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Abstract- Financial time series are complex, non stationary
and deterministically chaotic. Technical indicators are used
with Principal Component Analysis (PCA) in order to identify
the most influential inputs in the context of the forecasting
model. Neural networks (NN) and support vector regression
(SVR) are used with different inputs. Our assumption is that
the future value of a stock price depends on the financial
indicators although there is no parametric model to explain
this relationship. This relationship comes from the technical
analysis. Comparison shows that SVR and MLP networks
require different inputs. Besides that the MLP networks
outperform the SVR technique.
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i. INTRODUCTION

Technical indicator analysis has attracted many
researchers from different fields. For example, Ausloos and
lvanova  have investigated the relationship between
momentum indicators and kinetic energy theory [2].
Genetic algorithms have been used with technical indicators
in order to discover some patterns [12).

One of the goals of financial methods is asset
evaluation. The behavior of an asset can be analyzed by
using technical tools, parametric pricing methods or
combination of these methods. Prediction of financial time
series is one of the most challenging applications. Since the
financial market is a complex, non stationary and
deterministically chaotic system, it is very difficult to
forecast by using deterministic (parametric) techniques
because of the assumptions behind the parametric
techniques. For example, linear regression models assume
normality, serial correlation etc. Therefore, nonparametric
techniques such as support vector regression (SVR), neural
networks (NN), and time series models are good candidates
for financial time series forecasting. Over the past decades,
neural networks and radial basis function networks have
been used for financial applications ranging from option
pricing, stock index trading to currency exchange {3, 6, 8,
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approximators that can map any nonlinear function without
any assumption about the data.

The SVR algorithm that was developed by Vapnik [5,
25] is based on statistical learning theory. In the case of
regression [1,5,15], the goal is to construct a hyperplane
that lies "close" to as many of the data points as possible.
This determines the trend line of training data, hence the
name support vector regression (SVR). Most of the points
deviate with at most € precision from the target defining an
g-band, Therefore, the objective is to choose a hyperplane
where w has a small norm (providing good generalization)
while simultaneously minimizing the sum of the distances
from the data points, outside the £ -band, to this hyperplane
{14, 18]

NN models have been applied to stock index and
exchange rate forecasting [8, 11, 24]. SVR has been applied
to stock price forecasting and option price prediction [21,
22]. Recent papers have showed that SVR outperforms the
MLP networks [19, 22]. This can be explained with the
theory of SVR. SVR has a small number of free parameters
and is a convex quadratic optimization problem. We will
compare the SVR with MLP networks for short term
forecasting.

The tendency in the field of financial forecasting is to
use state variables which are fundamental or macro
economic variables. On the other hand, technical analysis,
also known as charting, is used widely in real life. It is
based on seme technical indicators. These indicators help
the investors to buy or sell the underlying stock. Our goal is
to try to understand the relationship between stock price
and these indicators. These indicators are computed by
using stock price and volume overtime. In addition to this,
more than 100 indicators have been developed to
understand the market behavior. Identification of the right
indicators is a challenging problem. Two different
approaches will be given in this paper. The first approach is
using Principal Component Analysis (PCA) to identify the
most important indicators. The second approach is based on
heuristic modelis.

Section 1 explains the theory of support vector
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section III. In section IV computational experiments and
comparison of the methods is discussed. Section V
concludes the paper.

I. METHODOLOGY

In this part, principal component analysis and support
vector regression are explained briefly.

A. Kernel Principal Component Analysis

The objective of PCA is to reduce the dimensionality
of the data set while retaining as much as possible variation
in the data set and to identify new meaningful underlying
variables. In addition to PCA analysis, other techniques can
be applied to reduce to dimension of the data. They can be
classified into two categories; linear algorithms such as
factor analysis, and PCA and nonlinear algorithms such as
kemel principal component analysis that is based on
support vector machines theory. These methods are also
called feature extraction algorithms. They are widely used
in signal processing, statistics, neural computing and
meteorology [13,17,20].

The basic idea in PCA is to find the orthonormal
features sy, §2,..., 5, with maximum variability. PCA can be
defined in an intuitive way using a recursive formulation.
Define the direction of the first principal component, say,v,
by

¥, :arg?ﬁfE{(vTX):} (

where v; is of the same dimension m as the random data
vector X Thus the first principal component is the
projection on the direction in which the variance of the
projection is maximized. Having determined the first kI
principal components, the k-th principal component is
determined as the principal component of the residual:

- :
v, = argax E{[VT[x - g‘iviv;rXﬂ } @

- The principal components are then given
by 5 = v;rX . In practice, the computation of the v; can be
simply accomplished using the (sample) covartance
matrix £ {XX T }= C of the training data. The v; are the

eigenvectors of C that correspond to the n largest
eigenvalues of C.
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In real life, it is hard to find linear relationships.
Therefore, instead of linear PCA, one can use the nonlinear
PCA analysis which is called kemnel principal component
analysis (kPCA). kPCA is closely related to the Support
Vector Machines (SVMs) method. It is useful for various
applications such as pre-processing in regression and de-
noising [17].

kPCA is a nonlinear feature extraction method. The
data is mapped from the input space to a feature space.
Then linear PCA is performed in feature space. The linear
PCA can be expressed in terms of dot products in feature
space [17, 20].

The nonlinear mapping @ :R" — F can be defined as
k(x,y) = ®(x}- ©(y), in terms of vector dot products. Given

a dataset, {x}5=l’ in the input space we have the
corresponding set of mapped dataset in the feature space,

defined as I.=d>(x1.)}:_ ’ .The PCA problem in feature

space F can be formulated as the diagonalization of an /-
sample estimate of the covariance matrix[20], defined as

~ 1 !
C= ;Zcb(xi Xb(x,), 3)
i=l

where @(x,) are centered nonlinear mappings of input
variables x; € R”. The centralization mapping is

explained in [17}. We need to solve the following
eigenvalue problem

AV =CV,
VeF,Az20
Note that, all the solutions ¥ with A 20 lie in the
span of @(x,), ®(x,),...,P(x,). Schilkopf et al. {13]

derived the equivalent eigenvalue problem
nla =Ka,
o denotes the

4

where column vector such that

!
V= Za,.CD(xi ), and K is a kernel matrix which satisfies
pa

the following conditions

HK (x, )g(x)g(y)dxdy > 0,

)
|&* (x)dx <o

Then we can compute the k-th nonlinear principal
component of x as the projection of @®(x) onto the
eigenvector V*

ﬁ(x)k :V*(D(x)zzai"K(x,.,x) (6)
i=1



Then the first p < / nonlinear components are chosen,
which have the desired percentage of data variance. By
doing this, we reduce the size of the dataset. Then, we
perform support vector regression or the multi layer
perceptron algorithm on the reduced dataset.

B. Support Vector Regression (SVR)

In SVR our goal is to find a function f{x} that has €
deviation from the actually obtained target y; for all training
data and at the same fime is as flat as possible. Suppose f{x)
takes the following form,

fx)y=w-x+b,we XbefR )
Then we solve the following [18] :

.1 2

min—|w|
2

Subject to (8)
Y, WX, -b<¢
wx, +b-y, <¢

In the case of infeasibility we introduce slack variables
&, 4" ; and we solve the following problem:

min -;-nw F+CY & +£)

Subject to
—wx.—b<ZLsg+ &
yl i él. (9)
WX, +tb—y, s+

&.¢ 20
C+0

where C determines the trade-off between the flatness of
the f{x) and the amount up to which deviations larger than &
are tolerated.

Next we construct the dual problem. The reason is that
solving the primal problem is more difficult due to too
many variables. If we use the dual problem formulation, we
can decrease the number of variables and the size of the
problem becomes smaller. Specifically,

l * £
S (4=, ~ Ak,

i=1 j=1

' L .
_gg(ii‘*"zi)"'g)’i(’li"li)

=

max —

B | -

, (10
Subjectto (4 ~A4)=0
i=]

A2y €(0,C)

Now we consider the non-linear case. First of all, we
need to map the input space into the feature space and try to
find a regression hyperplane in the feature space. We can
accomplish that by using the kernel function k¢x,y). In other
words we replace k as foilows:

k(x,) = O(x)- B() (11

Therefore, we can replace the dot product of peints in

the feature space by using kemel functions. Then, the
problem becomes

! ! N .
max —%ZZ(/L =AW — ADK(x;,x;)

i=1j=1

! !
—e§0ﬁ49+§m@~£)

(12)
Subject to T4 -A)=0
44 €(0,0)
At the optimal solution, we obtain
!
w = Z(Z’i = ’I;)K(xi’x), and
- (13)

f(x)= Z[:(/# — 4K (x,, x)+b

According to [5,18], any symmetric positive semi-
definite function, which satisfies Mercer's conditions, can
be used as a kemel function in the SVRs context (see
equation 5). Different functions which satisfy the above
conditions can be used as kemel functions. Polynomial and
RBF kemel functions are very common.

In order to solve the optimization problem given in
equation (12), one needs an efficient algorithm. Recently,
several decomposition techniques have been developed [4,
9, 10, 16, 25] to solve this large scale problem. Bender’s
decomposition technique and sequential minimum
optimization technique has been developed to solve linear
and quadratic programming problems [4, 22].

I11. BRIEF REVIEW OF TECHNICAL INDICATORS

There are more than 100 technical indicators that have
been developed to gain some insight about the market
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behavior. Some of them catch the fluctuations and some
focus on where to buy and sell. The difficulty with
technical indicators is to decide which indicators are crucial
in order to determine the market movement. It is not wise to
use all indicators in a model.

Another problem is that those indicators are very
dependent on an asset price. For example, some indicators
would provide excellent information for stock A, but they
would not give any insight information for stock B. Thus,
we need a tool to choose the right indicators (inputs) for
each stock. This can be achieved by using data mining
techniques which have been widely used for other arcas.

Technical indicators can be used for short term and
long term investment strategies. Usually, three or more
indicators can be used together for identifying the trend of
the market. In our heuristic models, we will consider
several indicators as inpufs in the model. Specifically the
exponential moving average , volume % change, stochastic
oscillator and relative strength index, boliinger bands width
and Chaikin Money Flow. These indicators will be
explained briefly.

Exponential Moving Average (EMA): The EMA is
used to reduce the lag in simple moving average.
Exponential moving averages reduce the lag by applying
more weight to recent prices relative to older prices. The
weighting applied to the most recent price depends on the
length of the moving average [7].

Relative Strength Index (RSI): The RS, developed by
J. Welles Wilder, is an extremely useful and popular
momentum oscillator {7]. The RSI compares the magnitude
of a stock's recent gains to the magnitude of its recent
losses and tums that information into a number that ranges
from 0 to 100. It takes a single parameter, the number of
time periods to use in the calculation. Like most true
indicators, the RSI only needs one stock to be computed.

Bollinger Band (BB): BB is an indicator that allows
users to compare volatility and relative prices levels over a
period of time [7]. The indicator consists of three bands
designed to encompass the majority of a security's price
action,

Moving Average Convergence Divergence MACD: 1t
is one of the simplest and most reliable indicators available
[7]. MACD uses moving averages, which are lagging
indicators, to include some trend-following characteristics.
_ These lagging indicators are turned into a momentum
oscillator by subtracting the longer moving average from
the shorter moving average. The resulting plot forms a line
that oscillates above and below zero, without any upper or
lower limits. MACD is a centered oscillator and the
guidelines for using centered oscillators apply.

Chaikin Money Flow (CMF): The CMF oscillator is
calculated from the daily readings of the
Accumulation/Distribution Line. The basic premise behind
the Accumulation Distribution Line is that the degree of
buying or selling pressure can be determined by the
location of the close relative to the high and low for the

corresponding period (Closing Location Value). There is
buying pressure when a stock closes in the upper half of a
period's range and there is selling pressure when a stock
closes in the lower half of the period's trading range. The
Closing Location Value multiplied by volume forms the
Accumulation/Distribution Value for each period {7].

TV. EXPERIMENTS

The combination of technical indicators and
fundamentals are used for effective and efficient portfolio
management. Portfolio managers use different techniques
to identify which stocks have to put in their portfolic and
which ones should sell. Generally, they focus on long term
portfolio management. Here we will focus on short term
portfolio management. Four different models have been
used for stock price forecasting. Two of these models are
based on kPCA and factor analysis. Our goal is to use these
two techniques as an input selection algorithm for SVR and
MLP networks. Others are heuristics models which are
created by personal experience.

In the first stage of our experiments, our objective is to
identify the important indicators that are used in SVR and
MLP as inputs. PCA analysis and factor analysis are
performed for reducing the size of input. These two
techniques are used as a preprocessing algorithm. More
than 100 technical indicators are used in this stage. Two
different models have been identified, “PCA model” which
has 7 inputs, and “factor model” which has 30 inputs. Since
each technique is based on a different theory, the number of
features/factors is also different.

In addition to these three models, two heuristic models
are proposed. For the short term price movements, small
numbers of indicators are used in practice. They give
valuable information where the stock price will go for the
next day. Experience with short term trading in the U.S.
equity market suggests two simple models. In the first
model which is called H1, we assume that the current stock
price depends on the previous EMA, Volume, RSI, BB,
MACD and CMF.

S, =f(EMA, .V, \,RSI,,.BB, ,,
MACD,_,CMF,_|)
The second model, called H2, is more complicated and
has more independent variables. This is shown below.
S, = f(me~l SEMA, 5 ViV,
RSI._|,RSI,_, ,RSI,_5,BB,_|,BB,_,,
MACD, | ,MACD, , ,CMF,_,,CMF,_,)
We define the short term as 2-3 weeks. The last 3-4 years
have shown that investment strategies have to change from
long to short term, if the economy is in the recession. This
move would save the investors from long term loses. For
example, more than 90 percent of the companies traded in

NASDAQ have lost at least half of their market
capitalization in the last 3 years. Because of these
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difficulties, we focus on short term prediction. We used the
daily stock prices of 10 companies traded on NASDAQ,
The average training set contains 2500 observations and
testing/validation set consists of 50 examples.

The relationship between stock price and these
indicators are highly nonlinear and they are also correlated
with each other. Instead of parametric models, non
parametric data driven models, such as SVR and MLP will
be applied with different settings. We have used two pre
processing techniques and two heuristic model to apply
SVR and MLP networks. Comparison of MLP and SVR
are given in terms of the mean square error (MSE),

Two different comparisons are performed. The first
comparison is to compare input selection processes.
Determining the influential inputs for stock price
forecasting is very crucial. In this point of view, we
compare kPCA, factor analysis and two heuristic
techniques for their out of sample performance. The
performance is defined through the mean square error
{MSE). Next, SVR and MLP networks are compared with
each other. Since these two techniques have some free
parameters, one has to chose the optimal or near optimal
parameters. For example, for the SVR algorithms, we need
to decide what kind of kemel function is good. After the
selection of the kernel function, parameters of this function
are also determined. In this study, we use a radial basis
kernel function. In order to determine the free parameters,
trade-off value and width (o), 10 fold cross validation
technique has been applied. After performing cross
validation, we have decided that C = 1000 and o = 50.

TABLE L.

MEAN SQUARE ERROR OF INPUT SELECTION ALGORITHMS
FOR SVR. BOLD MSES ARE THE BEST VALUES FOR EACH
STOCK. (KPCA: KERNEL PRINCIPAL COMPONENT ANALYSIS,
FAC: FACTORIAL ANALYSIS)

MODELS

Stock kPCA | FAC HI H2

MSFT 0.555 | 92.678 | 2494 | 16.697
YAHOO | 5.662 { 28.625 | 22.271 | 61.258
RMKR 0.019 0.196 | 0.006 0.027
INTEL 0.507 5.588 | 0.429 2.508
INCY 1.202 18.207 0.761 3.347
INAP 0.301 8717 | 0.126 0.751
EBAY 57.906 | 456.941 | 64.772 | 96.638
AMZN 35886 | 27.021 | 34578 | 40.813
AMGN 1.538 6.969 1864 | 3458
AMCC 0364 | 81.995 1.193 2.435

Table I shows the MSE for each input selection algorithms
for 10 companies traded in NASDAQ stock exchange
market. As it can be seen from table 1, KPCA and HI
models are superior to other two models. Table 2 shows the
best models for MLP networks.

When we compare each preprocessing techniques with
SVR and MLP networks, we have come out with the
following interesting results. MSE errors for kPCA
technique from tables 1 and 2 show that SVR method has
better performance than MLP networks. This can be
explained with the theory behind the kPCA and SVR
method since these two methods are based on the structural
risk minimization principle. On the other hand MLP
networks use the empirical nsk minimization principle.
When we look at the performance of factorial analysis
technique we see that the MLP networks ocutperforms the
SVR method. The results of MSE for H1 and H2 model
suggest that MLP networks have better performance than
SVR technique.

TABLE II.
MEAN SQUARE ERROR OF INPUT SELECTION ALGORITHMS
FOR MLP NETWORKS. BOLD MSE ARE THE BEST VALUES FOR

EACH STOCK.
MODELS

Stock | kPCA FAC H1 H2

MSFT 2,590 0.261 .990 0.204
YAHOO 8.264 1.501 1.117 1.106
RMKR 0.015 0.005 0.006 0.004
INTEL 0.688 0.465 0.434 0.374
INCY (.455 0.153 0.570 0.113
INAP 0.887 0.135 0.037 0.027
EBAY 91.182 30.858 46.281 24.666
AMZN 26.899 3.647 3.094 1.950
AMGN 1.628 1.114 1.449 1.161
AMCC 2434 0.968 (.424 0.175

In order to determine the number of neurons, some
heuristic algorithms can be applied such as genetic
algorithms. The number of neurons is could be selected as
one half to three times the number of inputs [23].

Different network structures have been applied to these
models. There are two problems with the backpropagation
algorithm. BP algorithm converges to a local minimum.
Secondly, the overfitting problem may be seen if the
numbers of neurons are increased more than the network
needs. We have performed cross validation algorithm to
find the number of neurons in hidden layer. Multiple runs
have been performed in order to find a better results for
each networks. Table 2 shows the best results for each
stock and model.

V. CONCLUSION

In this study, we used the kPCA analysis and factorial
analysis as preprocessing or input selection techniques for
SVR and MLP networks. kPCA and factor analysis are
used to identify influential technical indicators. Two
different models are used fo explain the relationship
between stock price and technical indicators. This study
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shows that SVR and MLP techniques are sensitive to the
preprocessing techniques.

Our motivation is to provide a different approach for

input selection in stock prediction. This study has showed
that the right inputs vary with the preprocessing techniques
and leaming algorithm.
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