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Abstract

We combine a new, extremely fast technique to generate a library of low energy structures of an oligopeptide (by using mutually
orthogonal Latin squares to sample its conformational space) with a genetic algorithm to predict protein structures. The protein
sequence is divided into oligopeptides, and a structure library is generated for each. These libraries are used in a newly defined mutation
operator that, together with variation, crossover, and diversity operators, is used in a modified genetic algorithm to make the prediction.

Application to five small proteins has yielded near native structures.
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Calculating the three-dimensional structure of a protein
from its amino acid sequence remains a central problem in
computational biology. The currently available protein
structure prediction methods can be categorized into com-
parative modelling, fold recognition, and ab initio or new
fold methods, based on their dependence on previously
known structures [1]. Comparative modelling and fold rec-
ognition methods use the database of known structures to
assist in determination of the structure [2,3]. The methods
in the ab initio category aim to predict the correct structure
as one with the minimum energy for a potential energy
function. This category covers a wide range of methodolo-
gies, starting from approaches that introduce tertiary
knowledge about the structures [4], to the use of secondary
structure information [5,6] to methods that use only
sequence information and a potential energy function that
may be semi-empirical or derived from a database of
known protein structures [7].

A purely physical approach, as in the case of ab initio
methods, requires two important issues to be addressed.
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The first is the definition of a proper energy function or
force field that accurately describes the intramolecular
interactions as well as the intermolecular interactions with
aqueous solvent that, together, stabilize the native folded
conformation. Implicit in the choice of a force field is the
choice also of an appropriate model for the protein. There
are a wide variety of representations discussed in the liter-
ature, ranging from all-atom models, such as AMBER
force field [8] ECEPP [9] and CHARMM [10], to much
simpler coarse-grained models [11].

The second issue to be addressed in structure prediction
is the method of searching the large and complex confor-
mational space to arrive at the minimum energy structure,
presumed to be the native fold. There are several methods
that are reported in the literature [12-14] and they draw
upon general global and local optimization techniques.
Among these, a number of variants of genetic algorithms
have been applied to the protein structure prediction prob-
lem. Genetic algorithms are general optimization proce-
dures modelled on the process of natural evolution, with
mutations, crossover and replication occurring on a popu-
lation of strings [15]. After every round of such operations,
a ‘fitness’ function is used to decide which members of the
population recur in the next generation. The procedure is
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iterated until the population converges on a single individ-
ual with the optimum fitness. Unger and Moult [16] have
shown that genetic algorithms perform better than Monte
Carlo methods for finding the global minimum energy of
simple two-dimensional lattice protein models. Sun [17]
has used a genetic algorithm that, with the help of statisti-
cal potential and restraints like known native radius of
gyration and disulphide bonds (if any), predicts native-like
structure. The algorithm of Bowie and Eisenberg [18] uses
nine residue short fragment structures and 15-25 residue
larger fragment structures from the database of known
protein structures for protein structure prediction. Dande-
kar and Argos [4,19] have used a genetic algorithm that
allows only seven possible conformations for each residue,
together with appropriate fitness functions to predict the
structures of a variety of different classes of proteins.

In this paper, we describe our attempt to overcome the
conformational search problem by combining two search
techniques, namely, the method of mutually orthogonal
Latin squares (MOLS) and a genetic algorithm. The
MOLS algorithm was developed in our laboratory to
search conformation space exhaustively and build a library
of possible low energy local structures for oligopeptides
[20]. In the present application, we first divide the protein
sequence into short overlapping fragments and then use
the MOLS method to build their structural libraries. Next
we use a genetic algorithm that exploits the libraries of
fragment structures and predicts a single best structure
for the protein sequence. In the application of this com-
bined method to some small test proteins, it has predicted
their near native structures.

Materials and methods

Since this is the first application of the hybrid MOLS-genetic algorithm
method, we restricted our attempts to the following four small o helical
proteins, and to one B sheet protein: avian pancreatic polypeptide (APP),
villin headpiece (VHP) mellitin (MEL), cMYB (MYB), and tryptophan
zipper (TZ) These proteins were chosen because of their small size, well-
defined secondary structures, and absence of disulphide bonds. In each
case, an all-atom model was used, keeping bond lengths and bond angles
fixed at their standard values [21]. The search was therefore carried out in
torsion angle space, including the backbone and side chain torsion angles.
The conformation of the protein chain was thus specified by n torsion
angles 0,, r = 1, n, and the correct structure of the molecule is defined by
that set of 0, that yields the minimum of V(6,) over the entire space, where
Vis a suitable potential energy function. This potential energy function, or
objective function, for minimization was chosen differently at each stage,
as explained below. Fig. 1 gives the flowchart of the algorithm. The
method operates in two phases.

Phasel: building fragment libraries using MOLS. In phase 1, the
sequence was divided into overlapping fragments of nine residues each. A
structure library for each fragment was created using the method of
MOLS. Thus, for example, in the case of avian pancreatic polypeptide
(APP), with a sequence of length 36, there were 28 overlapping nonamers
and therefore 28 structure libraries. The MOLS method is explained in full
elsewhere [20]. Here we give a very brief summary. The MOLS method,
which is a variant of the mean field technique [22], uses mutually
orthogonal Latin squares to select n” structures from the multi-dimen-
sional conformational space of size m", where n is the number of dimen-
sions (i.e., the number of torsion angles) and m specifies the fineness of the
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Fig. 1. Flowchart explaining the complete algorithm.

search grid. (The step size was taken to be 10° in the present case.) The
energy values corresponding to these 7 structures are calculated and
analysed to find the set of torsion angles that specify one low energy
structure. This low energy structure is subjected to a few cycles of con-
jugate gradient minimization [23]. The calculations and analyses are
repeated for another set of n* structures, chosen using another set of
MOLS, to identify another low energy structure. This procedure may be
repeated a large number of times, each time identifying one low energy
structure. Initial trials on all the nine residue fragments of APP showed
that 500 repetitions were sufficient to identify all the relevant low energy
structures. Based on this we generated 500 low energy structures for each
overlapping nonamer of all the targets. The number of structures in the
final library for each peptide was further reduced by clustering together
similar structures in the generated set, using the hierarchical clustering
algorithm [24] with a cutoff of 1.0 A RMSD between the backbone atoms.
The lowest energy structure in each cluster was chosen as its representa-
tive. At the end of this procedure, we obtained libraries of mutually dis-
similar structures with 123-327 members for each sequence fragment.
Table 1 gives details of structure libraries generated. Table 2 lists the
RMSD values (using backbone atoms) of the best structure in each library
with the respective experimental structure. It also gives the energy (cal-
culated as described below) of the best structure. Clearly, each library
contains at least one structure that is close to the experimental structure
and has a low energy value.

The potential function was chosen based on previous studies on gen-
erating structure libraries using the MOLS method [20]. Since the calcu-
lations were carried out in torsion angle space, the potential function used
included only the electrostatic, van der Waals, and hydrogen bond energy
terms from the AMBER force field [25]. There were no bond length, bond
angle or torsional energy terms. Besides this, we also included a secondary
structure biasing function as described by Crivelli et al. [6]. This function
was calculated for each residue in the sequence based on the secondary
structure predicted for it by the PHD server [26] accessed through the web
site <http://npsa-pbil.ibcp.fr/>. The function,

Egy= Y ksl —cos(d—¢,)] +ky[l = cos(¥ — ,)]
dihedrals

biases the backbone torsion angles of the amino acids of a residue predict-
ed to be o helix or B sheet to be close to their respective ideal values. Here
k4 and ky, are force constants related to the strength of the secondary
structure prediction from the prediction server. ¢, and y, are ideal dihe-
dral values of the predicted secondary structure. The secondary structure
biasing function is a soft constraint. When used in the MOLS algorithm to
create fragment libraries, it also identifies other energetically favourable
structures besides the predicted secondary structure. Using the biasing
function is therefore a way of ensuring the presence of the predicted
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Some details of the MOLS-generated structure libraries and the genetic algorithm results

Molecule Sequence Number of Number of Number of Number of Average energy value  RMSD of the final
length torsion angles fragment libraries structures in the  generations in of the final population structure with the
libraries genetic algorithm  (kcal/mol) experimental structure (A)
Min Max Ave
APP 36 130 28 143 351 243 250 —163.26 4.0
VHP 36 145 28 153 288 176 250 —140.65 5.2
MEL 26 98 18 123 232 182 250 —119.62 4.3
MYB 52 232 44 136 387 213 3000 -211.74 6.1
TZ 16 59 8 151 312 164 1500 —1136.31 1.6
Table 2
Comparison of best structure in the MOLS generated library with their respective experimental structure fragments
Sequence fragment no. APP VHP MEL MYB TZ
RMSD Energy RMSD Energy RMSD Energy RMSD Energy RMSD Energy
1 1.55 —27.47 1.29 —59.04 0.15 —52.92 1.48 261.81 1.15 —45.71
2 1.34 —36.32 0.92 —64.86 0.22 —46.20 1.46 —47.98 1.74 —49.68
3 1.27 —36.06 0.82 —61.94 0.23 —52.70 1.40 —34.33 1.57 —48.38
4 1.45 —36.37 0.72 5.82 0.42 2.05 1.40 —53.23 1.72 —44.71
5 1.33 —33.59 1.20 45.66 0.84 —51.22 1.54 —60.07 1.87 —45.85
6 1.85 —28.51 1.11 114.04 0.88 —45.36 0.55 —76.96 1.64 —39.03
7 1.61 —36.83 1.38 234.00 0.88 —33.20 0.77 —70.86 1.48 —23.44
8 1.60 —45.38 1.79 370.08 1.37 —37.17 0.12 —77.34 1.21 —42.03
9 1.40 —38.90 1.92 301.61 0.85 —17.08 0.18 —76.91
10 0.96 —54.25 1.52 306.58 0.78 —15.87 0.18 —70.64
11 0.44 —57.21 1.85 137.52 1.54 —28.36 0.23 —76.30
12 0.47 —64.29 1.39 15.62 0.68 —43.49 0.23 —74.48
13 0.20 —70.71 0.89 3.22 0.29 —52.69 0.30 —73.35
14 0.17 —60.71 0.83 —52.91 0.23 —33.76 0.74 —60.95
15 0.14 —58.60 1.57 —37.87 0.21 —55.52 0.98 —58.36
16 0.24 —66.54 1.77 10.02 0.26 —65.06 0.84 —55.45
17 0.21 —56.82 1.88 12.32 0.16 —79.40 1.41 —53.67
18 0.24 —49.84 1.75 296.49 0.28 —78.11 1.81 —52.73
19 0.22 —43.97 1.27 165.30 1.29 —50.05
20 0.24 —33.51 1.34 55.36 1.20 —48.14
21 0.24 —63.08 0.89 29.17 1.68 —34.00
22 0.18 —65.80 0.37 —79.65 1.30 132.90
23 0.25 —64.49 0.39 —73.68 1.36 120.91
24 0.23 —63.87 0.44 —85.56 0.75 127.66
25 0.73 —70.67 0.45 —80.02 0.64 —52.14
26 0.85 —65.60 0.89 —72.20 1.01 —35.55
27 0.77 —55.21 1.25 —63.81 1.06 —48.07
28 0.94 —56.12 1.18 —59.41 1.16 —32.49
29 1.53 —50.57
30 1.80 —32.58
31 1.44 —39.46
32 1.61 —53.03
33 1.76 —49.67
34 1.38 —41.06
35 1.09 —58.75
36 1.25 —68.20
37 0.51 —76.20
38 0.24 —71.93
39 0.44 —83.48
40 0.65 —81.95
41 0.58 —70.08
42 0.87 15.56
43 0.94 —65.22
44 1.18 853.26

RMSD values in A and energy in kcal/mol.
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secondary structure in the fragment library, but not as the sole structure.
The time taken to generate a single library varied from 8 to 51 h of CPU
time, depending on the sequence, on a single Intel Pentium 4 processor
(1.8 GHz) with Red Hat Linux 7.3 as operating system. The wide variation
in the running time is chiefly a result of the large difference in time required
for the gradient minimization procedure.

Phase 2: the genetic algorithm. Phase 2 of the method uses a genetic
algorithm, in combination with the library of structures generated in phase
1, to predict the three-dimensional structure of the protein. The genetic
algorithm used in the present application is similar to that of Schulze-
Kremer [27]. The protein structure is modelled as a string of torsion
angles. An initial random population of ten individual structures is gen-
erated. Each new generation of structures is obtained by applying four
operators on this population. Unlike other applications of genetic algo-
rithms [4], the operators are configured to operate on numbers (the torsion
angles) and not on bit strings. The operators are MUTATE, VARIATE,
CROSSOVER, and a newly defined DIVERSITY operator.

In the genetic algorithm as described by Schulze-Kremer [27], the
MUTATE operator, when activated for a particular residue, replaces the
value of the torsion angles of this residue by a random choice from the ten
most frequently occurring values for that residue. The database of most
frequently occurring values for all the backbone and side chain torsions
was calculated from the structures in the PDB. We have modified this
operator as follows. First, the database now consists of the libraries of
MOLS structures generated in phase 1. Second, the operator works not on
a single residue, but by replacing a randomly selected nine residue frag-
ment by a structure from the respective MOLS-generated structure library.
The probability of picking up a particular MOLS-generated structure
depends on its energy value, one with lower energy being more probable.
Based on initial trial runs, the probability parameter governing the
MUTATE operator is set to the constant value of 0.10, leading to a 10%
chance for every overlapping nonamer fragment in a molecule to be
mutated in each generation.

The VARIATE operator increments or decrements the chosen torsion
angle by 1°, 5° or 10°. The initial value of the probability parameter
governing VARIATE is set as 0.2. A random number between 0 and 1 is
generated for every torsion angle. If the generated random number is less
than 0.2, then VARIATE is applied. This probability parameter is
dynamic and varies from 0.2 at the beginning of the algorithm to 0.7 at the
end. Three different sets of dynamic parameters control the choice between
1°, 5° or 10°. The value of 10° is chosen with a probability of 0.6 at the
beginning of the run and 0.0 at the end, for 5° the probabilities are 0.3 and
0.2, respectively, while for 1° they are 0.1 and 0.8, respectively. Another
parameter (value 0.5) controls whether the angle is incremented or
decremented.

The CROSSOVER operator has two components: the two-point
crossover and the uniform crossover. Every time this operation is carried
out the individuals in the population are randomly paired. Depending on
the CROSSOVER probability, which has a value of 0.7 at the first gen-
eration and 0.1 at the last one, each pair is selected or not selected for the
CROSSOVER operation. For each selected pair a decision is made
between two-point crossover and uniform crossover. This decision is based
on the following dynamic parameters. Two-point crossover probability is
0.1 at the first iteration, and 0.9 at the last one, uniform crossover prob-
ability is 0.9 and 0.1, respectively. In two-point crossover, two points are
randomly selected in the sequence, and the fragment of the structure that
lies between these two points are exchanged between the two structures in
the selected pair. The uniform crossover operator works on every residue
in the sequence. With a probability of 0.5 it exchanges the torsion angle
values of the residue with those of its counterpart in the other structure of
the pair.

In addition to the three operators above, we introduced a
‘DIVERSITY” operator. This operator randomly selects a residue and
sets the backbone torsion angles of the next five residues to 180°. The
DIVERSITY operator helped avoid premature convergence to a local
minimum, in particular during the initial stages of the algorithm. The
probability of choosing a given residue was kept constant throughout
the run at 0.01.

The initial (zeroth) generation consisted of a population of 100 indi-
viduals, with all their variable torsion angles set to 180°. The four oper-
ators were applied to all the individuals of a generation (i.e., the ‘parent’
generation), and the individuals for the next generation (i.e., the ‘offspring’
generation) were selected by the elitist replacement method [15,27]. In this
method, the parent and the offspring generations were merged, and all 200
individuals were sorted on the basis of the fitness function, calculated for
each structure as described below. The 100 fittest individuals were selected
to constitute the next generation. The cycles of variation and selection
were continued until convergence. The criterion for convergence was that
all the structures in the final population were similar. This was checked by
clustering the population of each generation using a hierarchical clustering
algorithm [24] with 3 A backbone RMSD cutoff. When the clustering
routine returned a single cluster with all 100 structures in it, the algorithm
was considered to have converged. In all the five attempts, the algorithm
converges towards a single structure. The protein MY B with 52 residues in
the sequence converged only after nearly 3000 generations, while TZ (16
residues) required 1500 generations to converge. The other three con-
verged in less than 600 generations. The total computation time for phase
2 varied from 1 to 17 h on a Pentium 4 processor, depending on the size of
the molecules and the number of generations. Table 1 gives some details
regarding this procedure. The structures in the final set were all further
subjected to conjugate gradient energy minimization using the program
Discover in the Biosym suite [21]. The structure finally used in the sub-
sequent discussion for each target is the one with the minimum energy (as
defined by the Discover energy function) in the final, minimized
population.

The fitness function used to select the offspring in each generation was
the potential function used above to generate the MOLS libraries, but
without the secondary structure biasing term. Instead, we included a
‘pseudo entropy’ term as defined by Schulze-Kremer [27] E,,, calculated as
follows:

Epe — 44\D7

where 4D is the measured diameter of the structure minus the expected
diameter. If the actual diameter is lesser than the expected diameter, then
E, is set to zero. The diameter was measured as the largest distance be-
tween any two C” atoms. The expected diameter was calculated as
8 X (length of the sequence in residues)l/ 3. In the case of the tryptophan
zipper (TZ), the experimental structure consists of two strands forming
a B hairpin. In this case alone, we found it necessary to include the second-
ary structure biasing term, as well as a rule-based B-strand pairing poten-
tial, as described by Kesar and Levit [28]. This is a cooperative term that
operates on pairs of hydrogen bonds. A single hydrogen bond does not
contribute to the energy, but it favours the formation of other hydrogen
bonds belonging to the same pair of strands, which then gives rise to
the formation of yet others.

Results

All the targets considered here, except tryptophan zipper
(TZ), are o helical proteins. TZ alone contains an antipar-
allel B sheet. All five targets converge in the reasonable
amount of computation time to a single, near native con-
formation. Avian pancreatic polypeptide (APP), villin head
piece (VHP), and mellittin (MEL) converged to a single
structure in 250 generations in the genetic algorithm. The
RMSD of the best structure in the final population for
each, when the backbone atoms are superposed on the
respective experimental structures [29-31], is 4.0, 5.2 and
4.3 A, respectively. The c-Myb protein (MYB) required
3000 generations to converge, and the best structure had
a backbone RMSD of 6.1 A with respect to the experimen-
tal structure [32]. TZ converged after 1500 generations to a
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Fig. 2. Stereo view of the predicted structure (dark) superposed on the experimental structure (light) of APP (A), VHP (B), MEL (C), MYB (D), and TZ (E).

single structure with a backbone RMSD of 1.6 A, when
superposed on the experimental structure [33]. The final
predicted structures of all five targets, together with the
experimental structures, are shown in Fig. 2. We now dis-
cuss the results for each of the five structures individually.

Avian pancreatic polypeptide

APP is a 36 residue protein, whose crystal structure
(PDB ID: 1PPT) was solved by Blundell et al. [29] at
1.4 A resolution. The structure consists of a polyproline-
type helix from residues 1 to 8 and an a-helix from residues
13 to 31. A turn at residues 9-13 arranges the polyproline
helix approximately parallel to the a-helix. Another turn at
residues 33 and 34 allows the carboxy terminus to be ori-
ented away from the o-helix. The MOLS library of frag-
ments corresponding to the regions containing a-helix of
experimental structure was predicted accurately, and the
secondary structure biasing term makes it the lowest energy
structure among all the MOLS generated structures. The
best predicted structures of the nonamer fragments from
residue 10 to 28, which have this secondary structure either
completely or partly, had an RMSD below 1 A with the

experimental structure (Table 2). The lowest RMSD was
0.14 A with energy of —58.6 kcal/mol in the o helical
region and 1.3 A with an energy of —33.5 kcal/mol in the
other regions of the sequence. The final structure predicted
by the combined MOLS-GA algorithm for this protein has
the o helix from residues 14 to 31 and the turn that follows
it (Fig. 2A). The polyproline-like helix does not appear in
the final prediction though it is one of the low energy struc-
tures in the MOLS library. Instead, the predicted structure
has possible beta turns with backbone hydrogen bonds
between residues G1 and Q4, S3 and T6, and Q4 and Y7.
Besides this, the predicted structure has three y turns with
hydrogen bonds between residues Q4 and P2, R33 and
V31, and Y36 and H34, not found in the crystal structure.
In the experimental structure, the hydrophobic core of
APP is formed by the three proline residues (P2, PS5, and
P8) in the polyproline helix along with F20 and Y27 in
the o helix. The predicted structure does not contain this
hydrophobic core. Instead, the only contacts between the
N-terminal segment and the o helix are the hydrogen bonds
between the side chain of R19 with the main chain oxygen
of Q4 and Y7 and another hydrogen bond between N23
and main chain oxygen of G1. Though the overall RMSD



J. Arunachalam et al. | Biochemical and Biophysical Research Communications 342 (2006) 424-433 429

between the backbone atoms of the final predicted struc-
ture and the experimental structure is 4.0 A, portions of
the structure are predicted with much better accuracy
(Table 3). As expected, the prediction is the best in the o
helical region.

APP has been used earlier as the target protein for
structure prediction. Liwo et al. [34] have predicted the
structure of APP to an accuracy of 3.8 A in a two-step
algorithm. In this prediction, too, the secondary structure
regions are predicted more accurately than the rest of the
sequence. Sun has used a reduced representation model
and a genetic algorithm to predict the structure of APP
to an accuracy of 3.9 A RMSD [35]. Their genetic
algorithm uses conformational dictionaries generated from

Table 3
Comparison of nonamer fragments of final predicted structures with the
experimental structure fragments

APP VHP MEL MYB TZ

1 3.51 3.02 0.26 3.47 2.12
2 3.39 2.26 0.25 2.51 1.27
3 4.25 1.51 0.29 2.45 1.77
4 4.39 1.73 0.26 2.56 1.65
5 3.31 1.94 1.80 2.20 1.65
6 3.07 2.50 2.88 1.48 1.85
7 3.27 3.74 2.83 0.64 1.95
8 3.04 3.76 2.95 0.53 2.14
9 2.90 3.15 2.84 0.47

10 2.92 2.93 2.37 0.48

11 2.86 3.33 2.44 0.49

12 1.96 3.07 1.77 0.48

13 0.43 1.85 0.34 0.31

14 0.39 1.75 0.33 1.62

15 0.26 2.15 0.21 1.67

16 0.24 2.64 0.18 1.95

17 0.27 2.64 0.27 3.2

18 0.34 2.62 0.33 3.72

19 0.35 2.99 3.45

20 0.33 2.78 3.52

21 0.33 2.21 3.26

22 0.42 0.80 2.33

23 0.57 0.86 2.37

24 1.08 0.76 1.76

25 1.40 0.78 0.87

26 1.88 1.55 0.99

27 2.37 1.68 1.37

28 243 2.81 1.93

29 2.44

30 3.11

31 3.12

32 291

33 2.68

34 3.24

35 3.68

36 2.89

37 2.21

38 1.37

39 0.74

40 0.96

41 2.24

42 2.95

43 3.20

44 3.66

The table gives the RMSD in A, when the fragments are superposed.

non-homologous structures from the PDB to perform the
MUTATION operation.

Villin head piece

The NMR structure of VHP (PDB ID: 1VII) contains
three short helices (residues 4-8, 15-18, and 23-30), which
are held together by a loop and a turn [30]. The current
method predicts all three helices, packed in a native-like
conformation (Fig. 2B). Besides the helices, the predicted
structure has a B turn with a possible hydrogen bond
between residues F36 and K33, and two y turns with
hydrogen bonds between residues M13 and F11, and L35
and K33, which are absent in the crystal structure. The sec-
ondary structure predicted by PHD, which was used in
generating the MOLS library structures, predicts the sec-
ondary structure of VHP to be a single long helix starting
from residue 4 to residue 32. The computed preference of
the sequence for this secondary structure is reflected weakly
in the fact that the helices are longer, from residues 4 to 10,
13 to 19, and 22 to 32 in the predicted structure, as com-
pared to the helices in the experimental structure. The three
short helices in the structure surround a hydrophobic core
consisting of three phenylalanine residues F7, F11, and
F18. A one microsecond molecular dynamics simulation
of VHP with explicit water model [36] yielded a stable clus-
ter of structures that had an RMSD of 4.5 A RMSD when
superposed on the experimental structure. In this simula-
tion, the hydrophobic core formed simultaneously with
the secondary structures during the very early stage of
the folding process. In the structure predicted by the
MOLS-GA algorithm however, the native-like fold occurs
without this hydrophobic core (Fig. 3). Only F7 and F11
with a distance between the aromatic rings being 5.0 A
may be considered an interacting pair, according to the cri-
terion of Burley and Petsko [37], who showed that phenyl-
alanine rings in proteins could be considered to be involved
in an aromatic interaction when they are within 7 A dis-
tance of each other. Also, by creating single and double
mutants of the three phenylalanine residues F7, F11, and
F18, Frank et al. [38] have shown that VHP can attain a
native structure even with out these specific aromatic inter-
actions. In our calculations, we have used no explicit terms
for the hydrophobic force solvent interactions, either in
generating the MOLS libraries or in the genetic algorithm.
Thus, local structural preferences appear to contribute sub-
stantially to the final structure of the protein, not just in the
secondary structural regions, but also in the loop regions.
As shown in Table 2, in the loop regions also, the best
structure in the MOLS library for each nonamer had low
RMSD with the experimental structure, the lowest being
1.1 A RMSD.

Mellitin

The crystal structure of MEL (PDB ID: 1MLT) has an
o-helix from residues 1 to 10, followed by a B-turn, followed
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Fig. 3. Experimental and predicted structures of VHP showing the three phenylalanine residues in the hydrophobic core.

by a longer helix from residues 13 to 26. The present algo-
rithm predicts both the helices (from residues 1 to 12 and
14 to 26), as well as the bend (Fig. 2C, overall RMSD
43 A). However, in the predicted structure the bend is formed
by a y-turn between residues 11 and 13. This y-turn and
shortening of the second helix by one residue together makes
the predicted structure deviate from the experimental struc-
ture. Once again the secondary structures are predicted with
a higher accuracy. The MOLS-generated library for the non-
amer sequence containing the bend region (residues 12-14)
has a structure with an RMSD of 1.3 A and an energy value
of —37.2 kcal/mol (Fig. 4). However, this structure was not
selected by the genetic algorithm and does not appear in
the final prediction. Table 2 shows that all the nonamer frag-
ments have a structure within 1.5 A of the respective experi-
mental structure. However, Table 3, which compares the
overlapping nonamers of the final predicted structure with
the crystal structure fragments, shows that the genetic algo-
rithm apparently failed to retain these local structures in the
final prediction.

c-MYB

¢-MYB protein (PDB ID: 1GVS5) is a 52 residue protein
with three o-helices, (residues 7-20, 25-30, and 47-46)
packed together mainly by hydrophobic interactions in
the crystal structure. There are two specific hydrogen
bonds between two of the helices. The predicated structure
(overall RMSD 6.2A, Fig. 2D) retains all these features,

Fig. 4. Stereo view of the superposition of best MOLS prediction (dark)
with the crys}al structure (light) of the bend region of mellitin
(RMSD = 1.3 A).

except the pair of hydrogen bonds. On comparing the
MOLS generated library structures with the crystal struc-
tures (Table 2), the helix regions were well predicted. How-
ever, in the final prediction (Table 3), while the helix
regions remained correct, the structures of the non-helical
regions moved away from the experimental structure. This
is because of the predicted presence of B-turns between the
sets of residues (L1-G4), (I12-P5), (P5-K8), (G35-G38),
(G38-C41), and (H48-P51), and vy turns between the triples
of residues (G4-W6), (W6-K8), (R36-G38), (G38-Q40),
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and (N50-ES52). All these turns are absent in the experi-
mental structure. Thus, even though the native fold was
obtained, the apparent overemphasis on local structure in
the prediction leads to its significant deviation from the
experimental structure.

Tryptophan zipper

Tryptophan zippers are short structural motifs that
form P hairpins. B-Strand structures are notoriously hard
to predict and need special functions that help in strand-
pairing [39,40]. The 16-residue long tryptophan zipper
has been designed to form a P hairpin with two strands
and a type IV B turn in between [33]. Initial attempts using
the current algorithm unchanged did not produce any fold-
ed structures. An analysis of the MOLS library of struc-
tures shows that, of the structures for the bend region
(residues 10-13) in the library, the best had 1.4 A RMSD
with the experimental structure, but the genetic algorithm
did not retain this. In order to drive the structure towards
a P sheet structure, the fitness function used in phase 2 of
the algorithm was modified to include the secondary struc-
ture bias term as well as a special rule-based B pairing
potential[28], as described in ‘Materials and methods’ sec-
tion. The structure is well predicted after the above inclu-
sion (overall RMSD 1.6 A, Fig. 2E). The bend in the
structure due to the formation of the type IV B-turn
between residues 10 and 13 is also predicted exactly.
Besides this the predicted structure also has a possible 3
turn comprising residues (A8-T11). In the experimental
structure, the B hairpin motif is stabilized by the aromatic
interactions between the tryptophan residues present at
both the strands. Such aromatic interactions between the
tryptophan residues are not present in our predicted struc-
ture. It appears therefore that in this case, the f-sheet pair-
ing function is sufficient to ensure the proper fold. The
psuedoentropy term appears ineffective in this case.

Discussion

43]. The present algorithm is however unique in that it does
not obtain any of the fragment structures from previously
known structure databases. The secondary structure bias-
ing term is the only part of the potential that is based on
previously known structures—the PHD algorithm that
we use to predict the secondary structure is based on them
[26]. The rest of the potential we have used consists of well-
parameterized atom-atom semi-empirical pair potential
functions and is not sequence-specific. Further, during
phase 2, i.e., the genetic algorithm, a simple fitness function
based again on the AMBER [25] potential field was used.
The all-B TZ alone required additional B-strand pairing
potential terms. Thus, a larger sequence space is accessible
to this algorithm than to others. Another advantage of the
present method is that it converges towards a single struc-
ture, thereby making it unnecessary to search for the best
structure from among a myriad of other energetically
favourable structures, as in most other prediction
algorithms.

In all the five test cases, we noted that the local interac-
tions are predominantly favoured in the energy function we
have used. As described above, several y turns were pre-
dicted (Table 4). However, none of the targets have y turns
in the experimental structures. The exception is MYB,
which has one y turn with hydrogen bond between K23
and G21. The overemphasis on local interactions appears
to be an important cause of the errors in prediction, even
though the overall fold and orientations of the secondary
structures are correctly predicted.

The algorithm appears to efficiently arrive at the mini-
mum of the given fitness function, though this function
appears to be only an approximate model of the interaction
in the peptides. This is clear when we note that the value of
this fitness function is always less for the predicted struc-
tures than for the experimental structures (Table 5). The

Table 5
Comparison of the value of the fitness function between the experimen-
tally determined structures and the final predicted structures

) ) ) ) Molecule Values of the fitness function (kcal/mol)
The algorithm presegted here is a combination of a frag- Predicted structure Experimental structure
ment structure generation method, coupled to a genetic
algorithm that puts the fragment structures together to APP —177.37 129.53
X . . VHP —40.17 630.08
arrive at the best structure. The use of fragment libraries gL 8536 459.47
in protein structure prediction is not new, and several suc- MYB —246.23 752.91
cessful algorithms have incorporated this technique [12,41-  TZ —1138.31 —1087.15
Table 4
The list of additional B and y turns in the predicted structures
APP VHP MEL TZ MYB
B-Turns v-Turns B-Turns v-Turns B-Turns y-Turns B-Turns v-Turns B-Turns y-Turns
G1-Q4 P2-Q4 K33-F36 F11-M13 TI11-L13 D7-K10 L1-G4 G4-Wo6
S3-T6 V31-33R K33-L35 A8-TI11 12-P5 W6-K8
Q4-Y7 34H-36Y P5-K8 R36-G38
T32-R35 G35-G38 G38-Q40
G38-C41 NS50-E52

H48-P51
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side chain interactions are also not modelled very well by
the fitness function, and in all five targets, the predicted
side chain-side chain interactions do not match the exper-
imentally determined interactions. Improvement of the fit-
ness function to address these issues, for example, by
inclusion of hydrophobic and solvent terms [44] other than
the psuedoentropy term, and specific side chain interac-
tions [45], as well as statistical ‘contact’ potentials that
model side chain interactions [46], may improve the perfor-
mance of the algorithm, both in terms of more accurate
predictions, as well as in terms of application to larger
sequences.
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