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INTRODUCTION

Molecular modeling aims at providing a structural framework to eluci-

date protein function. This process is usually hypothesis-driven: researchers

generate 3D models to interpret available experimental data and to design

further assays to validate them. Over the past years, the improvement in

the scope and reliability of protein structure prediction has been paralleled

by the growing number and variety of its valuable applications in synergy

with wet lab experiments. Computational models—typically derived from

template-based techniques—are now commonly used to identify key func-

tional amino acids and can contribute to more advanced analyses, including

drug discovery, dissection of protein interactions, and protein engineering,

just to mention a few applications.1,2

A wealth of easy-to-access prediction tools and model repositories3–5

abound now on the Internet. However, making the most effective use of 3D

models inevitably requires trustworthy a priori estimates of their divergence

from the native conformation. Nowadays this information is rarely supplied

to the end users, who are left to decide by themselves whether a model is

suitable for their specific problem.

Effective tools for this task would be instrumental for the development

and improvement of fold recognition methods, fragment assembly

approaches, and meta-predictive systems. In response to these needs, the

bioinformatics community has focused on the Model Quality Assessment

(MQA) problem, i.e., on the possibility to predict the global and local accu-

racy of 3D models when experimental structural data are not yet available.

More than twenty articles have been published on the subject in the last 3

Additional Supporting Information may be found in the online version of this article.

This article is dedicated to the memory of our friend and colleague Angel Ortiz.

The authors state no conflict of interest.

yThese two authors equally contributed to this work.

*Correspondence to: Domenico Cozzetto, Department of Biochemical Sciences ‘‘Rossi Fanelli’’, Sapienza –

University of Rome, Rome 00185, Italy. E-mail: domenico.cozzetto@uniroma1.it.

Received 14 April 2009; Revised 19 June 2009; Accepted 25 June 2009

Published online 14 July 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/prot.22534

Grant sponsor: KAUST; Grant number: KUK-I1-012-43; Grant sponsor: MIUR (FIRB Rete Italiana di Pro-

teomica), EMBO; Grant sponsor: The US National Library of Medicine; Grant number: LM-7085

ABSTRACT

The model quality assessment problem

consists in the a priori estimation of the

overall and per-residue accuracy of pro-

tein structure predictions. Over the past

years, a number of methods have been

developed to address this issue and CASP

established a prediction category to eval-

uate their performance in 2006. In 2008

the experiment was repeated and its

results are reported here. Participants

were invited to infer the correctness of

the protein models submitted by the reg-

istered automatic servers. Estimates could

apply to both whole models and individ-

ual amino acids. Groups involved in the

tertiary structure prediction categories

were also asked to assign local error esti-

mates to each predicted residue in their

own models and their results are also dis-

cussed here. The correlation between the

predicted and observed correctness meas-

ures was the basis of the assessment of

the results. We observe that consensus-

based methods still perform significantly

better than those accepting single models,

similarly to what was concluded in the

previous edition of the experiment.
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years.6 Thus far, physics-based energies, statistical poten-

tials, and machine-learning techniques have been applied

to this challenge with various degrees of success. When

several independent models for the same target protein

are accessible, a consensus approach can be exploited by

scoring each prediction according to its similarity to the

whole collection.

As in other research areas, the objective evaluation of

such predictions is an essential step to identify effective

strategies and assist further progress. The CASP7 organ-

izers recognized the importance of this issue and

launched MQA as a new category of critical judgement

in 2006.7 The Prediction Center website publicly

released the server models submitted for assessment in

the tertiary structure prediction categories. Predictors

were invited to download such models, generate quality

estimates and submit them to CASP before the corre-

sponding experimental structures were available—

according to the deadlines set by the organizers. In

CASP8, predictions were also accepted in a server re-

gime: per-target tarballs containing the 3D server mod-

els were automatically submitted to the registered serv-

ers that had three calendar days to respond with their

estimates. The prediction format for the overall reliabil-

ity of models (QM1) required scores as real numbers

ranging from 0.0 to 1.0—where a higher score corre-

sponds to an estimated better model. A score of 1.0

should correspond to a perfect model. For the per-resi-

due accuracy analysis, scores should report distances in

Angstroms between the corresponding residue Ca atoms

after a sequence-dependent superposition of the 3D

model to the native structure.

CASP8 demonstrated growing interest in the develop-

ment of methods for model accuracy prediction, as the

number of participants almost doubled from the previ-

ous experiment. Forty-five groups (including 30 servers)

submitted predictions for QM1 and 17 of them also

specified local confidence values (QM2). Here, we assess

the performance of these groups, as well as that of the 83

groups participating in the tertiary structure prediction

category and estimating the local correctness of their

own models (QM3).

The assessment described here is based on the correla-

tion between the predicted and experimental accuracy

values for each group, and on the statistical significance

of the observed differences. It should be mentioned that

the CASP8 targets were divided into two groups8:

human/server targets (targets meant for structure predic-

tion by all participating groups) and server only targets.

In the MQA category, groups were invited to submit pre-

dictions for both types of targets.

MATERIALS AND METHODS

The Protein Structure Prediction Center website pro-

vides open access to:

1. the server models—35,882 altogether for 121 CASP8

targets9—released for quality prediction—at http://

www.predictioncenter.org/download_area/CASP8/server_

predictions/

2. the overall and residue-based reliability estimates

submitted by participating groups—at http://predic-

tioncenter.org/download_area/CASP8/predictions/QA.

tar.gz and http://predictioncenter.org/casp8/qa_analysis.

cgi

3. the global and local accuracy scores in terms of GDT-

TS values and distances between the corresponding

residues in the target and the model resulting

from optimal LGA10 superposition—at http://www.

predictioncenter.org/casp8/results.cgi

4. the results of the correlation analysis between the pre-

dicted and observed deviation of the models from the

experimental structures—at http://predictioncenter.

org/casp8/qa_analysis.cgi

5. the 3D models submitted for targets assigned to

the TBM category—at http://predictioncenter.org/

download_area/CASP8/predictions/

6. the list of group IDs used for blind assessment and the

corresponding group names—at http://predictioncenter.

org/casp8/docs.cgi?view5groupsbynumber

The authors of Ref. 11 kindly supplied their estimates

for the modeling difficulty of each target.

Detailed statistical analyses of the results were per-

formed using in-house R12 scripts.

The application of Fisher’s transformation preceded

the statistical comparison between two correlation coeffi-

cients coherently with standard statistical practice.13 The

equation

z 0 ¼ ðlnð1þ rÞ � lnð1� rÞÞ�0:5

defines the relationship between Pearson’s r and a nor-

mally distributed variable z0 with variance s2 5 1/(n2 3),

where n is the number of observations. Two correlation

coefficients r1 and r2 can be converted into the corre-

sponding z1
0 and z2

0, whose difference is normally distrib-

uted with variance s2 5 1/(n12 3) 1 1/(n22 3)—where

n1 and n2 represent the number of models evaluated by

the two predictors. The p-value associated with |z1
0 - z2

0|
in the standard normal probability table is an estimate of

the likelihood that the difference between r1 and r2 is

statistically significant.

BLAST/LGA14 is a naı̈ve predictor that assigns a confi-

dence index to a model on the basis of its structural

divergence from the most closely related known protein

structure detectable by standard sequence analysis. Specif-

ically, it first searches the nr protein database15—frozen

at the release date of the corresponding target—for the

sequence of the protein of known structure that is most

similar to the target by running at most five PSI-
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BLAST16 iterations with default parameters. Then it

superimposes the selected structure onto the input pro-

tein model by running LGA with default parameters in

sequence independent mode. Finally, the resulting LGA_S

score is divided by 100 to obtain a number between 0.0

and 1.0.

RESULTS AND DISCUSSION

The correlation between the predicted and observed

correctness values forms the basis of the scoring func-

tions adopted to rank the groups. Ideally, prediction

methods should give estimates that are linearly correlated

to the experimentally observed accuracies of the models.

Under such assumptions, Pearson’s r coefficient is a sen-

sible choice to evaluate group performance. However,

Pearson’s r also assumes normally distributed data—

which is not always the case—hence, distribution-free

measures such as Spearman’s q or Kendall’s s could be

preferable. We analyzed the data using both parametric

and nonparametric inferential statistical methods and

verified that choice of the association measure has only

marginal effects on the evaluation results (Table SI in

Supporting Information). In the following, we use Pear-

son’s r for data analysis.

QM1: global accuracy of models

The distributions of Pearson’s r were first calculated

for each target separately to test the ability of methods to

predict quality on a relative—i.e., protein-dependent

scale. Target-based r distributions of 108/121 turned out

to be normal after visual inspection and quantitative Sha-

piro-Wilk tests17 at the 0.01 significance level.

The results obtained by each group for each target

were converted into Z-scores. Negative values were set to

zero, and the performance of each group was measured

by the average of such modified Z-scores. The choice of

neglecting negative Z-scores is meant not to penalize

groups that, by attempting novel and riskier methods,

might obtain negative scores in some cases. We verified

that the overall conclusions were not affected by this

choice.

Figure 1 shows the scores for all 45 predictors on the

whole set of targets, while Supporting Information Table

SII reports the average correlation coefficients for each

group assessed. Different from CASP7, there is no clear

gap between the scores of the better performing methods

and the others, the distribution being rather smooth. The

paired Student’s t-test on the common set of predicted

models (Table I) was used to assess the statistical signifi-

cance of the observed differences between groups. The

top-ranked four predictors (239 - Pcons_Pcons, 31 -

ModFOLDclust, 56 - SAM-T08-MQAC, and 27 -

QMEANclust) appeared to perform better than the

remaining ones and to be indistinguishable from each

other.

The next step was to analyze the performance of the

groups for the TBM and FM target categories separately.

The CASP target classification is obviously domain-based

while quality predictions are assigned to whole protein

chains, therefore, we took into consideration 114 targets

that either are single domain or whose domains belong

to the same prediction category. We included in the

TBM class the targets that were in both the TBM and

FM category.18 The breakdown of the predictor perform-

ance by structure prediction category reveals that the

ranking in Figure 1 basically mirrors the one for the

TBM targets (data not shown). This is easily explainable

since there are only four FM targets in the resulting data-

set; for this reason no conclusion can be derived about

putative differences between the performance of methods

for the FM category.

The target-by-target analysis of the correlation

described above does not reflect the predictor ability to

assign an absolute estimate to a model that would permit

to compare the expected quality of models for different

proteins. For this purpose, we repeated the analysis by

pooling all models together. In the context of the global

Figure 1
Scores for individual groups in the QM1 target-based prediction

category.
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correlation analysis, we followed the well-established pro-

cedure to assess the statistical significance of the differ-

ence between two correlation coefficients, by making use

of their Fisher’s z0 transformation. Figure 2 reports the

results of this study and indicates that Group 31 (Mod-

FOLDclust) outperforms all the others, including the

next best scoring ones 56 (SAM-T08-MQAC), 27

(QMEANclust), 453 (MULTICOM), and 239 (Pcons_P-

cons). This difference is statistically significant (Table II).

For each group, we also assessed the difference in qual-

ity between the top-ranked model(s) for each target and

the actual best one(s). In particular, for each single-do-

main target we computed the average GDT-TS difference

(DGDT)14 between the rank-one model(s) of a group

and the most accurate one(s). Figure 3 reveals that, in

general, the predicted best model might be rather far

from the actual most reliable one. The mean loss in accu-

racy varies from 3.51 to 43.55 GDT-TS units for all pre-

dictors across all targets. Groups 239, 31, 56, 27, and 453

generally attain DGDT values that are lower than the av-

erage, yet none of them can consistently select the best

model for all targets.

QM2: residue-level accuracy of models

Seventeen groups submitted confidence estimates at

the residue level, and we evaluated the correlation

between such values and the distances in Angstroms

between the predicted and observed positions of each Ca
after optimal sequence-based superposition of targets and

models. Predictions for 77 models—approximately 0.21%

Table I
Statistical Comparisons Among the Top 12 Groups Whose Global Quality Estimates Were Assessed on a Per Target Basis

239 31 56 27 453 20 379 273 57 407 293 134

239 121 120 121 120 121 120 118 120 119 77 117
35,808 34,815 35,177 34,861 35,116 35,203 34,045 22,040 35,231 23,082 34,065

31 0.001 120 121 120 121 120 118 120 119 77 117
34,839 35,183 34,861 35,116 35,228 34,052 22,041 35,255 23,101 34,072

56 0.004 20.004 120 120 120 120 117 120 119 76 116
34,198 34,165 34,148 34,541 33,207 21,755 34,559 22,302 33,230

27 0.014 0.014 0.016 120 121 120 118 120 119 77 117
34,311 34,565 34,592 33,546 21,885 34,608 22,606 33,569

453 20.024 20.024 20.026 20.009 120 120 117 120 119 76 116
34,844 34,551 33,267 21,816 34,594 22,437 33,286

20 0.035 0.034 0.036 0.022 0.01 120 118 120 119 77 117
34,534 33,518 21,816 34,577 22,706 33,537

379 20.031 20.032 20.028 20.015 0.005 0.005 117 120 119 76 116
33,458 21,835 34,942 22,809 33,478

273 20.034 20.035 20.035 20.023 0.015 20.002 0.006 117 116 74 117
21,172 33,491 21,860 33,794

57 0.048 20.05 20.053 20.037 0.023 20.008 0.034 0.039 119 76 116
21,862 13,923 21,195

407 20.068 20.069 20.065 20.047 0.033 20.023 20.037 20.023 20.02 76 115
22,819 33,511

293 20.063 20.063 20.058 20.045 0.028 20.027 0.045 20.037 20.018 0.012 74
21,862

134 0.056 20.056 20.058 20.045 0.035 20.024 0.027 0.022 0.013 20.004 20.017

Results of the paired t-tests. The upper right part of the table contains the numbers of common targets and models, respectively. Estimated differences in the means of

Pearson’s correlation coefficients are in the lower left half. Gray cells highlight pairs of statistically indistinguishable groups at the 1022 significance level.

Figure 2
Scores for individual groups in the QM1 prediction category when the

predictions for all targets are pooled together.
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of the whole decoy set size—were submitted by less than

7 groups, so they were not considered further.

For each server model we computed the Pearson’s r

coefficients and the corresponding Z-scores. The final

score of each predictor was determined by the average Z-

score over the set of predicted models—after replacing

negative values with 0s (Fig. 4). The statistical signifi-

cance of the results was assessed by paired Student’s t-

tests on the common residues of the common models

(Table III).

It is rather apparent that Group 27 (QMEANclust)

outperformed all other predictors in this task.

As in QM1, we also analyzed the results separately for

different target categories (data not shown) and the over-

all ranking, including the good performance of Group

27, did not change.

Benchmark calculations for QM1

Previous CASP editions proved that template-based

techniques cannot improve consistently over the best

available single template structure.19–22 In other

words, the overall reliability of comparative models is

likely to decrease as they depart from the starting tem-

plate structure. The BLAST/LGA naı̈ve predictor

exploits this observation and infers the global accuracy

of a single TBM model as a function of its distance

from the best template found by sequence searching

Figure 3
DGDT values as a function of the target modeling difficulty. For each target, vertical bars represent the range of DGDT values on a logarithmic

scale, while the black segments connect the means. Results of groups 239 (black triangles), 31 (red crosses), 56 (green circles), 27 (yellow squares),

and 453 (blue diamonds) are shown.

Table II
Statistical Comparisons Among the Top 12 Groups in the Global Assessment of their QM1 Predictions

31 56 27 453 239 379 20 273 251 364 434 134

31 35,833
56 26.637 34,844
27 8.186 1.522 35,183
453 29.51 22.853 21.338 34,861
239 29.837 23.133 21.608 0.261 35,808
379 215.831 29.096 27.589 6.231 26.011 35,541
20 19.782 13.04 11.547 10.184 9.991 3.991 35,116
273 228.848 222.082 220.619 19.242 219.11 13.127 29.132 34,347
251 229.02 222.263 220.802 19.427 219.296 13.322 29.332 0.212 34,151
364 230.174 223.856 222.49 21.203 221.083 15.494 211.758 23.211 23.009 26,662
434 233.842 227.001 225.542 24.146 224.046 218.02 213.986 24.776 24.555 21.234 35,138
134 244.211 237.354 235.93 34.521 34.49 28.491 224.458 15.26 15.027 11.064 10.58 34,082

Results of the Z tests. Pearson’s coefficients for all participants were computed and the distributions of their corresponding Fisher’s z0 compared. Diagonal entries con-

tain the number of models for which the corresponding group submitted QM1 predictions. Values of the z statistics are shown in the lower left cells. Gray cells highlight

pairs of statistically indistinguishable groups at the 1022 significance level.
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approaches. For 56 single-domain targets, PSI-BLAST

detected at least one similar sequence with known struc-

ture and BLAST/LGA produced 14,964 QM1 estimated

values. To compare these naı̈ve predictions with the offi-

cial groups’ ones in an unbiased manner, BLAST/LGA

correlation values were excluded from the computation of

the Z-scores. The Z-scores for this method were com-

puted from the average and standard deviation values of

the Pearson’s r distributions for the 45 official predictors.

BLAST/LGA performs worse than the highest scoring

methods, but is statistically indistinguishable from most

of the remaining ones, as Figure 5 and Supporting Infor-

mation Table SIII document.

The most effective methods in CASP7 were consensus-

based approaches—such as Pcons23—and the assessment

team highlighted the need to improve tools able to assign

reliability scores to single models.14 Once again, all top

performing methods with the possible exception of

Group 293 (LEE SERVER) rely on the identification of a

consensus among the models. Yet, further investigations

prove that such methods tend to achieve results similar

to single model approaches as the 3D modeling difficulty

of the corresponding target sequence increases (Sup-

porting Information Figure S1).

QM3: self assessment of residue-level
accuracy

In CASP, modeling groups have long had the possibil-

ity of labeling predicted residues with error estimates

Table III
Statistical Comparisons Among the Top 12 Groups Involved in the QM2 Test

27 364 251 239 453 20 31 273 52 134 469 90

27 25,648 33,949 35,106 34,295 34,549 35,112 33,671 34,788 33,412 34,050 34,811
4,070,408 6,198,283 6,565,569 6,420,411 6,484,898 6,568,180 6,238,654 6,519,558 6,220,321 6,295,164 6,516,234

364 20.021 25,479 26,190 25,428 25,683 26,178 25,433 25,854 25,171 25,452 25,530
4,074,294 4,190,792 4,018,366 4,083,117 4,156,097 4,023,282 4,142,180 4,004,835 4,045,303 4,079,660

251 20.022 0.006 34,075 33,273 33,527 34,081 32,932 33,758 32,673 33,037 33,780
6,216,388 6,071,469 6,135,956 6,217,022 5,995,207 6,170,390 5,976,874 5,954,250 6,167,053

239 20.04 0.023 0.019 35,111 35,366 36,029 34,576 35,705 34,314 34,920 35,262
6,641,580 6,706,331 6,811,422 6,475,790 6,817,926 6,457,343 6,575,809 6,723,376

453 20.035 20.013 20.013 0.001 35,094 35,111 33,828 34,784 33,565 34,016 34,396
6,641,955 6,643,434 6,323,811 6,592,852 6,305,132 6,358,130 6,510,402

20 0.053 0.04 0.031 0.014 0.015 35,366 34,079 35,037 33,816 34,263 34,650
6,708,185 6,388,004 6,657,573 6,369,325 6,420,763 6,574,889

31 20.083 0.065 0.061 0.043 0.045 20.029 34,460 35,707 34,198 34,895 35,246
6,455,603 6,764,161 6,437,156 6,521,254 6,669,349

273 20.099 0.067 20.078 20.059 0.061 20.045 20.017 34,293 34,328 33,577 33,893
6,427,197 6,459,062 6,220,435 6,349,656

52 20.117 0.104 0.097 0.077 0.075 20.06 20.033 0.017 3,403,123 34,584 34,929
6,408,750 6,523,958 6,674,189

134 20.184 0.157 0.164 0.146 0.149 20.134 20.104 0.087 20.069 33,320 33,634
6,202,333 6,331,323

469 20.301 20.285 20.282 20.263 20.263 20.247 20.221 20.203 20.187 20.116 34,196
6,445,339

90 20.293 0.279 0.274 0.253 0.256 20.24 20.21 0.191 20.176 0.105 20.014

Results of the paired t-test. Pearson’s coefficients for residues of common models were computed and their distributions compared. Cells in the upper left part of the

table show the numbers of common models and residues, respectively. Estimated differences in the means of Pearson’s r are in the lower left half. Gray cells highlight

pairs of statistically indistinguishable groups at the 1022 significance level.

Figure 4
Scores for individual groups in the QM2 category.
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through the B-factor field in the TS format. In CASP7,

the analysis of the QM3 results was included in the TBM

assessment,22 while in this edition it is described in this

article.

Eighty-three groups submitted at least two different

values in the B-factor column for more than 10 targets

for a total of 1,333,541 residue-level error estimates.

However, a high proportion of such Ca error estimates

turned out to represent physically unrealistic distances.

We applied a filter to the 3D predictions discarding those

where less than 90% of the values in the B-factor column

were in the range from 0.0 to 10.00. This step reduced

Figure 6
Scores for the prediction groups in the QM3 category where predictors

provide residue-based error estimates for their own models. Only

groups with a positive score are shown.

Table IV
Statistical Comparisons Among the Top 12 Groups Assessed in QM3

379 153 297 425 318 95 193 85 172 284 354 371

379 14,973
153 23.408 542
297 23.408 0 542
425 220.234 1.493 1.493 21,944
318 222.59 2.914 2.914 25.55 11,853
95 224.691 3.006 3.006 26.395 20.272 15,933
193 29.583 3.935 3.935 10.855 3.734 3.764 19,569
85 228.808 4.03 4.03 210.777 3.984 4.021 20.433 16,363
172 26.604 4.276 4.276 10.441 4.516 4.553 1.406 0.993 10,548
284 220.963 4.583 4.583 28.743 4.584 4.559 22.239 21.929 21.132 4435
354 27.64 3.606 3.606 23.426 22.157 22.101 21.312 21.218 20.967 20.556 402
371 232.488 6.785 6.785 218.074 11.965 12.391 29.776 29.176 27.613 24.955 1.245 7922

Results of the Z tests. Pearson’s coefficients for all participants were computed, and the distributions of their corresponding Fisher’s z0 compared. Diagonal entries con-

tain the number of residues in the filtered dataset for which the corresponding group submitted QM3 predictions. Values of the z statistics are shown in the lower left

cells. Gray cells highlight pairs of statistically indistinguishable groups at the 1022 significance level.

Figure 5
Comparison of the BLAST/LGA method (BL) with all prediction groups

submitting global quality estimates for models corresponding to TBM

targets.
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the dataset size to 661,992 error estimates from 60

groups and corresponding to 152 TBM assessment units

for which error estimates were submitted by at least ten

independent predictors.

Groups were scored by the procedure adopted for the

QM1 global correlation test and by receiver operator

characteristic (ROC) curves. For the purpose of ROC

analysis, we tested the predictors’ ability to detect cor-

rectly modeled residues using the same strategy devised

by the CASP7 TBM assessor.22 We considered a modeled

Ca atom to be correct, if it falls within 3.8 Å of the cor-

responding experimental position after optimal sequence-

dependent LGA alignment. Next, for each group we

scaled the estimated errors in [0.0, 1.0] and—by varying

the discrimination threshold across such values—counted

the number of true positives (TP—error estimates less

than or equal to the current threshold and classified as

correct), true negatives (TN—inferred distances greater

than the present cut-off and classified as incorrect), false

positives (FP—error estimates less than or equal to the

actual threshold and classified as incorrect), and false

negatives (FN—predicted misplacements that are greater

than the cut-off but classified as correct). In Figure 9, we

plot the false positive rate (FPR) versus the true positive

rate (TPR), which are defined by the formulas: FPR 5
FP/(FP 1 TN) and TPR 5 TP/(TP 1 FN).

Group 379 (McGuffin) performed significantly better than

the others in the correlation analysis (Fig. 6 and Table IV),

and the ROC analysis (Fig. 7) confirms this finding.

Comparison between CASP8 and CASP7

The comparison of the CASP7 and CASP8 distribu-

tions of correlation coefficients is a basic step in estab-

Figure 7
ROC curves comparing the 3D modeling groups’ ability to identify well

positioned residues in their own predictions. Group 379 (blue line)
achieves the highest area under the curve.

Figure 8
Empirical cumulative distribution functions of Pearson’s r for the QM1 (a) and QM2 (b) experiments. Solid and dotted lines represent CASP7 and

CASP8 data, respectively.
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lishing whether the MQA field is improving. Figure 8

shows the results of this analysis in terms of empirical

cumulative distribution functions that report the propor-

tion of observed Pearson’s r less than or equal to a given

threshold. It is apparent that the fraction of cases where r

is greater than 0.5 has largely increased for both the

QM1 and QM2 experiments in CASP8 with respect to

CASP7.

Such results definitely point to progress in the area,

although the reasons behind it are not clear. Higher cor-

relations in CASP8 might arise as a consequence of genu-

ine method improvements, but they might also reflect a

difference in the difficulty of the test sets used in the two

experiments. Unfortunately, deriving a difficulty scale for

an unbiased comparison of the MQA results in subse-

quent CASP rounds is intrinsically hard. As emerged

from the first two assessments of this prediction category,

the 3D structure of two targets might be roughly simi-

larly difficult to predict11 and yet the difficulty of rank-

ing the accuracy of the collected server models might

substantially differ. Indeed, Figure 4 and Supporting In-

formation Figure S1 demonstrate that the accuracy of

QM1 predictions only weakly correlates with the esti-

mated difficulty of the target 3D prediction.

CONCLUSIONS

The results of the second round of MQA in CASP

highlighted methods that are better in assigning error

estimates at both the residue and global level, and it con-

tributed to develop a robust and sound assessment pro-

cedure. Nevertheless, a few issues remain to be addressed.

The ability to rank models by consensus methods, that

is, to sort a set of models for the same target according

to their quality, has important applications in fold recog-

nition and fragment-based methods for protein structure

prediction, and is extremely useful for meta-predictor

performance. However, it is of very limited usage to the

end users of models, who need to be provided with an

estimate value of a single model or of its regions that can

be, in turn, used to identify the scope of application of

the model itself. Similarly to what was the case in

CASP7, we are forced to conclude that there is still no

reliable tool for this purpose. Once again, therefore, we

urge the community to concentrate their efforts on this

important area.

Another open issue is the detection of progress in the

field. When methods are compared on the same set of

targets—as is the case in CASP—several statistical tools

are available to comparatively evaluate the results, as

shown in this article. How can we reckon the extent of

the advancement made over time? The problem arises

when the task is to compare different approaches on dif-

ferent test sets. At first sight, it might look reasonable to

take into account the specific method used. As an exam-

ple, for a consensus-based method, parameters such as

the distribution and the cluster properties of the different

models could be considered. However, this is still unsatis-

factory when different methodologies need to be com-

pared. This is one problem that the community should

discuss before the next MQA experiment.

We would like to stress once more the relevance of the

MQA experiments in all their flavors. It is one area of

protein structure prediction where success benefits both

developers and users and is particularly important to en-

courage structure prediction groups to provide quality

estimates with their models. We look forward to seeing

more and more protein structure modeling resources

including accuracy estimates with their results.
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