the following property: If a
sequence � satisfies the constraint, � must be reachable by
growing from any component which matches part of the
regular expression.

The constraint C ¼ ha � fbbjðbcÞdjddgi can be inte-
grated with the pattern-growth mining process as
follows: First, only the hai-projected database needs to
be mined since the regular expression constraint C
starting with a, and only the sequences which contain
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frequent single item within the set of fb; c; dg should
retain in the hai-projected database. Second, the remain-
ing mining can proceed from the suffix, which is
essentially “Suffix-Span,” an algorithm symmetric to
PrefixSpan by growing suffixes from the end of the
sequence forward. The growth should match the suffix
constraint “hfbbjðbcÞdjddgi.” For the projected databases
which matches these suffixes, one can grow sequential
patterns either in prefix or suffix-expansion manner to
find all the remaining sequential patterns.

Notice that the regular expression constraint C given in
Example 6 is in a special form“hprefix � suffixi” out ofmany
possible general regular expressions. In this special case, an
integration ofPrefixSpan andSuffix-Spanmayachieve the best
performance. In general, a regular expression could be of the
form “h��1 � �2 � �3�i,” where �i is a set of instantiated
regular expressions. In this case, FreeSpan should be applied
to push the instantiated items by expansion first from the
instantiated items. A detailed discussion of constraint-based
sequential pattern mining is in [20].

5.2 Problems for Further Research

Although the sequential pattern growth approach proposed
in this paper is efficient and scalable, there are still some
challenging research issueswith regards to sequentialpattern
mining, especially for certain large scale applications. Here,
we illustrate a few problems that need further research.

5.2.1 Mining Closed and Maximal Sequential Patterns

A frequent long sequence contains a combinatorial number
of frequent subsequences, as shown in Section 1. For a
sequential pattern of length 100, there exist 2100 � 1 none-
mpty subsequences. In such cases, it is prohibitively
expensive to mine the complete set of patterns no matter
which method is to be applied.

Similar to mining closed and maximal frequent patterns
in transaction databases [17], [3], which mines only the
longest frequent patterns (in the case of max-pattern
mining) or the longest one with the same support (in the
case of closed-pattern mining), for sequential pattern
mining, it is also desirable to mine only (frequent) maximal
or closed sequential patterns, where a sequence s is maximal
if there exists no frequent supersequence of s, while a
sequence s is closed if there exists no supersequence of s
with the same support as s.

The development of efficient algorithms for mining
closed and maximal sequential patterns in large databases
is an important research problem. A recent study in [27]
proposed an efficient closed sequential pattern method,
called CloSpan, as a further development of the PrefixSpan
mining framework, influenced by this approach.

5.2.2 Mining Approximate Sequential Patterns

In this study, we have assumed all the sequential patterns to
be mined are exact matching patterns. In practice, there are
many applications that need approximate matches, such as
DNA sequence analysis which allows limited insertions,
deletions, and mutations in their sequential patterns. The
development of efficient and scalable algorithms for mining
approximate sequential patterns is a challenging and

practically useful direction to pursue. A recent study on
mining long sequential patterns in a noisy environment [28]
is a good example in this direction.

5.2.3 Toward Mining Other Kinds of Structured Patterns

Besidesmining sequential patterns, another important task is
themining of frequent substructures in a database composed
of structured or semistructured data sets. The substructures
may consist of trees, directed-acyclic graphs (i.e., DAGs), or
general graphs which may contain cycles. There are a lot of
applications related to mining frequent substructures since
most human activities and natural processes may contain
certain structures, and a huge amount of such data has been
collected in large data/information repositories, such as
molecule or biochemical structures, Web connection struc-
tures,andsoon. It is important todevelopscalableandflexible
methods for mining structured patterns in such databases.
There have been some recent work on mining frequent
subtrees, such as [31], and frequent subgraphs, such as [11],
[25] in structureddatabases,where [25] shows that thepattern
growth approach has clear performance edge over a candi-
date generation-and-test approach. Furthermore, as dis-
cussed above, is it is more desirable to mine closed frequent
subgraphs (a subgraph g is closed if there exists no supergraph
of g carrying the same support as g) thanmining explicitly the
complete set of frequent subgraphs because a large graph
inherently contains an exponential number of subgraphs. A
recent study [26] has developed an efficient closed subgraph
patternmethod, calledCloseGraph, which is also based on the
pattern-growth framework and influenced by this approach.

6 CONCLUSIONS

We have performed a systematic study on mining of
sequential patterns in large databases and developed a
pattern-growth approach for efficient and scalable mining of
sequential patterns.

Instead of refinement of the a priori-like, candidate
generation-and-test approach, such as GSP [23], we pro-
mote a divide-and-conquer approach, called pattern-growth
approach, which is an extension of FP-growth [9], an efficient
pattern-growth algorithm for mining frequent patterns
without candidate generation.

An efficient pattern-growth method, PrefixSpan, is pro-
posed and studied in this paper. PrefixSpan recursively
projects a sequence database into a set of smaller projected
sequence databases and grows sequential patterns in each
projected database by exploring only locally frequent frag-
ments. It mines the complete set of sequential patterns and
substantially reduces the efforts of candidate subsequence
generation. Since PrefixSpan explores ordered growth by
prefix-ordered expansion, it results in less “growth points”
and reduced projected databases in comparison with our
previously proposed pattern-growth algorithm, FreeSpan.
Furthermore, a pseudoprojection technique is proposed for
PrefixSpan to reduce the number of physical projected
databases to be generated. A comprehensive performance
study shows that PrefixSpan outperforms the a priori-based
GSP algorithm, FreeSpan, and SPADE in most cases, and
PrefixSpan integrated with pseudoprojection is the fastest
among all the tested algorithms.

1438 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 11, NOVEMBER 2004



Based on our view, the implication of this method is far
beyond yet another efficient sequential pattern mining
algorithm. It demonstrates the strength of the pattern-
growth mining methodology since the methodology has
achieved high performance in both frequent-pattern mining
and sequential pattern mining. Moreover, our discussion
shows that the methodology can be extended to mining
multilevel, multidimensional sequential patterns, mining
sequential patterns with user-specified constraints, and so
on. Therefore, it represents a promising approach for the
applications that rely on the discovery of frequent patterns
and/or sequential patterns.

There are many interesting issues that need to be studied
further, such as mining closed and maximal sequential
patterns, mining approximate sequential patterns, and
extension of the method toward mining structured patterns.
Especially, the developments of specialized sequential
pattern mining methods for particular applications, such as
DNA sequence mining that may admit faults, such as
allowing insertions, deletions, and mutations in DNA
sequences, and handling industry/engineering sequential
process analysis are interesting issues for future research.
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