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Absfract- Financial time series are complex, non stationary 
and deterministically chaotic. Technical indicators are used 
with Principal Component Analysis (PCA) in order to identify 
the most influential inputs in the context of the forecasting 
model. Neural networks (NN) and support vector regression 
(SVR) are used with different inputs. Our assumption is that 
the future value of a stock price depends on the financial 
indicators although there is no parametric model to explain 
this relationship. This relationship comes from the technical 
analysis. Comparison shows that SVR and MLP networks 
require different inputs. Besides that the MLP networks 
outperform the SVR technique. 
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I. INTRODUCTION 

Technical indicator analysis has attracted many 
researchers from different fields. For example, Ausloos and 
lvanova have investigated the relationship between 
momentum indicators and kinetic energy theory [2]. 
Genetic algorithms have been used with technical indicators 
in order to discover some patterns [ 121. 

One of the goals of financial methods is asset 
evaluation. The behavior of an asset can be analyzed by 
using technical tools, parametric pricing methods or 
combination of these methods. Prediction of financial time 
series is one of the most challenging applications. Since the 
financial market is a complex, non stationary and 
deterministically chaotic system, it is very difficult to 
forecast by using deterministic (parametric) techniques 
because of the assumptions behind the parametric 
techniques. For example, linear regression models assume 
normality, serial correlation etc. Therefore, nonparametric 
techniques such as support vector regression (SVR), neural 
networks ("), and time series models are good candidates 
for financial time series forecasting. Over the past decades, 
neural networks and radial basis function networks have 
been used for financial applications ranging from option 
pricing, stock index trading to currency exchange [3, 6,  8, 
11,211. Neural networks are universal function 
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approximators that can map any nonlinear function without 
any assumption about the data. 

The SVR algorithm that was developed by Vapnik [ S ,  
251 is based on statistical learning theory. In the case of 
regression [1,5,15], the goal is to construct a hyperplane 
that lies "close" to as many of the data points as possible. 
This determines the trend line of training data, hence the 
name support vector regression (SVR). Most of the points 
deviate with at most E precision from the target defining an 
E-band. Therefore, the objective is to choose a hyperplane 
where w has a small n o m  (providing good generalization) 
while simultaneously minimizing the sum of the distances 
from the data points, outside the E -band, to this hyperplane 
[14, 181. 

NN models have been applied to stock index and 
exchange rate forecasting [8, 11,241. SVR has been applied 
to stock price forecasting and option price prediction [21, 
221. Recent papers have showed that SVR outperforms the 
MLP networks [19, 221. This can be explained with the 
theory of SVR. SVR has a small number of free parameters 
and is a convex quadratic optimization problem. We will 
compare the SVR with MLP networks for short term 
forecasting. 

The tendency in the field of financial forecasting is to 
use state variables which are fundamental or macro 
economic variables. On the other hand, technical analysis, 
also known as charting, is used widely in real life. It is 
based on some technical indicators. These indicators help 
the investors to buy or sell the underlying stock. Our goal is 
to try to understand the relationship between stock price 
and these indicators. These indicators are computed by 
using stock price and volume overtime. In addition to this, 
more than 100 indicators have been developed to 
understand the market behavior. Identification of the right 
indicators is a challenging problem. Two different 
approaches will be given in this paper. The first approach is 
using Principal Component Analysis (PCA) to identify the 
most important indicators. The second approach is based on 
heuristic models. 

Section I explains the theory of support vector 
regression briefly. In section 11, SVR and PCA are 
discussed. Brief review of technical indicators is given in 
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section 111. In section IV computational experiments and 
comparison of the methods is discussed. Section V 
concludes the paper. 

11. METHOWLOGV 

In this part, principal component analysis and support 
vector regression are explained briefly. 

A. Kemel Principal Component Analysis 

The objective of PCA is to reduce the dimensionality 
of the data set while retaining as much as possible variation 
in the data set and la identify new meaningful underlying 
variables. In addition to PCA analysis, other techniques can 
be applied to reduce to dimension of the data. They can he 
classified into two categories; linear algorithms such as 
factor analysis, and PCA and nonlinear algorithms such as 
kernel principal component analysis that is based on 
support vector machines theory. These methods are also 
called feature extraction algorithms. They are widely used 
in signal processing, statistics, neural computing and 
meteorology [13, 17,201. 

d e  basic idea in PCA is to find the orthonormal 
features sl, s2,. . ., s. with maximum variability. PCA can be 
defmed in an intuitive way using a recursive formulation. 
Define the direction of the first principal component, say,v, 
by 

v, = argmaxE{(vrXF} 
I+' 

where VI  is of the same dimension m as the random data 
vector X Thus the Grst principal component is the 
projection on the direction in which the variance of the 
projection is maximized. Having determined the first k-l 
principal components, the k-th principal component is 
determined as the principal component of the residual: 

In real life, it is hard to find linear relationships. 
Therefore, instead of linear PCA, one can use the nonlinear 
PCA analysis which is called kernel principal component 
analysis (kPCA). kPCA is closely related to the Support 
Vector Machines (SVMs) method. It is useful for various 
applications such as pre-processing in regression and de- 
noising [17]. 

kPCA is a nonlinear feature extraction method. The 
data is mapped from the input space to a feature space. 
Then linear PCA is performed in feature space. The linear 
PCA can be expressed in terms of dot products in feature 
space [17,20]. 

The nonlinear mapping 0 : 8" + F can be defined as 
k ( x , y )  = 0 ( x ) .  O ( y ) ,  in terms of vector dot products. Given 

a dataset, ( x ) ;  =, , in the input space we have the 

corresponding set of mapped dataset in the feature space, 
defined as (.; = O(x. ) )  .The PCA problem in feature 

space F can be formulated as the diagonalization of an 1- 
sample estimate of the covariance matrix[20], defined as 

I 

I ; = I  

(3) 
. .  

where @(xJ are centered nonlinear mappings of input 
variables xi E Bn. The centralization mapping is 
explained in [17]. We need to solve the following 
eigenvalue problem 

(4) av = cv, 
v E F,a 2 o 

Note that, all the solutions Y with 2 0 lie in the 
span of @ ( ~ ~ ) , @ ( x ~ ) ,  ...,@( x,) . Scholkopf et al. [I31 

derived the equivalent eigenvalue problem 
nAa = K a ,  

where a denotes the column vector such that 

v = Cai@(xi) ,  and K is a kernel matrix which satisfies 

the following conditions 

I 

i=l 

The principal components are then given 
hys,  = vTX . In practice, the computation of the vI can be 
simply accomplished using the (sample) covariance 
matrix E{"}= c of the training data. The vi are the 
eigenvectors of C that correspond to the n largest 
eigenvalues of C. 

Then we can compute the k-th nonlinear principal 
component of x as the projection of @(x) onto the 
eigenvector V' 
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Then the first p < I nonlinear components are chosen, 
which have the desired percentage of data variance. By 
doing this, we reduce the size of the dataset. Then, we 
perform support vector regression or the multi layer 
perceptron algorithm on the reduced dataset. 

B. Support Vector Regression (SVR) 

In SVR our goal is to find a function f(x) that has E 

deviation from the actually obtained target yi  for all training 
data and at the same time is as flat as possible. Suppose f(x) 
takes the following form, 

f ( x )  = W . X +  b,wE X b  E X (7) 

Then we solve the following [ 181 : 

Subject to (8 )  
yi - - x i  - b < E  
wxi + b - y i  S E  

In the case of infeasibility we introduce slack variables 
ti, f i  and we solve the following problem: 

I min - I I ( w ~ ~ ~  1 +CE(<,+<~*) 
2 i=l 

Subject to 

(9) 
y i - w x i - b < & + ( ,  

w x i + b - y ,  SE+(;*  

c>o 

where C determines the trade-off between the flatness of 
the f(x) and the amount up to which deviations larger than E 

are tolerated. 
Next we construct the dual problem. The reason is that 

solving the primal problem is more difficult due to too 
many variables. If we use the dual problem formulation, we 
can decrease the number of variables and the size of the 
problem becomes smaller. Specifically, 

Subject to i(Ai-d)=O 
i=l 

4,n; E (0, C )  

Now we consider the non-linear case. First of all, we 
need to map the input space into the feature space and try to 
find a regression hyperplane in the feature space. We can 
accomplish that by using the kernel function k(x>y). Io other 
words we replace k as follows: 

k ( x , y ) = W ) . @ ( ~ )  (11) 
Therefore, we can replace the dot product of points in 

the feature space by using kernel functions. Then, the 
problem becomes 

I i 

i=l i=l 
--Em + 4) +&vi - 4 

Subject to I(& -4) = 0 

4 4  E ( 0 > 0  

At the optimal solution, we obtain 

i (13) 
f ( x ) = ~ ( A - d z ' ) K ( x i , x ) + b  

i=l 

According to [5,18], any symmetric positive semi- 
definite function, which satisfies Mercer's conditions, can 
he used as a kernel function in the SVRs context (see 
equation 5). Different functions which satisfy the above 
conditions can be used as kernel functions. Polynomial and 
RBF kernel functions are very common. 

In order to solve the optimization problem given in 
equation (12), one needs an efficient algorithm. Recently; 
several decomposition techniques have been developed [4, 
9, 10, 16, 251 to solve this large scale problem. Bender's 
decomposition technique and sequential minimum 
optimization technique has been developed to solve linear 
and quadratic programming problems [4,22]. 

111. BRIEF REVIEW OF TECHNICAL 1NDlCATORS 

There are more than 100 technical indicators that have 
been developed to gain some insight about the market 
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behavior. Some of them catch the fluctuations and some 
focus on where to buy and sell. The difficulty with 
technical indicators is to decide which indicators are crucial 
in order to determine the market movement. It is not wise to 
use all indicators in a model. 

Another problem is that those indicators are very 
dependent on an asset price. For example, some indicators 
would provide excellent information for stock A, but they 
would not give any insight information for stock B. Thus, 
we need a tool to choose the right indicators (inputs) for 
each stock. This can he achieved by using data mining 
techniques which have been widely used for other areas. 

Technical indicators can be used for short term and 
long term investment strategies. Usually, three or more 
indicators can he used together for identifying the trend of 
the market. In our heuristic models, we will consider 
several indicators as inputs in the model. Specifically the 
exponential moving average , volume % change, stochastic 
oscillator and relative strength index, hollinger bands width 
and Chaikin Money Flow. These indicators will he 
explained briefly. 

Exponential Moving Average (EMA): The EMA is 
used to reduce the lag in simple moving average. 
Exponential moving averages reduce the lag by applying 
more weight to recent prices relative to older prices. The 
weighting applied to the most recent price depends on the 
length of the moving average [7]. 

Relative Strength Index (Rril): The RSI, developed by 
J. Welles Wilder, is an extremely useful and popular 
momentum oscillator [7]. The RSI compares the magnitude 
of a stock‘s recent gains to the magnitude of its recent 
losses and turns that information into a number that ranges 
from 0 to 100. It takes a single parameter, the number of 
time periods to use in the calculation. Like most true 
indicators, the RSI only needs one stock to be computed. 

Bollinger Band (BB): BB is an indicator that allows 
users to compare volatility and relative prices levels over a 
period of time [7]. The indicator consists of three bands 
designed to encompass the majority of a security’s price 
action. 

Moving Average Convergence Diuergence MACD: It 
is one of the simplest and most reliable indicators available 
[7]. MACD uses moving averages, which are lagging 
indicators, to include some trend-following characteristics. 
These lagging indicators are turned into a momentum 
oscillator by subtracting the longer moving average from 
the shorter moving average. The resulting plot forms a line 
that oscillates above and below zero, without any upper or 
lower limits. MACD is a centered oscillator and the 
guidelines for using centered oscillators apply. 

Chaikin Money Flow (CMF): The CMF oscillator is 
calculated from the daily readings of the 
Accumulation/Distrihution Line. The basic premise behind 
the Accumulation Distribution Line is that the degree of 
buying or selling pressure can he determined by the 
location of the close relative to the high and low for the 

corresponding period (Closing Location Value). There is 
buying pressure when a stock closes in the upper half of a 
period’s range and there is selling pressure when a stock 
closes in the lower half of the period‘s trading range. The 
Closing Location Value multiplied by volume forms the 
Accumulation/Distrihution Value for each period [7]. 

IV. EXPERIMENTS 

The combination of technical indicators and 
fundamentals are used for effective and efficient portfolio 
management. Portfolio managers use different techniques 
to identify which stocks have to put in their portfolio and 
which ones should sell. Generally, they focus on long term 
portfolio management. Here we will focus on short term 
portfolio management. Four different models have been 
used for stock price forecasting. Two of these models are 
based on !@CA and factor analysis. Our goal is to use these 
two techniques as an input selection algorithm for SVR and 
MLP networks. Others are heuristics models which are 
created by personal experience. 

In the first stage of our experiments, our objective is to 
identify the important indicators that are used in SVR and 
MLP as inputs. PCA analysis and factor analysis are 
performed for reducing the size of input. These two 
techniques are used as a preprocessing algorithm. More 
than 100 technical indicators are used in this stage. Two 
different models have been identified, “PCA model” which 
has 7 inputs, and “factor model” which has 30 inputs. Since 
each technique is based on a different theory, the number of 
featuresifactors is also different. 

In addition to these three models, two heuristic models 
are proposed. For the short term price movements, small 
numbers of indicators are used in practice. They give 
valuable information where the stock price will go for the 
next day. Experience with short term trading in the U.S. 
equity market suggests two simple models. In the fust 
model which is called HI,  we assume that the current stock 
price depends on the previous E M ,  Volume, RSI, BB, 
MACD and CMF. 

Sr = f ( E M t - 1 ,  J’-I RSIr-1, BBt-1, 

MCD,&, , CMFr,_,) 
The second model, called H2, is more complicated and 

has more independent variables. This is shown below. 

RSI,-, , RSI,+2, RSI,-, , BB,-, , BB,_2, 
MACD,_, , M C D , + 2 ,  CMF,,, ,CMF,,_,) 
We define the short term as 2-3 weeks. The last 3-4 years 
have shown that investment strategies have to change from 
long to short term, if the economy is in the recession. This 
move would save the investors from long term loses. For 
example, more than 90 percent of the companies traded in 
NASDAQ have lost at least half of their market 
capitalization in the last 3 years. Because of these 

S, = f ( E M , - ,  E M t - 2  Vt-1 V,-2 
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difficulties, we focus on short term prediction. We used the 
daily stock prices of I O  companies traded on NASDAQ. 
The average training set contains 2500 observations and 
testinghalidation set consists of 50 examples. 

The relationship between stock price and these 
indicators are highly nonlinear and they are also correlated 
with each other. Instead of parametric models, non 
parametric data driven models, such as SVR and MLP will 
be applied with different settings. We have used two pre 
processing techniques and two heuristic model to apply 
SVR and MLP networks. Comparison of MLP and SVR 
are given in terms of the mean square error (MSE). 

Two different comparisons are performed. The first 
comparison is to compare input selection processes. 
Determining the influential inputs for stock price 
forecasting is very crucial. In this point of view, we 
compare WCA, factor analysis and two heuristic 
techniques for their out of sample performance. The 
performance is defined through the mean square error 
(MSE). Next, SVR and MLP networks are compared with 
each other. Since these two techniques have some free 
parameters, one has to chose the optimal or near optimal 
parameters. For example, for the SVR algorithms, we need 
to decide what kind of kernel function is good. After the 
selection of the kernel function, parameters of this function 
are also determined. In this study, we use a radial basis 
kernel function. In order to determine the free parameters, 
trade-off value and width (o), I O  fold cross validation 
technique has been applied. After performing cross 
validation, we have decided that C = 1000 and o = 50. 

TABLE 1. 
MEAN SQUARE ERROROF INPUT SELECTION ALGORITHMS 

FOR SVR. BOLD MSES ARE THE BEST VALUES FOR EACH 
STOCK. (KPCA KERNEL PRINCIPAL COMPONENT ANALYSIS, 

Stock 
MSFT 

Table I shows the MSE for each input selection algorithms 
for IO companies traded in NASDAQ stock exchange 
market. As it can be seen from table 1, kPCA and HI 
models are superior to other two models. Table 2 shows the 
best models for MLP networks. 

MODELS 

kPCA 1 FAC I HI I H2 
2.590 I 0.261 I 0.990 I 0.204 

When we compare each preprocessing techniques with 
SVR and MLP networks, we have come out with the 
following interesting results. MSE errors for kPCA 
technique from tables 1 and 2 show that SVR method bas 
better performance than MLP networks. This can be 
explained with the theory behind the kPCA and SVR 
method since these two methods are based on the structural 
risk minimization principle. On the other hand MLP 
networks use the empirical risk minimization principle. 
When we look at the performance of factorial analysis 
technique we see that the MLP networks outperforms the 
SVR method. The results of MSE for HI  and H2 model 
suggest that MLP networks have better performance than 
SVR technique. 

TABLE II  

INAP 

EBAY 

AMZN 

AMGN 

~ ~~~~ 

hlEA\ SQllAKE liRKOK OF INPUTSELECTION AI.GUKITtIL(S 
FOR hlLP NETWORKS. BOLD M S t  A K L  l H l l  HEST VAI 1 F.S TOR 

0.887 0.135 0.037 0.027 
91.182 30.858 46.281 24.666 
26.899 3.647 3.094 1.950 

1.628 1.114 1.449 1.161 
AMCC 

YAHOO 8.264 1.501 1.117 1.106 
0.015 0.005 0.006 0.004 

INTEL 0.688 0.465 0.434 0.374 
0.455 0.153 0.570 0.113 

2.434 I 0.968 I 0.424 1 0.175 I 
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shows that SVR and MLP techniques are sensitive to the 
preprocessing techniques. 

Our motivation is to provide a different approach for 
input selection in stock prediction. This study has showed 
that the right inputs vary with the preprocessing techniques 
and learning algorithm. 
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