
Sorting by Placement and Shift

Sergi Elizalde ∗ Peter Winkler †

Abstract

In sorting situations where the final destination of each item

is known, it is natural to repeatedly choose items and place

them where they belong, allowing the intervening items to

shift by one to make room. (In fact, a special case of this

algorithm is commonly used to hand-sort files.) However, it

is not obvious that this algorithm necessarily terminates.

We show that in fact the algorithm terminates after at most

2n−1−1 steps in the worst case (confirming a conjecture of L.

Larson), and that there are super-exponentially many per-

mutations for which this exact bound can be achieved. The

proof involves a curious symmetrical binary representation.

1 The Problem

Suppose that a permutation π ∈ Sn is fixed and repre-
sented by the sequence π(1), . . . , π(n). Any number i
with π(i) 6= i may be “placed” in its proper position,
with the numbers in positions between i and π(i) shifted
up or down as necessary. Repeatedly placing numbers
until the identity permutation is achieved constitutes a
process we call homing. One might imagine that the
numbers are written on billiard balls in a trough, as in
Figure 1 below, where the shift is a natural result of
moving a ball to a new position.

1 23 45 6 78

12

3

456 78

1 2

3

456 78

Figure 1: Two steps in homing.

∗Department of Mathematics, Dartmouth, Hanover NH 03755-
3551, USA; sergi.elizalde@dartmouth.edu.

†Department of Mathematics, Dartmouth, Hanover NH 03755-
3551, USA; peter.winkler@dartmouth.edu.

To be precise, if π(i) > i and i is placed, the
resulting permutation π′ is given by

π′(j) =

π(j) if π(j) < i or π(j) > π(i)
i if j = i
π(j)−1 if i < π(j) < π(i)

and if π(i) < i, we have

π′(j) =

π(j) if π(j) < π(i) or π(j) > i
i if j = i
π(j)+1 if π(i) < j < i

The primary question we answer is: how many steps
does homing take in the worst case?

2 History

Despite its simplicity, homing seems not to have been
considered before in the literature; it arose recently as
a result of a misunderstanding (details below). It is,
of course, only in a loose sense a sorting algorithm at
all, since it requires that the final position of each item
be known, and presumes that it is desirable to sort
“in place.” Thus, it makes sense primarily for physical
objects. Nonetheless, one can imagine a situation where
a huge linked list is to be sorted in response to on-line
information about where items ultimately belong; then
it may seem reasonable to place items as information is
received, allowing the items between to shift up or down
by one. We do not recommend this procedure!

In hand-sorting files, it is common to find the
alphabetically first file and move it to the front, then
find the alphabetically second file and move it to the
position behind the first file, et cetera. This is a (fast)
special case of homing.

Homing was brought to our attention by mathe-
matician and reporter Barry Cipra [2]. Cipra had been
looking at John H. Conway’s “Topswops” algorithm [4],
in which only the leftmost number is placed and in-
tervening numbers are reversed. Topswops terminates
when the 1 is in position, even if the rest of the num-
bers are still scrambled. Seeking to get everything in
order, Cipra considered allowing any not-at-home num-
ber to be placed, again reversing the intervening num-
bers. This algorithm does not necessarily terminate,
however; a cycling example (71325684 → 71348652 →

68 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

56843172 → 52713486 → 52317486 → 71325486 →
71325684) was provided to Cipra by David Callan, of
the University of Wisconsin [1].

When Cipra tried to explain his interest to his
friend Loren Larson (co-author of The Inquisitive Prob-
lem Solver [8]) the latter thought that the intervening
items were to be shifted. Cipra liked the new procedure,
especially as he was able to show it did always termi-
nate, and designed a game around it. The game involved
sorting vertical strips of famous paintings (such as Pi-
casso’s Guernica); Cipra called it “PermutARTions.”
A prototype of the game, renamed “Picture This,” has
since been made by puzzle designer Oskar van Deventer.

The neatest proof known to us that homing always
terminates is due to Noam Elkies [3]. Since there are
only finitely many states, non-termination would imply
the existence of a cycle; let k be the largest number
which is placed upward in the cycle. (If no number is
placed upward, the lowest number placed downward is
used in a symmetric argument). Once k is placed, it can
be dislodged upward and placed again downward, but
nothing can ever push it below position k. Hence it can
never again be placed upward, a contradiction.

3 Outline

In Section 4 we will consider fast homing, that is, the
minimum number of steps needed to sort from a given
permutation π. Among other things we will see that
homing can always be done in at most n−1 steps (with
a single worst-case example), and that there is an easy
sequence of choices which respects that bound.

In Section 5 we prove that homing cannot take more
than 2n−1 − 1 steps; in Section 6, we show that there
are super-exponentially many permutations which can
support exactly 2n−1 − 1 steps.

Finally, in Section 7, we wrap up and conclude with
some open questions.

4 Fast Homing

A placement of either the least or the greatest number
not currently in its home will be called extremal; such
a number i will never subsequently be dislodged from
its home, since no other number will ever cross i on its
way. Hence,

Theorem 4.1. Any algorithm that always places the
smallest or largest available number will terminate in
at most n−1 steps.

Proof. After n−1 numbers are home, the nth must be
as well.

The algorithm which places the smallest not-at-
home number is the one cited above, often used to hand-

sort files. The precise number of steps required is the
smallest j such that the files which belong in positions
j+1, j+2, . . . , n are already in the correct order.

Suppose placements are random, that is, at each
step a uniformly random number is chosen from among
those that are not at home and then placed. Let us
say that a permutation is in “stage k” if k (but not
k+1) of the extremal numbers are home; thus, e.g.,
1,2,3,7,4,6,5,8,9 is in stage 5, since 1, 2, 3, 8 and 9
are home. There is no stage n−1. If π is in stage k,
for k < n, then with probability at least 2/(n−k), the
next placement will leave it in stage k+1 or higher. It
follows that the expected number of placements needed
to move up from stage k is at most (n−k)/2, and thus
the total expected number of random placements needed
to sort a permutation cannot exceed

∑n−2
k=0

1
2 (n−k). We

conclude:

Theorem 4.2. The expected number of steps required
by random homing from π ∈ Sn is at most 1

4 (n(n+1)−
2).

We now return our attention to well-chosen steps,
seeking a lower bound.

Theorem 4.3. Let k be the length of the longest in-
creasing subsequence in π. Then no sequence of fewer
than n−k placements can sort π.

Proof. Otherwise there are k+1 numbers which are
never placed, and thus remain in their original order;
but that order cannot be correct, else it would constitute
an increasing subsequence of length k+1 in π.

Corollary 4.1. The reverse permutation n, . . . , 1 re-
quires n−1 steps.

Since [6, 9] the mean length of the longest increasing
subsequence of a random π ∈ Sn is asymptotically
2
√

n, we can deduce from Theorem 4.3 that a random
permutation requires, on average, at least n−2

√
n steps

to sort.
In general, n minus the length of the longest in-

creasing subsequence is not enough steps to sort π. An
example (the only example for n = 5) is provided by the
permutation 41352, which cannot be sorted using only
two placements.

Theorem 4.4. The reverse permutation is the only
case requiring n−1 steps.

Proof. By induction on n, the n = 1 case being trivial.
If π is not the reverse permutation, there must be i < j
with π−1(i) < π−1(j). Moreover, for n > 2 it cannot be
that the only such pair is i = 1, j = n. Hence either 1 or

69 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

n can be placed still leaving a non-reverse permutation
of the remaining numbers, which can be sorted in n−2
steps by the induction hypothesis.

Existence of a unique worst case (especially this
one) for a sorting algorithm is hardly surprising. When
we instead maximize the number of steps, something
startlingly different takes place.

5 Slow Homing

How long can homing take? It is not hard to verify that
if one begins with the permutation 2, 3, . . . , n−1, n, 1
and always places the left-most not-at-home entry, the
result is 2n−1 − 1 steps before the identity permutation
is reached (via the familiar “tower of Hanoi” pattern).
Larson [5] conjectured that 2n−1 − 1 is the maximum.
Indeed, although many other, more complex, permuta-
tions can also support 2n−1−1 steps, none permit more.

Theorem 5.1. Homing always terminates in at most
2n−1 − 1 steps.

To prove Theorem 5.1 we will require several lem-
mas and some backward analysis. The reverse of hom-
ing, which we will call evicting, entails choosing a num-
ber which is where it belongs and displacing it, that is,
putting it somewhere else, again shifting the interven-
ing values up or down by one. Our objective is then to
show that beginning with the identity permutation on
{1, 2, . . . , n}, at most 2n−1 − 1 displacements are pos-
sible. This is trivial for n = 1 and we will proceed by
induction on n.

Lemma 5.1. After 2n−2 displacements, both 1 and n
have been displaced and will never be displaced again.

Proof. Let us observe first that the numbers 1 and n
can each be displaced only once, since neither can sub-
sequently be shifted back to its proper end. (Equiva-
lently, in the forward direction, each can be placed only
once.)

If after 2n−2 displacements one of these values (say,
the number 1) has never been displaced, then it remains
where it began and played no role whatever in the
process. Hence the remaining n−1 numbers allowed
more than 2(n−1)−1−1 displacements, contradicting the
induction hypothesis.

We now endeavor to show that at most 2n−2 − 1
displacements can take place in the second stage, after
1 and n have been displaced. To do this we associate
with each intermediate state π a code α(π), and with
each code α, a weight w = w(α).

The code is a sequence α = (a2, a3, . . . , an−1) of
length |α| = n−2 from the alphabet {+,−, 0}. Given

a permutation π, recall from above that π(i) represents
the value in the ith position from the left, and therefore
π−1(i) represents the position of the number i. Define
α(π) by putting ai = + if π−1(i) > i, that is, if the
number i is to the right of where it belongs. Similarly,
ai = − if π−1(i) < i, and ai = 0 if π−1(i) = i. Thus, a
number i can be displaced if and only if ai = 0.

Figure 2 shows an example of a permutation and its
code.

1 23 45 6 78

Figure 2: A permutation and its code.

The weight w(α) is defined for codes of all lengths
by recursion. If ai = 0 for each i, we put w(α) = 0.

For each i such that ai = −, let di = i−2; for each
i with ai = +, let di = n−1−i. Thus, di represents the
number of symbols to the left of a − or to the right of
a +.

Let i be the index maximizing di; if there are two
such values (necessarily one representing a − and the
other a +), let i be the one for which ai = −. (We will
see that this choice has no effect.) Let α[i] the code of
length |α|−1 obtained by deleting the ith entry of α.
Then w(α) = w(α[i]) + 2di .

If the code consists only of 0’s and +’s, then
changing the +’s to 1’s gives the binary representation
of w(α). If instead there are no +’s in the code,
then changing every − to a 1 gives the reverse binary
representation of w(α). Thus the code is a sort of
double-ended binary representation of w(α). Figure 3
shows the recursive derivation of w(α) from a sample
code c; the gray arrows point to the entry next to be
stripped.

We next make some elementary observations about
codes and their weights.

Lemma 5.2. The minimum of w(α) over codes α of
length k is 0, for the all-0 code, and the maximum is
2k − 1, for codes of the form +p−q.

Proof. This follows from the fact that during the re-
cursion, in reducing the length of α from k to k−1 the
weight change is at most 2k−1, and achieves that value
only when a − is deleted from the right or a + from the
left.

70 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

w()

=

32+

8

4

2

1

47

w(

w(

w(

w(

w(

)

)

)

)

)

=

+ +

=

32

+ 8+ +

=

32

+ 4+ 8+ +

=

32

+ 2+ 4+ 8+ +

=

32

Figure 3: Derivation of the weight of a code.

Lemma 5.3. Let α = β +p γ −q δ where |β| = |δ|, β
contains no +, δ contains no −, and γ neither begins
with + nor ends with −. Then w(α) = w(βγδ) +
2p+|γ|+q+|β| − 2|γ|+|β|.

Proof. Immediate from the definition of w(α), since the
indicated blocks of +’s and −’s will be eliminated before
any other entries.

Corollary 5.1. The definition of the weight of a code
does not depend on how ties are broken when di = dj.

Proof. If in the code α di = dj , where ai = + and
aj = −, and i < j, then the situation is as in Lemma 5.3
and, irrespective of the tiebreak mechanism, the entries
of the blocks will be taken next and the resulting weight
is the same. If i > j (thus all +’s in α lie to the right
of all −’s), the removal of ai has no effect on dj and
vice-versa, so the two operations trivially commute.

Lemma 5.4. For any codes γ and δ, where γ has no +,
w(γδ0) ≤ w(γδ) + 2|δ| − 1.

Proof. Clearly the presence of an extra 0 at the end
increments di by 1 whenever ai = +, so if a + is
stripped from both γδ0 and from γδ the weight change
is doubled for the former. In the extreme case, if
δ = +|δ|, the difference w(γδ0) − w(γδ) is therefore
exactly

∑|δ|−1
j=0 = 2|δ| − 1.

When a − is stripped, the weight change is the
same, so it would appear that w(γδ0) − w(γδ) would
then be smaller. The difficulty is that the incremented
weights may cause symbols to be stripped in a different
order in the two codes.

To fix that problem we employ Corollary 5.1. In
deriving w(γδ) ties are broken in favor of − (as in the
definition of w); when deriving w(γδ0), in favor of +.
This will result in symbols being stripped in the same
order from the two codes, up to the point where all
+’s lie to the right of all −’s. After that, di for a
given symbol is unaffected by stripping symbols of the
opposite sign, so the order becomes immaterial.

Lemma 5.5. Let α be any code, and β = (b2, . . . , bn−1)
the result of changing some ai = 0 to bi = + or bi = −.
Then w(β) > w(α).

Proof. Suppose bi = −; the other case is symmetric
(and uses the reflected form of Lemma 5.4).

The derivations of w(β) and w(α) are the same until
bi is stripped. Let β′ and α′ be the corresponding codes
at that point, right before bi is stripped. We can write
β′ = γδbiε, where γ contains no +, ε no −, and |ε| ≤ |γ|.

We then have

w(β′) = w(γδε) + 2|γ|+|δ| = w(γδ0|ε|) + w(ε) + 2|γ|+|δ|

≥ w(γδ0|ε|+1)− (2|δ|+|ε| − 1) + w(ε) + 2|γ|+|δ|

(by Lemma 5.4)

> w(γδ0|ε|+1) + w(ε) = w(γδ0ε) = w(α′).

Lemma 5.6. Let π be any permutation of {1, . . . , n} in
which π(1) 6= 1 and π(n) 6= n, and let π′ be the result
of applying some displacement to π. Let α = α(π) and
α′ = α(π′); then w(α′) > w(α).

Proof. A displacement chases a value i away from home,
thus causing the 0 in position i of the code α to become
a + or a −. Assume the latter (the alternative argument
is symmetric). Since the number i is being moved to the
left, other numbers will move right one position or stay
where they are; thus, the other entries of α can change
only from − to 0 or from 0 to +. We care only about
the former possibility, since by Lemma 5.5, changing a
0 to a + can only increase w(α).

However, any change of a − to a 0 in α must have
taken place to the left of the entry ai, because a number
bigger than i but to its left in π cannot get to its home
(to the right of position i) when i is displaced. Again by
Lemma 5.5, we can assume that all the −’s to the left
of ai change to 0. Let j be the position of the rightmost
− to the left of ai in α (if there is no such −, let j = 1).
Let 2k be the contribution of the − in position i in the
computation of w(α′).

If there are any + entries between aj and ai that
are stripped after the − in position i in α′, then their
contribution to w(α′) is less (by a factor of 2) than their
contribution to w(α). Let ` be the number of such +’s.

71 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

The total contribution of these +’s to w(α′) is at most
2k−1 + 2k−2 + · · · + 2k−` = 2k−`(2` − 1). Thus, the
difference between their contribution to w(α) and their
contribution to w(α′) is at most 2k−`(2` − 1) as well.
On the other hand, the total contribution to w(α) of
the − entries to the left of ai in α is at most 2k−` − 1,
since each adds a different power of 2 less than 2k−`.
We conclude that

w(α′) ≥ w(α) + 2k − (2k−` − 1)− 2k−`(2` − 1) > w(α).

Theorem 5.1 is an easy consequence of Lem-
mas 5.1 and 5.6. In fact nothing prevents us from as-
sociating to each π ∈ Sn a code of full length n, and
applying the above argument to conclude directly that
there can be no more than 2n − 1 displacements. How-
ever, this falls short of the desired result by a factor of 2
(as does an argument based on Elkies’ finiteness proof);
hence the 2-stage argument above.

6 Counting Bad Cases

The proof of Theorem 5.1 tells us somewhat more about
the worst-case structure of eviction, that is, about the
digraph on Sn which boasts an arc from π to π′ when
π′ is among the longest-lived permutations that can
be reached from π by a single displacement. We are
particularly interested in the set Mn of permutations
at maximum distance 2n−1 − 1 from the source (the
identity permutation), since these are the worst-case
starting points for homing. The proof shows that
each permutation in Mn must have a code of the form
+k−n−2−k, but the converse does not hold in general.

Let the height h(π) of a permutation π be the
distance to π from the source in the above digraph
(equivalently, the maximum length of a sequence of
placements from π to the identity). In the rest of the
paper, let τn denote the permutation n, 2, 3, . . . , n−1, 1.

Lemma 6.1. h(τn) = 2n−2.

Proof. The only entries that can be placed in the first
step are n and 1. By symmetry, we can assume that
n is placed first. The steps after that are equivalent to
homing the permutation 2, 3, . . . , n−1, 1 of length n−1.
By Theorem 5.1 and the observation above it, we know
that h(2, 3, . . . , n−1, 1) = 2n−2 − 1.

Lemma 6.2. For any permutation with code α =
+i0k−j, there is a sequence of 2k−1 displacements that
ends in a permutation with code +i0k−1−j+1. More-
over, all the displacements in the sequence are unique,
except for possibly the last one.

Proof. To show existence, we will prove that if

π =
π(1), . . . , π(i+1), i+2, . . . , i+k+1, π(i+k+2), . . . , π(n)

is a permutation with code α (fixed points have been
underlined), we can perform 2k−1 displacements and
end with the permutation that is obtained from π by
transposing the entries π(i+1) and i+k+1. We proceed
by induction on k. The result is trivial for k = 1.
Assume that k ≥ 2. By the induction hypothesis,
we can perform 2k−2 displacements on π to transpose
π(i+1) with i+k. Let π′ be the resulting permutation.
Again via induction, by performing 2k−3 displacements
on π′ we can transpose π′(i+1) = i+k and i+k−1.
If we repeat this process, after 2k−2 + 2k−3 + · · · + 1
displacements we obtain the permutation

π(1), . . . , π(i), i+2, i+3, . . . , i + k, π(i+1), i+k+1,
π(i+k+2), . . . , π(n).

Finally, displacing i+k+1 to position i+1, we obtain

π(1), . . . , π(i), i+k+1, i+2, i+3, . . . , i+k, π(i+1),

π(i+k+2), . . . , π(n)

as desired. The code of this permutation is +i0k−1−j+1.
To see uniqueness, note first that the +’s and −’s

in α = +i0k−j can never be changed by displacements.
Since w(+i0k−1−j+1) = w(+i0k−j) + 2k−1, we have by
Lemma 5.6 that the only way that the code can evolve
from +i0k−j to +i0k−1−j+1 in 2k−1 steps is if the
weight increases by one at each step. This means that
at each step, the leftmost 0 in the code is changed to a −
and the −’s to its left are changed back to 0’s. For a − to
become a 0 in a displacement step, it must correspond to
an entry r in position π−1(r) = r−1. But this condition
can only hold if the sequence of displacements (except
possibly the last one) is the one described above. Note
that the last displacement (of i+k+1) can be done into
any position ≤ i+1, so there are i+1 choices for it.

We will refer to the sequence of 2k−1 displacements
described in the proof of Lemma 6.2 as firing i+k+1 to
the left. If the last displacement (of i+k+1) is done into
position i+1, we call it a short firing of i+k+1 to the
left. In a symmetric fashion, we can define a firing of
i+2 to the right, which is called a short firing if the last
displacement (of i+2) is into position i+k+2. In this
case, the code changes from +i0k−j to +i+10k−1−j .

Lemma 6.3. A permutation belongs to Mn if and only
if it can be obtained from τn by successively applying
n−2 left and right firings.

72 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Proof. Let us first show sufficiency. Note that α(τn) =
0n−2. The first firing transforms this code into 0n−3− or
+0n−3 using 2n−3 displacements. The second firing uses
2n−4 displacements, and so on. After 2n−3+2n−4+· · ·+
1 = 2n−2−1 displacements, we end with a permutation
σ with code +k−n−2−k for some k. By Lemma 6.1,
h(σ) ≥ 2n−2 +2n−2−1 = 2n−1−1, and by Theorem 5.1
this is an equality, so σ ∈ Mn.

Conversely, by Lemmas 5.1 and 5.6, any permuta-
tion of height 2n−1 − 1 has to be obtained from τn by
performing 2n−2− 1 displacements, each one increasing
the weight by one. If the first displacement on τn intro-
duces a − to the code, then the first 2n−3 displacements
must constitute a left firing. Otherwise, either one of
these displacements would increase the weight by more
than one, or a + would be introduced before the code
is 0n−3−, which would cause the weight to increase by
more than one at a later displacement. Therefore, the
first 2n−3 displacements on τn must constitute a right
or a left firing. Repeating this argument, the same is
true for the the next 2n−4 displacements, and so on.

Corollary 6.1. For n ≥ 2, |Mn| ≤ (n− 1)!.

Proof. It follows from Lemma 6.3, together with the fact
that a left (resp. right) firing on a permutation with code
+i0k−j can be done in i+1 (resp. j+1) ways.

Note that a given permutation in Mn may be
obtained through different sequences of firings, so the
actual size of Mn will be less than (n−2)! in general.
We first give an easy lower bound on |Mn|.
Proposition 6.1. |Mn| ≥ 2n−2.

Proof. We show that if we start from τn and perform
only short firings, then no permutation is obtained in
more than one way. To see this, consider

π = π(1), . . . , π(i+1), i+2, . . . , i+k+1,

π(i+k+2), . . . , π(n)

with α(π) = +i0k−n−2−i−k. If we perform a short firing
of i+k+1 to the left, we obtain

π(1), . . . , π(i), i+k+1, i+2, . . . , i+k, π(i+1),

π(i+k+2), . . . , π(n).

Regardless of what short firings we perform after this,
i+k+1 will always remain to the left of π(i+1), and i+2
will always remain to the left of π(i+k+2). However, if
we had instead performed on π a short firing of i+2 to
the right, then we would have obtained

π(1), . . . , π(i+1), π(i+k+2), i+3, . . . , i+k+1, i+2,

π(i+k+3), . . . , π(n),

and any subsequent short firings on this permutation
would preserve the relative position of π(i+1) to the left
of i+k+1, and π(i+k+2) to the left of i+2. It follows
that each of the 2n−2 possible sequences of short left
and right firings that can be applied to τn results in a
different permutation.

This bound can be improved if we allow any firings
to the left but only short firings to the right. Denote
by Bn the nth Bell number, which gives the number
of partitions of the set {1, 2, . . . , n}. The asymptotic
growth of the Bell numbers is super-exponential. More
precisely,

Bn ∼ 1√
n

λ(n)n+1/2eλ(n)−n−1,

where λ(n) = n
W (n) , and W is the Lambert W -function,

defined by W (n)eW (n) = n.

Theorem 6.1. |Mn| ≥ Bn−1.

Proof. Let Pn ⊆ Mn be the set of permutations that
can be obtained from τn by performing a sequence of
n−2 arbitrary firings to the left and short firings to the
right. For a permutation π as in the above proof, a
firing of i+k+1 to the left results in

π(1), . . . , π(s−1), i+k+1, π(s), . . . , π(i), i+2, . . . , i+k,

π(i+1), π(i+k+2), . . . , π(n),

for some 1 ≤ s ≤ i+1. After this firing, any sequence
of firings to the left and short firings to the right will
leave i+2 to the left of π(i+k+2), and will preserve the
fact that i+k+1 lies to the right of π(s−1) (if s ≥ 2)
and to the left of π(s). On the other hand, if we had
instead performed on π a short firing of i+2 to the right,
then any further firings would leave π(i+k+2) to the
left of i+2. Thus, every permutation σ ∈ Pn uniquely
determines the sequence of left and short right firings
that have to be applied to τn in order to obtain σ.

Next we will determine how many such sequences
there are. After performing j left firings and i right
firings on τn, the code of the resulting permutation is
+i0k−j . If we now fire i+k+1 to the left, we have i+1
choices for the position s to which the entry i+k+1
is displaced. Recording a left firing into position s by
Li+1−s and a short right firing by R, each permutation
in Pn can be encoded uniquely as a word of length n−2
on the alphabet {R, L0, L1, . . . } with the restriction
that every occurrence of Ls must have at least s R’s
preceding it, for every s.

We claim that the number of such words containing
k R’s equals the number of partitions of {1, 2, . . . , n−1}

73 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

with k+1 blocks, for every 0 ≤ k ≤ n−2. Here is
a bijection between the two sets. Suppose that after
reading the first m−1 letters of the word we have
constructed a partition of {1, 2, . . . , m} with i+1 blocks
(which we can assume are ordered by increasing smallest
element), where i is the number of R’s read so far. If
the mth letter is an Ls, we add element m+2 to the
(s+1)st block; if it is an R, we put m+2 in a separate
new block. This proves that |Pn| = Bn−1.

It follows from Lemma 6.3 that if we allow arbitrary
right firings and we record a right firing of i+2 into posi-
tion s ≥ i+k+2 by Rs−i−k−2, then every sequence of left
and right firings applied to τn can be encoded as a word
of length n−2 on the alphabet {R0, R1, . . . , L0, L1, . . . }
with the restriction that every occurrence of Ls (resp.
Rs) must have at least s R?’s (resp. L?’s) to its left,
for every s. As mentioned above, different such words
can produce the same permutation, due to the fact that
sometimes left and right firings commute. More pre-
cisely, we have the relations Lt−1Rs = Rs−1Lt for every
s, t ≥ 1. These relations partition the set of words into
equivalence classes, one for each permutation in Mn.
We can select a canonical representative for each class
if we replace each occurrence of Lt−1Rs (with s, t ≥ 1)
with Rs−1Lt, until there are no more occurrences left.
For example, the representative for the class contain-
ing L0R1R0L1R2R1 is R0L1R0R1R0L3, and the corre-
sponding permutation is 7, 6, 8, 1, 3, 2, 5, 4. It is not hard
to see that regardless of the order in which these replace-
ments are made, we end with a unique word where no
Rs with s ≥ 1 is preceded by an L?. We have proved
the following result.

Proposition 6.2. There is a bijection between Mn and
the set Wn of words of length n−2 over the alphabet
{R0, R1, . . . , L0, L1, . . . } satisfying:

1. every occurrence of Ls has at least s R?’s to its left,
for every s,

2. every occurrence of Rs has at least s L?’s to its left,
for every s, and

3. no Rs with s ≥ 1 is immediately preceded by an L?.

For i, j ≥ 1, let fi,j = |{π ∈ Mi+j : α(π) =
+i−1−j−1}|. Let F (u, v) =

∑
i,j≥1 fi,j uivj .

Theorem 6.2. The generating function F (u, v) satis-
fies the following partial differential equation:

F (u, v) =

uv+uv
∂

∂u
F (u, v)+uv

∂

∂v
F (u, v)−u2v2 ∂2

∂u∂v
F (u, v).

Proof. By Proposition 6.2, fi,j is the number of words
in Wi+j with i−1 R?’s and j−1 L?’s. Let Xi,j ⊆ Wi+j

denote this set. We will show that, for i, j ≥ 1 with
i + j ≥ 3, the numbers fi,j satisfy the recurrence

(6.1) fi,j = ifi,j−1 + jfi−1,j − (i− 1)(j − 1)fi−1,j−1,

where we define fi,j = 0 whenever i = 0 or j = 0. The
other initial condition is f1,1 = 1, which corresponds to
the empty word.

Let i, j ≥ 1 with i + j ≥ 2, and let w ∈ Xi,j . If the
last letter of w is an L?, then deleting it we get a word
in Xi,j−1. Conversely, given a word in Xi,j−1, we can
append to it any letter Ls with 0 ≤ s ≤ i− 1 to obtain
a word in Xi,j . This explains the term ifi,j−1 in (6.1).

If the last letter of w is an R?, then deleting it we
get a word in Xi−1,j . For the converse we have to be
a little more careful. Given a word in Xi−1,j , we can
append to it any letter Rs with 0 ≤ s ≤ j − 1 to obtain
a word in Xi,j (this gives the term jfi−1,j), except if
the word in Xi−1,j ends with an L?. In this case, we are
not allowed to append any Rs with 1 ≤ s ≤ j − 1, since
that would violate the third condition in the definition
of Wn. The count the number of forbidden situations,
observe that there are (i − 1)fi−1,j−1 words in Xi−1,j

ending with an L?, and to each one of them we could
append an Rs with 1 ≤ s ≤ j − 1. This is why we
subtract (i− 1)(j − 1)fi−1,j−1 in (6.1).

Using equation (6.1) for the coefficients of F (u, v)
we get

F (u, v) = uv +
∑

i+j≥3

fi,j uivj

= uv + uv
∑

i+j≥3

ifi,j−1 ui−1vj−1

+ uv
∑

i+j≥3

jfi−1,j ui−1vj−1

− u2v2
∑

i+j≥3

(i− 1)(j − 1)fi−1,j−1 ui−2vj−2

= uv + uv
∑

i,j≥1

ifi,j ui−1vj + uv
∑

i,j≥1

jfi,j uivj−1

− u2v2
∑

i,j≥1

ijfi,j ui−1vj−1

= uv+uv
∂

∂u
F (u, v)+uv

∂

∂v
F (u, v)−u2v2 ∂2

∂u∂v
F (u, v).

Note that |Mn| is the coefficient of tn in
F (t, t). The first few values of this sequence are
1, 2, 5, 16, 62, 280, 1440, 8296, 52864,

7 Conclusions

The “homing” sort proposed by Cipra and Larson is a
natural way to put a permutation in order, and does

74 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

work—eventually. While n−1 well-chosen steps will
always succeed (with only one worst-case permutation),
poorly-chosen steps lead—for super-exponentially many
permutations of {1, . . . , n}—to the precise maximum
number of steps, namely 2n−1 − 1.

The asymptotic behavior of the number of worst-
case permutations seems to be strictly between factorial
growth and the growth of Bell numbers. If Figure 4 we
have plotted the graphs of (n − 1)!1/n, |Mn|1/n, and
B

1/n
n−1, for n ≤ 80. It is known that (n− 1)!1/n ∼ n

e and
B

1/n
n−1 ∼ n

e W (n) , where W is the W -Lambert function.
Thomas Prellberg [7] conjectures that |Mn|1/n ∼ n

2e . He
argues that when i ≈ j, (6.1) suggests that fi,j can be
approximated by gi+j , where gn satisfies the recurrence

gn+1 = n gn − n2

4
gn−1,

from where the asymptotic behavior follows.

5

10

15

20

25

10 20 30 40 50 60 70 80

x

Figure 4: The graphs of (n−1)!1/n, |Mn|1/n, and B
1/n
n−1,

from top to bottom.

We leave the calculation of the exact number of
worst-case permutations, and the precise behavior of
homing (optimal, pessimal or random) on random per-
mutations, to others.

References

[1] D. Callan, communication to B. Cipra, 22 August 2007.
[2] B. Cipra, communication to P. Winkler, 19 February

2008.
[3] N. Elkies, communicated by J. Buhler, 29 January

2008.

[4] M. Gardner, Time Travel and Other Mathematical
Bewilderments, W.H. Freeman & Co. 1987, p. 76.

[5] L. Larson, communication to B. Cipra, 17 August 2007.
[6] B.F. Logan and L.A. Shepp, A variational problem for

random Young tableau, Advances in Math. 26 (1975),
206–222.

[7] T. Prellberg, communication to the authors, 10
September 2008.

[8] P. Vaderlind, R.K. Guy and L.C. Larson, The In-
quisitive Problem Solver, Mathematical Association of
America, 2002.

[9] A.M. Vershik and S.V. Kerov, Asymptotics of the
Plancherel measure of the symmetric group and the
limiting form of Young tableau, Soviet Math. Dokl. 18
(1977), 527–531.

75 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

