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利用蛋白質序列預測雙硫鍵鍵結情形 

學生：陳玉菁                            指導教授：黃鎮剛博士 

國立交通大學 生物資訊所 博士班 

摘      要 

 
 雙硫鍵對於蛋白質結構的穩定與蛋白質功能的調控有很大的影響力。目前蛋

白質序列的資料量遠多於蛋白質結構的數目；因此若能發展計算的方法，從蛋白

質的序列來預測雙硫鍵的配對情形(disulfide connectivity)，將有助於雙硫鍵蛋白

質的研究。然而從蛋白質序列直接預測雙硫鍵配對情形的困難度在於雙硫鍵並不

是序列上兩鄰近半胱氨酸(half-cystine) 的鍵結，而是鄰近空間中兩個半胱氨酸的

鍵結，因此雙硫鍵配對的預測充滿著挑戰。然而科學家們也研究各式各樣的方法

要從蛋白質序列來解開雙硫鍵配對情形的問題，但目前用來預測的方法都局限於

在雙硫鍵個數小於等於五的蛋白質中。因為隨著蛋白質中雙硫鍵個數的增加，雙

硫鍵配對情形的類別變多，預測更為困難。 

 在此研究中，開發了一個預測雙硫鍵配對情形的方法並命名為 S-S 

predictor，其結合了序列比對與機器學習法。一方面利用序列比對的優點，比對

出與欲預測雙硫鍵配對情形蛋白質序列同源性且已知結構的雙硫鍵蛋白；如此整

合了序列與結構的關連性達到預測目的。另一方面，當欲預測雙硫鍵之蛋白質無

法比對出同源性蛋白質時，就使用支持向量法；本研究中找出有用的特徵值來做

預測。例如利用兩兩半胱氨酸周圍胺基酸的演化資訊、兩兩半胱氨酸間在序列上

的距離，還有整條蛋白質序列二十種胺基酸的變化。使用此方法，在序列相同程

度小於 30%的蛋白質作預測，其正確率就雙硫鍵配對情形正確才算正確可達 0.81 

( pQ )，而雙硫鍵的正確率達 0.84 ( cQ )；此正確率超越其它方法，且無雙硫鍵

個數限制。S-S predictor 的網址是 http://140.113.239.214/~ssbond，對研究雙硫鍵

配對情形的使用者來說，是一個方便實用的預測方法。 
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Abstract 
 

 The disulfide bonds have great influences in stabilizing protein structures and 

regulating protein functions. At present there is a gap between protein sequences and 

protein structures; therefore, it would be a great help to predict disulfide connectivity 

from protein sequences. However, the difficulties in predicting disulfide connectivity 

from protein sequences lie in the nonlocal properties of the disulfide bridges that 

involve cysteine pairs at large sequence separation. Although many scientists develop 

various methods to solve this problem; it is still a challenge. These methods are 

limited by the number of disulfide bonds should equal or less than five, because as the 

increase of disulfide bonds in proteins the number of disulfide connectivity grows 

rapidly, and it is more difficult to predict disulfide connectivity. 

 In this research, I developed a method to predict disulfide connectivity and 

named S-S predictor; it combines sequence alignment method and machine learning 

method. The searching dataset of sequence alignment are disulfide proteins with 

known structures; therefore, the advantages of this method integrate sequence and 

structure information to predict disulfide connectivity. On the other hand, when 

homologs of query protein can not be found, the support vector machines are used to 

solve problem. I found some useful feature vectors in this research; such as the 

coupling evolutionary information between the local sequence environments of 

cysteine pairs, the cysteines sequence separations, and the global sequence descriptor, 

amino acid content. The performance of S-S predictor based on a dataset whose 

sequence identity between two proteins is lower than 30% is 0.81 and 0.84 in pQ  

and cQ , respectively. The accuracy of this method is higher than other method, and 

there is no limitation on the number of disulfide bond. S-S predictor is a useful and 

practical tool to study disulfide connectivity, and the website of S-S predictor is 

http://140.113.239.214/~ssbond. 
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Chapter1 
 

GENERAL INTRODUCTION 

 

A protein sequence is constituted by twenty amino acids, and cysteine is one of 

the twenty. The particular side chain of cysteine is thiol group (-SH); however, the 

thiol-from cysteine is the most reactive amino acid under physiological conditions. 

When the oxidation of two thiol groups forms a disulfide bond (S-S) [Fig. 1], it is a 

covalent bond and can connect two distant cysteines. In fact, the formation of 

disulfide bond is one type of post-translational modification, and the protein is in a 

reducing redox environment. Therefore, most proteins containing stable disulfide bond 

in bacteria can be found in extracytoplasmic compartments or secreted into the 

external medium, disulfide proteins in eukaryotic cells are located in compartment 

such as the plasma membrane, the endoplasmic reticulum or secreted into external 

medium. However, oxidants and proteolytic enzyme in the extracellular environment 

can inactivate proteins; disulfide bond can protect proteins from damage and increase 

their half-life by stabilizing protein structure.1 Generally, cysteine residues can be 

classified as free cysteine, ligand-bound cysteine, inter-chain half cystine, and 

intra-chain half cystine. 
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Disulfide bonds have great influences in determining protein structure and 

mediating biological function. In structure, disulfide bonds play a vital role in the 

folding process of many proteins.2,3 Anfinsen reduced whole disulfide cystines of 

pancreatic bovine ribonuclease in vitro, then re-oxidized them, correct disulfide 

connectivity and native structure was restored.4 Since disulfide bond has its specific 

γβ SC −  and γγ SS −  bond lengths, 1.81 and 2.04 Å, respectively, γγβ SSC −−  

bond angle of 104.15°5, and a single disulfide bridge can stabilize the protein by 2-5 

kcal/mol.6,7 According to disulfide bond number and location in a protein, they can 

contribute to the thermodynamic stability of the 3D structure and increase protein 

stability. Because disulfide bonds add strong structural constraints, reduce the search 

in the conformational space.8,9 Proteins containing disulfide bond have diverse 

functions such as hydrolase, inhibitor, hormones and toxins. For example, 

ligand-bound cysteines fix heme in cytochromes.10 Enzyme thioredoxin, which is 

related with photosynthesis, seed germination, transcription, acts as a regulatory 

switch of target proteins by reducing their disulfide bonds.11 Cone snails are venomous 

mollusks and their venoms contain disulfide-rich peptide conotoxin having two 

disulfide bonds.12 Thus, the knowledge of the disulfide connectivity is vital in the 

study of structure and function of proteins. 

At present, there are several kinds of methods, experimental determination and 



 3

machine learning prediction, to solve disulfide connectivity in proteins. The 

experimental methods include chemical methods, nuclear magnetic resonance (NMR) 

spectroscopy, and X-Ray crystallography. From chemical experiments disulfide 

connectivity can be inferred by series chemical reactions. On the other hand, 

structures of disulfide proteins can be resolved by NMR spectroscopy13 and X-Ray 

crystallography; consequently, disulfide connectivity can be detected from protein 

structures. These methods can offer correct and more confident disulfide connectivity. 

Nevertheless, the sequence-structure gap is widened rapidly as a consequence of 

the large-scale whole genome projects. In the absence of an experimentally 

determined structure, protein sequences do not report reliable information relating 

either the oxidized form of cysteines or disulfide bridge locations. Therefore, it is 

necessary and helpful to predict disulfide connectivity from protein sequence by 

machine learning method. First, disulfide connectivity is predicted based on graph 

representation of difulfide bridges, where vertices are oxidized cystines and edges 

represent a pair of cystines calculated from contact potential optimization.14 Next, 

neural network predictions were used to replace contact potential optimization for 

increasing predictive power.15 In a subsequent improvement16, a recursive neural 

networks and evolutionary information were used, and cysteine separation profiles 

(CSPs)17 of proteins were adopted for the prediction of disulfide connectivity. 
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Furthermore, secondary structure information and diresidue frequencies based on 

neural network were designed to solve disulfide connectivity.18 Meanwhile, 

pattern-wise method using SVM based on feature vectors such as coupling between 

the local sequence environments of cysteine pairs, the cysteine separations, and the 

amino acid content were used to predict disulfide connectivity.19 On the other hand, 

sequential distance between oxidized cysteines combined with SVM was also applied 

to determine disulfide connectivity.20 Then, two-level models integrate SVM models 

and cysteins separation search to tackle the problem.21 Nevertheless, SVM coupled 

with genetic algorithm (GA) for feature selection to remove noisy or irrelevant 

features was applied to infer disulfide connectivity.22 Recently, support vector 

regression (SVR) based on multiple sequences feature vectors and predicted 

secondary structures are used to infer disulfide connectivity. The performance of these 

methods ranged from 29% to 74%, and 38% to 79% for pQ  and cQ  respectively. 

In this thesis, I proposed a hybrid system, S-S Predictor, which combines 

PSI-BLAST method and machine learning method to study disulfide connectivity. 

PSI-BLAST method is used to search homologous disulfide proteins with known 

structures; meanwhile, structures record the information of disulfide connectivity and 

in general similar sequences may have analogous structures. Therefore, utilizing 

sequence-to-structure mapping can infer the disulfide connectivity of query proteins. 



 5

However, not all of the query proteins can find homologs, if homologs can not be 

found; feature vectors from protein sequence are prepared to feed into SVM to infer 

disulfide connectivity. The flowchart is shown in Figure 2. 
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Chapter 2 

 

Prediction of disulfide connectivity using blast method
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INTRODUCTION 

 Disulfide bonds are known to play an important structural role in stabilizing 

protein conformations by reducing the number of unfolded conformations.3,23-28 Since 

disulfide bonds impose geometrical constraints on the protein backbones, the disulfide 

patterns may well dictate to a certain degree the overall three-dimensional (3D) 

protein structures. Indeed, recent works29-32 have shown that the disulfide patterns are 

closely related to protein structures. There are a number of efforts8,9,33-40 to model 

disulfide bridges or disulfide-rich systems either from protein sequences or from 3D 

structures. On the other hand, disulfide bonds are more than just inert structural 

motifs – it is known that the functions of some secreted soluble proteins and 

cell-surface receptors depend on the cleavage of their disulfide bonds.1 Therefore, the 

knowledge of the disulfide patterns is vital in the study of structure and function of 

proteins.  

 Nowadays many computational approaches5,14,15,17-19,21,22,41-43 are used in predicting 

disulfide connectivity. They in terms of contact potential14, neural network16,18, support 

vector machine19,22, cysteine separation profile computations17 and genetic algorithms 

methods22 etc., utilize restricted training data for prediction to prevent overtraining. 

Now the better average performance can reach 74% in pQ and 79% in cQ  within B 
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= 2 …522. On the other hand, more and more protein structures are solved in the 

Protein Data Bank (PDB), which is the worldwide depository of information about the 

three-dimensional structures of large biological molecules including proteins and 

nucleic acids.44 When the protein structure is built, disulfide connectivity is also 

determined; therefore, sequence-to-structure mapping techniques can be used to 

identify potential disulfide bonds. The purpose of this research is to take the 

advantages of huge PDB data, and extracts abundant information from it. Hence, most 

information can be used to predict disulfide connectivity, and the performance of this 

work can be complementary with machine learning method.  

 In this work, homologous search tool, PSI-BLAST, was used to search 

evolutionarily related disulfide proteins with PDB structure; further, according to 

evolutionary relationship within PDB proteins infers the disulfide connectivity of 

query proteins. On the other hand, the contribution of residues between disulfide 

cysteines and the geometrical pattern of disulfide cysteines are investigated, too.  

 

 

MATERIALS AND METHODS 

Disulfide connectivity prediction 
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 PSI-BLAST method was used to find homologs of query protein, and the 

searching dataset includes proteins with disulfide bonds from PDB structure. There are 

three kinds of methods to infer the disulfide connectivity based on the PSI-BLAST 

consensus, such as, disulfide pair method which applies cystein pair as a unit, 

disulfide pattern method which uses disulfide pattern as a unit, and a hybrid method 

which combines disulfide pair method and disulfide pattern method to predict 

disulfide connectivity. 

Disulfide pair method 

 I used the notation { }21 ,CC=φ  to denote the cysteine pair comprising 1C  and 

2C . For each cysteine pair, there are two possible bonding states: 211 CC ⊕=σ , 

where ⊕  denotes a disulfide bridge between 1C  and 2C , and 212 CC ⊗=σ , 

where ⊗  denotes no disulfide bridge between 1C  and 2C . In this way, I can define 

the disulfide connectivity patterns in terms of the bonding states. 

 The connectivity matrix M  is defined in terms of the bonding states, qp CC Θ , 

which are predicted by PSI-BLAST method. The initial matrix elements pqM  are set 

to 0, p  and q  that represent the order of cysteines in query protein sequence. The 

rules to construct the matrix are: 

 1+= pqpq MM , if ⊕=Θ      (1) 
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 pqpq MM = , if ⊗=Θ       (2) 

The score TΩ  of the disulfide connectivity pattern T  was computed from M  by 

 ∑
<

=Ω
T

ji
ijT M'         (3) 

Where ∑ '  indicates that any two index pairs ( )ji, , and ( )'' , ji  under the 

summation sign should satisfy the requirements 'ii ≠  and 'jj ≠ . The disulfide 

pattern with the maximal score, i.e. { }TΩmax , is taken as the prediction. 

Disulfide pattern method 

 For a disulfide protein with n  cysteines (i.e., nccc ,...,, 21 ), its disulfide pattern 

is denoted by ( ,..., '' jiji cccc ), where jicc  designates a disulfide bridge formed 

between cysteines i  and j , and the number of possible disulfide pattern is 
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. However, the disulfide 

pattern is taken as a unit and can be directly predicted by PSI-BLAST method. For 

example, homologs of query protein can be found after PSI-BLAST; examine 

homologs to see if disulfide cysteines of the query protein are all aligned with 

disulfide cysteines of homologs. Therefore, the frequency of each disulfide pattern, T , 

was calculated from homologs whose disulfide cysteines can be aligned with all 

disulfide cysteines of the query protein and the frequency was assigned as score TΩ  



 11

of the disulfide connectivity pattern T . Finally, the disulfide pattern with the 

maximal score, i.e. { }TΩmax , was taken as the result. 

Hybrid method 

 This method combines disulfide pair method and disulfide pattern method. When 

the disulfide connectivity of a query protein can be predicted from disulfide pattern 

method, the disulfide pair method will be neglected. On the other hand, if whole 

disulfide cysteines of the query protein are not totally aligned with homologs, the pair 

method uses disulfide pairs to present and predict disulfide connectivity. 

 

Performance Indices 

 To evaluate the performance of the classifiers, use two assessment of 

measures:14,16 Qc , a disulfide-bridged measure of the fraction of the correctly 

predicted disulfide bridges, and Qp , a protein-based measure of the fraction of 

proteins whose global disulfide pattern is correctly predicted. Qp  is the more 

stringent performance index. Specifically, they are defined as 

Qc =
1

Nc

δci
i=1

Nc

∑         (4) 

∑
=

=
p

i

N

i
p

p
p N

Q
1

1 δ        (5) 
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where δci
 is defined for the ith  disulfide bridge as 

δci
=

1, if the ith  predicted disulfide bridge is correct    

0, if the ith  predicted disulfide bridge is incorrect 

⎧ 
⎨ 
⎩ 

, 

and Nc  is the total number of disulfide bridges. Similarly, δpi
 is defined for the ith  

disulfide proteins as 

δpi
=

1, if the predicted connectivity pattern of the ith   protein is correct  

0, if the predicted connectivity pattern of the ith  protein is incorrect

⎧ 
⎨ 
⎩ 

 , 

and N p  is the total number of disulfide proteins. 

 There is another assessment of measure: sQ , a pattern-based measure of the 

number of proteins whose global disulfide pattern is correctly predicted over the 

number of proteins which disulfide connectivities are predicted by PSI-BLAST 

method. It is defined as 

 ∑
=

=
s

s

N

i
s

s
s N

Q
1

1 δ        (6) 

where 
isδ  is defined for the ith  disulfide protein as 

⎩
⎨
⎧

=
incorrect is protein  the of patternty connectivi predicted the if ,0

  correct is protein   the of patternty connectivi predicted the if ,1
th

th

s i
i

i
δ , 

and sN  is the total number of disulfide proteins whose disulfide connectivities are 

predicted by blast method. 
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Datasets 

 There are three datasets used in this research; one named SP39-ID30, another 

named CYS040307-NR, and the other named CYS090506. 

SP39-ID30 

 In order to compare my methods with previous works14,16, I followed the same 

criteria in selecting the sequences from the SWISS-PROT database release No. 39.45 

The constructed dataset contains only the sequences with experimentally verified 

intra-chain disulfide bridge annotations, and excludes the sequences whose disulfide 

bonds are assigned as 'probable', 'potential' or 'by similarity'. I consider the sequences 

with 2 to 5 disulfide bridges ( B = 2,…,5), which account for more than 80% of 

SWISS-PROT sequences. The final dataset contains 482 sequences, of which 168 are 

with two disulfide bonds ( B  = 2), 177 three ( B  = 3), 95 four ( B  = 4) and 42 five 

( B  = 5). Then group the sequences into 4 sets according to their disulfide bond 

number as predicting set– each set was selected in such a way that sequence 

homology among the sets is less than 30%, and the number of sequences of each set is 

approximately equal. Further, these sets are used for the 4-fold cross validation 

procedures as in the previous work.14,16  

 On the other hand, there are two kinds of training set for PSI-BLAST searching 

datasets; one is intra- B  SP39-ID30 and the other is inter- B  SP39-ID30. When the 
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disulfide bond number in training set is the same with predicting set, and these 

training sets are named intra- B  SP39-ID30; however, disulfide proteins with 

B = 2,…,5 in training set is named as inter- B  SP39-ID30.  

CYS040307-NR 

 The cys proteins in CYS040307-NR are extracted from Non-redundant PDB set, 

nrpdb.040307, in National Center for Biotechnology Information (NCBI), and this 

dataset is used in PSI-BLAST method for BLAST database. There are total 91,398 

proteins by chain in nrpdb.040307, after filtering out non disulfide bond proteins and 

selecting non redundant proteins; there are 5,913 disulfide proteins, and is named 

CYS040307-NR. The dataset contains sequence with 1-26 disulfide bonds: 1,850 

sequences with one disulfide bonds ( B = 1), 1,673 two ( B = 2), 983 three ( B = 3), 651 

four ( B = 4), 231 five ( B = 5), 178 six ( B = 6), 138 seven ( B = 7), 75 eight ( B = 8), 

38 nine ( B = 9), 20 ten ( B = 10), 10 eleven ( B = 11), 7 twelve ( B = 12), 3 thirteen 

( B = 13), 5 fourteen ( B = 14), 4 fifteen ( B = 15), 16 sixteen ( B = 16), 16 seventeen 

( B = 17), 4 eighteen ( B = 18), 4 nineteen ( B = 19), 1 twenty-two ( B = 22), 2 

twenty-three ( B = 23), 3 twenty-five ( B = 25), and 1 twenty-six ( B = 26). Figure 3(A) 

shows the distribution of disulfide proteins versus their disulfide bond number B . 

CYS090506 
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 The cys proteins in CYS090506 are extracted from Non-redundant PDB set, 

nrpdb.090506, in National Center for Biotechnology Information (NCBI), and this 

dataset is used in PSI-BLAST method for BLAST database. There are total 81,641 

proteins by chain in nrpdb.090506, after filtering out non disulfide bond proteins; the 

set of 15,252 disulfide proteins, is named CYS090506. The dataset contains sequence 

with 1-26 disulfide bonds: 5,537 sequences with one disulfide bonds ( B = 1), 4,021 

two ( B = 2), 2,054 three ( B = 3), 1,634 four ( B = 4), 635 five ( B = 5), 560 six ( B = 6), 

334 seven ( B = 7), 149 eight ( B = 8), 87 nine ( B = 9), 36 ten ( B = 10), 8 eleven ( B = 

11), 15 twelve ( B = 12), 5 thirteen ( B = 13), 12 fourteen ( B = 14), 7 fifteen ( B = 15), 

37 sixteen ( B = 16), 66 seventeen ( B = 17), 6 eighteen ( B = 18), 1 nineteen ( B = 19), 

1 twenty ( B = 20), 1 twenty-one ( B = 21), 2 twenty-two ( B = 22), 2 twenty-three 

( B = 23), 5 twenty-five ( B = 25), and 1 twenty-six ( B = 26). Figure 3(B) shows the 

distribution of disulfide proteins versus their disulfide bond number B . 

Furthermore, in order to explore the influence of residues nearby cysteines; 

disulfide proteins in CYS090506 were modified and named CYS090506(w), and w 

represents window size around cysteine. In this dataset, the residues within window 

size around disulfide cysteines are kept, and other residues are replaced by symbol X 

in protein sequence. Symbol X has a special function in PSI-BLAST; it is used to 

filter out noisy residues in protein sequence and the coupling scores with other amino 
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acids are assigned in scoring matrix. 

 

RESULTS AND DISCUSSION 

Distribution of cysteine pairs 

 Figure 4 show the distribution of disulfide bridges for 8,,2 …=B  in the dataset 

CYS090506. When the circles locate near the diagonal mean the positions of two 

cysteines are nearby in the sequence, the circles deviate diagonal represent the 

location of cystein pairs are distant in the sequence. The positions of a disulfide pair 

are nearby in the sequence in the case of B  = 2, 5, and 8 [Fig. 4(A, D, G)]; however, 

the positions of cysteines are distant in B  = 4, 6, and 7 [Fig. 3(C, E, F)]. In B  = 3 

[Fig. 4(B)], some locations of cysteine pairs are close in sequence; some are distant. 

In the case B  = 2 [Fig. 4(A)], two of the most popular disulfide pairs are 21CC  and 

43CC , and the dominant disulfide connectivity is [ 4321 , CCCC ]. As the increase of 

disulfide bond number, the distributions of disulfide pairs become more complicated 

[Fig. 4(B-G)]. When B  = 3 [Fig. 4(B)], disulfide pairs 21CC , 43CC  and 65CC  

are the most dominant, 42CC  and 63CC  are second dominant, and the frequent 

disulfide pattern is [ 654321 ,, CCCCCC ]. For B  = 4 [Fig. 4(C)], the disulfide pairs 

72CC  and 81CC  are most dominant ones, and the others are 53CC , 54CC  and 
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64CC , then the most popular disulfide connectivity is [ 64537281 ,,, CCCCCCCC ]. For 

B  = 5 [Fig. 4(D)], most popular disulfide pairs are 109CC , the others are 87CC , 

76CC , 31CC , 41CC , and 65CC ; two dominant disulfide connectivity are 

[ 10987654231 ,,,, CCCCCCCCCC ] and [ 10987654321 ,,,, CCCCCCCCCC ]. In B  = 6 

[Fig. 4(E)], the dominant disulfide pairs are 61CC , 32CC , 124CC , 105CC  , 87CC , 

and 119CC ; dominant disulfide connectivity is  

[ 119871051243261 ,,,,, CCCCCCCCCCCC ]. In the case B  = 7, 42CC , 97CC , 98CC , 

131CC , 123CC , 145CC , 116CC , and 119CC  are dominant disulfide pairs, and 

[ 1089711614512342131 ,,,,,, CCCCCCCCCCCCCC ] and 

[ 1191071261345314281 ,,,,,, CCCCCCCCCCCCCC ] are dominant disulfide connectivities. 

Finally, in the case B  = 8, the dominant disulfide pairs are 32CC , 41CC , 119CC , 

and 1312CC ; dominant disulfide connectivity are 

[ 16141513121011986754231 ,,,,,,, CCCCCCCCCCCCCCCC ], 

[ 15141191281071661353241 ,,,,,,, CCCCCCCCCCCCCCCC ] and 

[ 1312111098147156543261 ,,,,,,, CCCCCCCCCCCCCCCC ].  

 

Disulfide connectivity prediction 

 After homology search, there are three methods to determine disulfide 
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connectivity. One is disulfide pair method uses disulfide pairs to represent disulfide 

connectivity; the other one is disulfide pattern method directly uses disulfide 

connectivity as prediction unit, and finally is hybrid method. The performances of 

three methods are very similar no matter in PQ  [Fig. 5(A)] or cQ  [Fig. 5(B)]; 

however, the hybrid method is equal or slightly better than other methods. Therefore, 

the hybrid method is used for following experiments. It is reasonable use disulfide 

pattern method first, because whole disulfide cysteines are all aligned at once means 

this alignment is conserved and significant. 

 

The disulfide number in searching dataset 

 In order to compare the performance with previous results, four cross-validations 

are used by PSI-BLAST in SP39-ID30. There are two different searching databases, 

one is intra- B dataset where the disulfide number, B , in searching database is the 

same with query proteins. The other is inter- B  dataset whose disulfide number, B , 

in searching database is not only the same with query proteins but also includes other 

disulfide bond number proteins expect query proteins. The average accuracies by 

using intra- B  dataset [Fig. 6(A)] is 0.22 and 0.24, and inter- B  dataset [Fig. 6(B)] is 

0.47 and 0.49 for pQ  and cQ , respectively. There is an over 20% improvement with 
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inter- B  dataset as searching dataset, implying the existence of sub patterns in 

disulfide connectivity. For example the homologs of protein KLK_PIG are list in table 

4, and the native disulfide connectivity of KLK_PIG is [26_42, 121_190, 155_169, 

180_205] where 26_42 represents the positions of cysteines in sequence, 26 and 42, 

forms a disulfide bond. The disulfide connectivity of KLK_PIG is constituted by 

piecing up the sub patterns from homologs; however, the sub patterns of KLK_PIG 

can be classified as four groups such as [121_190, 155_169, 180_205], [26_42, 

121_190, 155_169], [26_42, 155_169], and [26_42]; they are named according to the 

locations of disulfide bonds in the query protein. Some protein structures were further 

examined [Fig. 10(A-C)] based on different sub patterns of query protein. In figure 

10(A), 2kaiA offers a sub pattern [26_42] and the color of the disulfide bond is purple; 

besides, 2kaiB provides a sub pattern [121_190, 155_169, 180_205] and the color of 

disulfide bonds are green, blue and red, respectively. Combination the sub patterns of 

2kaiA and 2kaiB, the native disulfide connectivity of query protein is completed. In 

figure 10(B), the sub pattern of 1zr0C is [26_42, 121_190, 155_169]; the colors of 

these disulfide bonds are purple, green, and blue, and the sub pattern of 1gvzA is 

[26_42, 155_169], and the colors of disulfide bonds are purple and blue. The 

differences between figure 10(A) and figure 10(B) are 2kai contains two protein 

chains, 2kaiA and 2kaiB; moreover, there is an inter-disulfide bond between china A 
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and chain B, and the color of this bond is CPK; also has another intra-disulfide bond 

[94_119] (red) connect loops. Examining figure 10(B), there is only one protein chain, 

1zr0C, and has two additional intra-disulfide bonds (CPK). One locates similarly with 

inter-disulfide bond in 2kai, and the other lies ahead on the big helix; however, there 

is no intra-disulfide bond connect loops which is relative to red disulfide bond in 

figure 10(A). On the other hand, 1gvzA [Fig. 10(C)] involves one protein chain, when 

it compares with figure 2kai; it lack two disulfide bonds green and red in 2kai, and it 

also contains a intra-disulfide bond, which locates similarly with inter-disulfide bond 

in 2kai. Although the number of disulfide bonds and the locations of these disulfide 

bonds within these four protein chains are different, their protein structures are similar. 

It also implies that disulfide connectivity might be modified during evolution to 

maintain the protein structure to keep protein function. 

Another example is HGF_HUMAN; its native disulfide connectivity is [70_96, 

74_84, 128_106, 149_189, 177_201], and the sub patterns are list in table 5; however, 

there are three types of sub patterns, [70_96, 74_84], [149_189, 177_201], and 

[128_206, 149_189, 177_201], and their structures are shown in figure 11(A), (B), and 

(C), respectively. The structure of 2hgfA [Fig. 11(A)] is similar to the upper part of 

1gmnA [Fig. 11(B)]; however, there is a sub pattern in 2hgfA, and there is no disulfide 

bonds in that part of 1gmnA. Furthermore, there is an overlap of sub patterns between 
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1gmnA and 1i71A [Fig. 11(C)], the structure of 1i71A is analogous with the lower 

part of 1gmnA, and there is a one more disulfide bond in 1i71A. Therefore, sub 

patterns of specific disulfide connectivity might carry their own structures, be 

modified during evolution, reveal evolutionary information, and might be used in help 

constructing phylogenetic tree. 

 In fact, not all disulfide connectivity of query proteins can be predicted by 

PSI-BLAST method; it needs to have homologous proteins. Therefore, a performance 

index sQ  is used to evaluate the accuracy based on the disulfide proteins whose 

disulfide connectivity can be predicted by PSI-BLAST. According to figure 7, the 

performance index sQ  is higher than pQ  not only in intra- B  dataset [Fig. 7(A)] 

but also in inter- B  dataset [Fig. 7(B)]. However, it means if the disulfide 

connectivity of a query protein can be predicted by PSI-BLAST method, the average 

accuracy sQ  is 0.5 and 0.72 in intra- B  dataset and inter- B  dataset, respectively. 

For this reason, homologous search is a confident method to predict disulfide 

connectivity. 

 

Performance based on different searching datasets 

 In Table 2, the average accuracy in SP39-ID30 is 0.47 and 0.49 for pQ  and cQ , 
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respectively, in CYS040307-NR is 0.90 and 0.91; meanwhile, in CYS090506 is 0.95 

and 0.97. As the searching datasets are larger, it includes various disulfide proteins and 

involves more disulfide information; therefore, the accuracy is greatly improved. It 

also implies when PSI-BLAST method are used to predict disulfide connectivity, the 

abundance of disulfide protein dataset is necessary. Otherwise, as the disulfide bond 

number is raised, the accuracy is decreased; it is reasonable because aligning more 

cysteines with homologs are getting harder and disulfide environment is slightly 

different in proteins with distinct disulfide bond number. 

 

Performance based on different sequence identity 

 The accuracies rise in pQ  [Fig. 8(A)] and cQ  [Fig. 8(B)] because of higher 

similar of sequence identity. When the sequence identity among query protein and 

target proteins is between 0 to 20%, it doesn’t have any contribution in predicting 

disulfide connectivity. However, in 0 to 30% the performances of pQ  and cQ  in 

B  = 5 are 0.02 and 0.15 respectively; average performances are 0.29 and 0.30. 

Generally 30% sequence identity is a threshold to find a template in homology 

modeling; similarly 40% sequence identity is a threshold in disulfide connectivity 

prediction. Therefore, it is consistent more alike between two sequences are more 
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parallel in their properties such as structures, functions and so on. Furthermore, when 

sequence identities raised from a range of 0 to 30% to 0 to 40% , the accuracies 

showed sharp increases. For example, pQ  and cQ  are equal or below 40% versus 

disulfide bonds B  in sequence identity 0-30%, and are equal or below 60% in 

sequence identity 0-40%. Nevertheless, the accuracies predicted from sequence 

identities ranging from 0-40% to 0-90% are gradually increased and sharply increased 

from 0-100% identity. When query and target proteins are more similar, the more 

reliable information can be used for prediction disulfide connectivity. 

 

Performance based on different windowsize 

 Only consider the influences of residues nearby disulfide cysteine and locations 

of disulfide cysteines in protein sequence to disulfide connectivity prediction; 

therefore, reserve the residues with windowsize w around disulfide cysteines and 

replace other resides as X. From figure 9 the performances in pQ  [Fig. 9(A)] and 

cQ  [Fig. 9(B)] are constantly upward according to the increase of windowsize until w 

= 13, and the performances are 0.84 and 0.84 in B = 2 for pQ  and cQ , 0.84 and 

0.85 in B  = 3, 0.91 and 0.93 in B  = 4, 0.86 and 0.88 in B  = 5, average 

performance are 0.85 and 0.87. However, when w = 25 pQ  and cQ  are 0.92 and 
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0.92 in B  = 2, 0.88 and 0.88 in B  = 3, 0.94 and 0.95 in B  = 4, 0.88 and 0.90 in 

B  = 5, finally average performances are 0.90 and 0.91 for pQ  and cQ  respectively. 

Therefore, the average performances can reach 0.91 and 0.92 for pQ  and cQ  when 

w ≥  25.  

 Table 3 summarizes the performances based on different windowsize in 

CYS090506, and the performances in CYS090506 are better than CYS090506(25) in 

5...2=B ; therefore, the overall performances of CYS090506 are higher than 

CYS090506(25), the improvement are about 5% and 4% in pQ  and cQ , respectively. 

It demonstrates that residues nearby disulfide cysteines contain sufficient information 

and play an important role in disulfide bonds forming; meanwhile, other residues 

carry less related information. Therefore, the formation of disulfide connectivity is 

mostly determined on the local residues around disulfide cysteines, the suitable 

windowsize is 25. 

 

 

CONCLUSION 

 The better performance of PSI-BLAST method is established by abundant 

information of searching dataset; therefore, searching dataset CYS090506 is used for 
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this method. Meanwhile, the accuracy of PSI-BLAST method using inter- B  

searching dataset is better than using intra- B  searching dataset; it reveals that there 

might exist sub patterns of specific disulfide connectivity. Furthermore, those proteins 

with sub patterns of specific disulfide connectivity might be evolutionary related, and 

these sub patterns might play an important role in protein structures or protein 

functions during evolution. This research also indicates sequence identity is higher 

between query protein and homologs, and then the performance of disulfide 

connectivity prediction is better; however, the lowest threshold of sequence identity is 

30%. Moreover, local residues with windowsize 25 around disulfide cysteines carry 

significant messages to direct the formation of disulfide connectivity, and the overall 

performances are 0.90 and 0.91 for pQ  and cQ , respectively. This is consistent with 

previous studies that local information brings sufficient knowledge to predict disulfide 

bonds. However, whole residues are utilized in the prediction, the average 

performances reach 0.95 and 0.95 for for pQ  and cQ , respectively. It describes that 

local resides and non-local residues possess different information, and there 

information are complementary. The limitation of this prediction is that when a novel 

disulfide protein appears, the homologs of the query protein may not be found; 

therefore, machine learning method will be applied, this is in chapter 3. 
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Chapter 3 
 
Prediction of disulfide connectivity from protein sequences 
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 INTRODUCTION 

 Recently, computational biology has made significant progress in the prediction 

of the bonding states from protein sequences.46-49 A number of approaches based on 

neural networks47,49, statistical analysis48 or support vector machines46 have been 

shown to be quite effective in predicting the bonding state of cysteine (around 81-90% 

prediction accuracy). However, predicting disulfide connectivity from protein 

sequences remains a challenging problem in computational biology. This is because 

the disulfide bridges are non-local in nature (i.e., though the two cysteines that form 

the disulfide bridge are close in 3D space, they may be far apart from each other in the 

sequence). Hence, the prediction of disulfide connectivity requires extracting 

information about spatial proximity of cysteine pairs from one-dimensional protein 

sequences. The problem is further complicated by the rapid increase of possible 

disulfide patterns as the number of disulfide bridges increases. For example, when the 

number of disulfide bridges is 2, there are 3 possible disulfide patterns; but when the 

number of disulfide bridges increases to 5, the possible number of disulfide patterns 

rapidly increases to 945.  

 In general, disulfide-predicting approaches can be classified as two kinds, 

pattern-wise method and pair-wise method; furthermore, pattern-wise method utilizes 
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disulfide connectivity as unit and pair-wise method is in terms of cystein pair as a 

base to predict disulfide connectivity. In fact, pair-wise method emphasize local 

environment of two disulfide cysteines, use local sequence information as an input. To 

the best of my knowledge, the first attempt to predict the locations of disulfide bridges 

directly from protein sequences based on pair-wise method was done by Fariselli and 

Casadio.14 They reduced disulfide connectivity to the graph matching (GM) problem 

in which the graph vertices are equivalent to the residues of cysteine-forming disulfide 

bridges, and the weight edges contact potentials. Then, the Monte-Carlo (MC) 

simulated annealing method is used to optimize the weights and the disulfide bridges 

are then identified by finding the maximal weight perfect matching. This method will 

be referred as MCGM. Further, Fariselli et al.15 improved their results by using the NN 

to predict the cysteine pair wise interactions. This method will be referred to as 

NNGM. Next, Ferre and Clote18 capture secondary structure information and diresidue 

frequencies based on neural network. Furthermore, Tsai et al.20 apply sequential 

distance between oxidized cysteines using SVM to generate bonding potentials of 

cysteine pairs.  

 In the researches of pattern-wise method, Vullo and Frasconi16 use an ad hoc 

recursive neural network (RNN) to predict disulfide connectivity. Later, Zhao et al.17 

compare cysteine separation profiles from testing and template dataset to solve this 
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problem. Next, Song et al.43 use multiple sequence feature vectors such as 

cysteine-cysteine coupling pair; amino acid compositions etc. and secondary structure 

rely on support vector regression (SVR) to predict disulfide connectivity. On the other 

hand, Chen et al.21 develop a two-level hierarchical framework combining pair-wise 

and pattern-wise method. 

  In general, these approaches predict 29-74% of the disulfide patterns for a 

dataset sharing less than 30% sequence identity, after a 4-fold cross validation 

procedure. In this research19, I use SVMs based on feature vectors such as the coupling 

between the local sequence environments of cysteine pairs, the cysteine separations, 

and the amino acid content. Later, this method is modified22 as disulfide pairs to 

present disulfide connectivity and genetic algorithm are used for optimizing the 

parameters. 

 

MATERIALS AND METHODS 

The support vector machine 

 Support Vector Machine (SVM)50 has found many applications46,51-53 in 

computational biology and has been shown to be a quite effective machine-learning 

method. Its basic idea is to map data into a high dimensional space and find a 
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separating hyperplane with the maximal margin between two kinds of data. Since this 

method is quite well known, we give only a brief description of the basic theory 

behind the SVM. The SVM is basically a binary classifier. Given training vectors 

xi,  i =1,..., l  and a vector y  defined as: yi =1 if xi  is in class I, and yi = −1 if 

xi  is in the class II. The support vector technique tries to find the separating 

hyperplane wT xi + b = 0  with the largest distance between two classes, measured 

along a line perpendicular to this hyperplane, which is equivalent to solving the 

following problems: 

 min
w,b,ξ

1

2
wT w + C( ξ i

i=1

l

∑ )  and  yi wTφ(xi)( )+ b[ ]≥1−ξ i  (7) 

Constraints yi wTφ(xi)( )+ b[ ]≥1−ξ i  allow that training data may not be on the 

correct side of the separating hyperplane wT x + b = 0. C  is the penalty parameter to 

be optimized. In practice, the explicit form of φ(x) is not required, and we only need 

to calculate the kernel function given by K xi,x j( )≡ φ xi( )T φ x j( ). We use the Radial 

Basis Function (RBF) kernel given by e−γ xi −x j
2

 for all the computations, where γ  is 

the kernel parameter. All the SVM calculations are performed using LIBSVM.54 For 

SVM training, a few parameters such as the penalty parameter C and the kernel 

parameter γ  of the RBF function must be determined in advance. Choosing optimal 

parameters for support vector machines is an important step in SVM design. In this 
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work, we use the cross validation on different parameters for the model selection.55 

 

Data sets 

 SP39-ID30 is used for comparing this method with previous works14,16, and is 

classified as four sets to perform 4-fold cross validation procedures. Dataset, 

SP39-ID30, is extracted from the SWISS-PROT database release No. 3945, and there 

are total 482 proteins with with 2 to 5 disulfide bridges ( B = 2,…,5); furthermore, the 

sequence homologous within proteins are less than 30%. The details of SP39-ID30, 

please see methods in chapter 2. 

 

The feature vectors 

 The selection of relevant features in large and complex biological data sets 

significantly affects the effectiveness of the SVM method. We select three types of 

feature vectors: the coupling between the local sequence environments of cysteine 

pairs, the cysteine sequence separations, and the amino acid content. 

The cysteine-cysteine coupling 

 A sequence window of size 2l +1 amino acids centered on the cysteine is used 

to describe the neighboring sequence environment of the cysteine. Evolution 
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information of the protein sequence is included in the window by using the sequence 

profile generated by PSI-BLAST,56 i.e., the position specific substitution matrix 

(PSSM). The use of the PSSM has the advantage of avoiding the time-consuming 

multiple-sequence alignment procedures. The PSSM of a protein sequence is a L × 20 

matrix, where L  is the sequence length and 20 is the number of amino acid types 

(the amino acid type is numbered from 1 to 20). The matrix element pij  of the PSSM 

represents the log-odds score of the ith  amino acid of type j . Each 20-element row 

vector of the PSSM represents the distribution of the occurrences of 20 amino acid 

types at the specific position. Let wi = (ai− l ,…,ai−1,ai,ai+1,…,ai+ l )  denote the 

sequence window of size 2l +1 centered around the bonded cysteine at the ith  

position, where ak  is the k thamino acid. A 20-element vector vwi
= (v1

wi ,v2
wi ,…v20

wi )  

associated with the sequence window wi  is defined, where vk
wi  is the PSSM 

element of the amino acid type k . If the amino acid of a given type occurs more than 

once within the window, vk
wi  is the sum of the associated PSSM elements. The 

coupling between the ith  and j th  cysteines is computed by sij = ′ c ivw j
+ ′ c jvwi

, 

where ′ c k  is the PSSM element of cysteine type at the k th  row. For a given disulfide 

pattern, sum up all the possible cysteine pairs to get s = sij
ij
∑ . The symbol S  is used 

to denote the cysteine-cysteine coupling of disulfide patterns. After preliminary 
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experiment, set the window size to be 21 for B = 3 and 5, 7 for B = 2, and 27 for 

B = 4 . 

Cysteine-spacing patterns 

 For a disulfide protein with n  cysteines, i.e., c1,c2,…,cn , its disulfide pattern is 

denoted by (cic j ,c ′ i c ′ j ,…) , where cic j  designates a disulfide bridge formed between 

cysteine i  and j . For a given disulfide pattern (cic j ,c ′ i c ′ j ,…) , there is an associated 

cysteine spacing pattern given by (d ji,d ′ j ′ i ,…), where d ji  is the sequence spacing ci 

and c j .  An example is given in figure 12. For a protein with four cysteines c1c2c3c4 , 

which form two disulfide bonds, there will be three possible disulfide configurations: 

C1 = c1c2,c3c4( ) , C2 = c1c3,c2c4( )  and C3 = c1c4 ,c2c3( ) . The three corresponding 

cysteine spacing patterns are given by D1 = (d12,d34 ) , D2 = (d13,d24 ) 

and D3 = (d14,d23). The symbol D  is used to denote the cysteine separation vector.  

Amino acid content 

 Amino acid composition has been shown to be a useful global sequence 

descriptor in fold recognition,52 and in the prediction of the bonding states of 

cysteines46 and protein subcellular localization.53 Amino acid composition is 

represented by the composition vector A = (a1,a2,…,a20) , where ak = nk /n0. Here nk  

is the number of occurrences of the amino acid of type k  and n0  is the total number 
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of amino acids of the query sequence. The notation A  is used to denote the encoding 

of the amino acid composition. 

 

Performance Indices 

 Qp  and Qc  are used to evaluate the performance of disulfide connectivity, and 

the definitions can be seen in Methods of Chapter 2. 

 

 

RESULTS AND DISCUSSIONS 

 Table 6 summarizes the performances of SVMs based on various encodings. The 

results computed from the random predictor is also listed, and referred to as R, as the 

reference of the base performance. The Qp  and Qc of the random predictor are given 

by 1/(2B −1)!! and 1/(2B −1) , respectively.14 In general, the pattern-based Qp  is 

lower than the disulfide bridge-based Qc , since the former counts only those proteins 

whose complete disulfide patterns are correctly predicted. In the case of B = 2, both 

D and S  classifiers perform similarly (67%). However, it is interesting to note that 

the much simpler A  classifier, which uses only global sequence information of amino 

acid composition, gives fairly good results (61%). In the case of B = 3 , the 
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differences in the predictive performance among the classifiers start to show 

themselves. The D classifier performs significantly better, and, in terms of the more 

stringent Qp , it is 16% and 7% higher than A  and S , respectively. Note that the D 

encoding does not contain any information about the explicit amino acid sequence 

other than the cysteine separations. This is consistent with previous works29,32 

indicating that disulfide patterns and cysteine separations are closely related to each 

other and that disulfide patterns can be effectively used to detect remote homologues 

undetectable by the sequence alignment methods. In the case of B = 4  and 5, the 

prediction accuracies of the SVMs, though significantly better than those of the 

random predictor, are not yet practical at present. The poor results for these cases are 

due to the relatively smaller number of the reliably annotated proteins with higher 

number of disulfide bridges in the dataset (see the Datasets Section). However, the 

situation is expected to improve when more known structures are available in the 

future. On the other hand, when comparing the results of the D classifiers with those 

of the random predictor R, there is a phenomenon that, the ratios of Qp  between D 

and R are 28 and 120 for B = 4  and 5, respectively, indicating that the SVM is still 

effective in these cases.    

 Using multiple feature vectors can improve on the performance of the SVM 

classifiers based on a single feature vector type has previously shown in many 
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biological applications 46,52,53. I selected the following linear combinations: D + wA A , 

D + wSS  and D + wA A + wSS , where wd  is the weight associated with the d  

encoding. After preliminary experiment, we set the weights to be wA =1  and 

wS = 0.001. For the sake of simplicity, I use the simpler notations D + A , D + S  and 

D + A + S , with the understanding that wA  and wS  are omitted from the notations. 

Table 7 compares the performances of the SVMs based on the multiple feature vectors. 

As expected, the SVMs based on the multiple feature vectors in general perform better 

than those based on a single feature vector type.  

 Figure 13 shows some typical examples of the predictions by the D + A + S  

classifier. Figure 13(A) shows the case of B = 3, 1tpa:I,57 which is a bovine pancreatic 

trypsin inhibitor, Figure 13(B) the case of B = 4,  1afh,58 a nonspecific lipid transfer 

protein, and Figure 13(C), the case of B = 5, 1pcn,59 a porcine pancreatic procolipase. 

In these cases, the disulfide bridges are all perfectly predicted. The number of 

incorrectly predicted disulfide bridges, if any, will be either greater than or equal to 2, 

since one incorrectly predicted disulfide bridge will necessarily give rise to another 

one. An example is given in Figure 13(D). The observed and the predicted disulfide 

patterns of 1phm60 ( peptidylglycine -hydroxylating monooxygenase ) are 

[1-6,2-4,3-5,7-10,8-9] and [1-6,2-4,3-8,7-10,5-9], respectively (the incorrect 

predictions are in italics). Hence, in the case of B = 2, the cysteine pair-based measure 
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Qcof a protein is either 0 or 1, while in the case of B = 3, Qc  is 1, 1/3 or 0.    

 Table 8 compares the results of the D + A + S  with those of other methods. 

Using 50% of accuracy of Qp  as threshold, the overall prediction accuracy of 

D + S + A  is above 50%  (Qp = 0.55 and Qc = 0.57), which is higher than those 

from methods such as MCGM, NNGM, RNN, DiANNA, and CSP, which give 

0.29–0.49 in Qp  and 0.38–0.52 in Qc . Besides, these methods are all pair-wised 

method, except D + A + S . MCGM applies contact potential to predict bonding state 

of disulfide pair, NNGM uses neural network, RNN uses evolutionary information 

based on recursive neural networks, DiANNA employs secondary information and 

diresidue frequencies with neural networks and CSP calculate the smallest divergence 

value between cysteine separation profiles of query protein and templates. The feature 

vectors of these methods focus on local environment of disulfide pairs; or protein 

length. On the other hand, performances of some methods are better than this work 

such as pairSVM, 2-level SVM, SVM_GA, SVR; furthermore, pairSVM and the first 

level of 2-level SVM utilize local amino acids and distance between disulfide pair as 

feature vectors, second level of 2-level SVM uses output of first level, cysteine 

separation profile, and protein length as input of SVM. Their performances are 0.63 

and 0.70 in Qp  for pairSVM and 2-level SVM, respectively. However, the 

performances of SVM_GA are based on my feature vectors, SVR also utilizes my 
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feature vectors and others, and their average performances are all 0.74 in Qp . The 

feature vector cysteine-cysteine coupling possess the local environment information of 

disulfide connectivity, and evolutionary interaction between two disulfide cysteines; 

amino acid contents show the global information of whole protein sequence; 

furthermore, cysteine spacing patterns represent the relative distances between 

disulfide cysteines. It demonstrates that these feature vectors are important and useful 

in prediction of disulfide connectivity.  

 

CONCLUSION 

 Though the SVM is known to be a powerful machine learning method, due to the 

complexity of biological data, the identification and selection of relevant biological 

features becomes an important issue in the applications of SVMs to biological 

problems. In this work, I tested SVMs in the prediction of disulfide connectivity using 

biological features characteristic of disulfide bridges. My results indicate that both 

cysteine-cysteine sequence couplings and cysteine separations are important features 

in predicting disulfide connectivity. This is consistent with the previous studies29,32 

indicating that a close relationship exists between cysteine separations and disulfide 

patterns, and that such a relationship can be utilized to identify the remote homologs 
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undetectable by sequence alignments. I showed that the SVM based on the cysteine 

separations give the best predictive performance among the SVMs based on the single 

feature vector. I also showed that the SVMs based on the multiple feature vectors 

out-performs those based on the single feature vector.
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CHAPTER 4 

S-S Predictor: a disulfide connectivity prediction server



 41

INTRODUCTION 

  Cysteines stand an important role in protein sequence; not only two oxidized 

cysteines can form a disulfide bond but also some cysteines modulate the protein 

functions.3,23,25,26,28,61,62 Therefore, prediction the bonding state of cysteines can help in 

determination protein structure and infer the influence of cysteine in protein function. 

As we known, disulfide bond is a distant bond; it connects two distant cysteines; 

therefore, constraints the searching space of protein sequence from denatured state to 

native state. On the other hand, ligand-bound cysteines are involved in protein 

function, for example, inner mitochondrial membrane protein sco 1p that contains a 

CxxxC motif63,64, and this motif is involved in copper transport. In fact, a number of 

computational approaches46-49,65-67 are developed to predict the bonding states of 

cysteines. Chen et al.46 develop a method to predict the bonding states of cysteines 

using SVM based on multiple feature vectors and the cysteine state sequences; 

consequently, the performance is 90% in overall prediction accuracy and 0.77 

Matthews correlation coefficient. 

 Hence, according to the previous researches, disulfide connectivity can be 

predicted in terms of the knowledge of bonding state cysteines. Disulfide bonds play 

an important role in stabilizing protein structure and regulating protein function. 

Therefore, the ability to infer disulfide connectivity directly from protein sequence is 



 42

valuable in both structural modeling and functional analysis. The previous study29 

showed that disulfide proteins with the same disulfide connectivity are usually having 

similar folds, even if these proteins have very low sequence identities. The disulfide 

connectivity prediction has been investigated by a variety of computational 

methods14,16-22,42,43 with the prior knowledge of bonding states of cysteines. However, 

Lu et al. use the cysteine-cysteine coupling, cysteine spacing patterns, and amino acid 

content feature vectors19 based on SVM and adjust parameters by GA , the average 

performance is 74% in pQ  and 79% in cQ . 

 In general, there are two stages in predicting disulfide connectivity, first predict 

the bonding states of cysteines, and then infer the disulfide connectivity from oxidized 

cysteines. However, during the two-part predictions, the overall performance will 

decrease. In my research, homologous search is used to solve this problem; it can 

directly predict disulfide connectivity by sequence-to-structure mapping without 

knowing oxidized cysteines in advance, but not all query proteins can find homologs. 

Therefore, I develop an approach to predict disulfide connectivity from protein 

sequences, which is referred as S-S Predictor (http://140.113.239.214/~ssbond). The 

S-S Predictor is a hybrid method based on both sequence alignment and machine 

learning method. It first performs PSI-BLAST search to identify the sequence 

homologs that have known disulfide connectivity. The S-S Predictor then predicts the 
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disulfide pattern of the query sequence based on the similarity of the cysteine 

separation vectors. If no homologs of known disulfide patterns are found, the S-S 

Predictor switches to the support vector classifier to predict the disulfide patterns. 

 The S-S Predictor integrates both sequence alignment and the machine learning 

method to predict disulfide connectivity. This method will be useful to biologists 

interested in the study of disulfide proteins. The S-S Predictor server can be accessed 

from http://140.113.239.214/~ssbond. 

 

 

MATERIALS AND METHODS 

Dataset 

 There are two dataset used in this research; one is SP39-ID30, which contains 

482 disulfide proteins, and is divided as four sets for 4-fold cross validation; the other 

searching dataset for PSI-BLAST is CYS090506, which contains 15,252 disulfide 

proteins with known structures. The details of these dataset are described in the 

Methods in Chapter 2. 

 

Disulfide connectivity prediction 

 According to the PSI-BLAST consensus, the hybrid method was applied to 
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predict disulfide connectivity. (Please see the Methods in Chapter 2.) 

 

Support vector machine 

(Please see the Methods in Chapter 3.)  

Feature vectors 

 Cysteine-cysteine coupling, cysteine spacing patterns, and amino acid content 

feature vectors are used in this research (Please see the Methods in Chapter 3.), and 

SVM_GA22 is adopted as the machine learning method. Therefore, disulfide 

connectivity is presented as cysteine pairs in machine learning part of this predictor, 

and there are two kinds of cysteine pairs CP1 and CP2 . CP1 uses one cysteine pairs, 

and then CP2 uses two cysteine pairs as a unit to display disulfide connectivity. For 

example, the native disulfide connectivity is [ 4231 , CCCC ]; however, CP1 method 

shows this disulfide connectivity as 

[ ,,,,,, 434232413121 CCCCCCCCCCCC ⊗⊕⊗⊗⊕⊗ ], and CP2 method shows this 

disulfide connectivity as [ 324142314321 ,, CCCCCCCCCCCC ⊗−⊗⊕−⊕⊗−⊗ ], 

where ⊕  denotes bonding state between two cysteines, and ⊗  denotes 

non-bonding state between two cysteines. Furthermore, the bonding states of disulfide 

pairs are predicted by SVM. Finally, cysteines are identified as vertices and disulfide 

bonds are presumed as edges; therefore, finding correct disulfide connectivity is 
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treated as computing the maximum-weight perfect matching 68. 

 

Feature selection 

 Genetic algorithm (GA)22 is used to optimize feature selection such as an 

m-dimensional vector, parameter C and the kernel parameter γ of the SVM. There 

are three steps in GA: selection operator, mutation operator, and crossover operator; 

meanwhile, the prediction accuracy of disulfide connectivity is defined as fitness 

function. N  solutions are produced in initial population, and denotes as th0 ; half of 

N , 2/,...,1 Nn , is indicated as father population, and the others of N , NNn ,...2/ , is 

indicated as mother population. In the step of selection operator, it determines the best 

solutions of father and mother in thχ  population based on fitness function. 

Furthermore, there are two types of mutations in mutation operator, first every bit in 

vectors is mutated in 2/,...,1 Nn , if the mutation rate is less than a mutation threshold 

=0µ  0.1; second randomly choose a bit from each feature vector to be mutated in 

NNn ,...2/ . Finally, crossover operators are performed between 12 −pn  and pn2 , where 

2/,...,1 Np = , and if the crossover rate is less than crossover threshold =1µ  0.5, 

one-point crossovers are implemented. 

 

S-S Predictor process 
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 The flowchart of S-S predictor is described in figure 2. First, the query protein 

searches for homologous disulfide proteins in dataset CYS090506 by PSI-BLAST. If 

whole bonding cysteines in a query protein are totally aligned with some homologous 

disulfide protein, then calculate the frequencies of disulfide connectivity appeared in 

the matched homologs and the number of all possible disulfide connectivity is 

( 12 −B )!! where B  is the number of disulfide bond. Finally, assign maximal 

number of disulfide connectivity as a result. In fact, not all of bonding cysteines in 

query protein can be totally fit with cysteines in homologs; therefore, treat disulfide 

pair as a unit, count the number of various disulfide pairs, B ( 12 −B ), in partial 

matched homologs, and assign disulfide connectivity with maximal number of 

disulfide pairs as the result. When homologs of the query protein can not be found by 

PSI-BLAST, feature vectors of a query protein are prepared and feed into SVM with 

GA optimization to predict disulfide connectivity. In summary, according to the 

aligned level of bonding cysteines between query protein and homologs, if total 

bonding cysteines are aligned with homologs, the PSI-BLAST method in terms of 

disulfide connectivity as basis to predict disulfide connectivity, or in terms of disulfide 

pair as basis. Consequently, when no homologs can be found with query protein, the 

SVM_GA is used to predict disulfide connectivity. 
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RESULTS AND DISCUSSION 

Interface 

 The website of the S-S predictor is http://140.113.239.214/~ssbond, and the input 

interface is shown in figure 14. The main options in the interface are as follow.  

 Predict options The default value of the options is “let me guess the 

positions of oxidized cysteines”; S-S predictor can predict the bonding states and 

disulfide connectivity at the same time by PSI-BLAST method. If the oxidized 

cysteines are understood in advance, then users can check the option of “input the 

positions of oxidized cysteines”, and input the positions of oxidized cysteines in 

sequence at the same time; however, the positions of oxidized cysteines should be 

separated by a blank space. 

 Query sequence  A query protein sequence is presented as standard amino 

acid one-letter codes, and FASTA format is accepted in this predictor; therefore, users 

can write annotation of the query protein after the sign of “>”. Meanwhile, spaces and 

newline will be automatically stripped. 

 Upload file Offer another choice for users, not only can copy paste a query 

protein in the interface, but also can upload query protein sequence from text file as 

FASTA format. 

 When users choose proper options from input interface, push “Submit” button to 
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send the query information. Consequently the output interface is shown as figure 15, 

the main contents includes: 

 Prediction method  It can tell users the disulfide connectivity is predicted by 

blast method or SVM method; furthermore, users can click Blast method to see the 

result of alignment. 

 Sequence label The FASTA format is accepted in input interface; therefore, 

what users write after “>” will be recorded in this part for labeling the query sequence. 

 Sequence length It records the number of amino acids in a query protein. 

 Number of bonded cysteines  It records the number of cysteines which are 

related with disulfide bonds in a query protein. 

 Number of free cysteines It records the number of cysteines which do not 

participate the forming of disulfide bonds in a query protein. 

 Number of disulfide bonds It records the number of disulfide bonds in a query 

protein. 

 Predicted disulfide connectivity It presents the disulfide connectivity of a 

query protein; meanwhile, disulfide bond between two bonded cysteines is connected 

by “-” and every disulfide bond is separated by a blank space.  

 Output sequence It shows the query protein sequence and the format is one 

row contains fifty amino acids and every ten amino acids are separated as a blank 
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space. Furthermore, the positions of disulfide cysteines are labeled and every pair of 

disulfide bonds is linked by a red line. Therefore, it is clear and convenient for users to 

identify the locations of disulfide bonds and positions of disulfide cysteines among 

the query sequence. 

 

Performance 

 Compare the performances of PSI-BLAST method, SVM_GA, and S-S predictor 

[Table 9] according to dataset SP39-ID30 with 4-fold cross validation, and the overall 

accuracies of SVM_GA are 27% and 30% better than PSI-BLAST in Qp  and Qc ; 

however, this is because the advantages of PSI-BLAST method are based on sequence 

homologous, the similarity of every two sequences within SP39-ID30 is equal or 

lower than 30%. Otherwise, SVM_GA can capture sufficient information to predict 

disulfide connectivity no matter what the sequence similarities are between query 

protein and training dataset. Consequently, the performances of S-S predictor, a hybrid 

method of PSI-BLAST and SVM_GA, are 0.90 and 0.90 in B=2, 0.80 and 0.84 in 

B=3, 0.75 and 0.84 in B=4, 0.60 and 0.76 in B=5, and finally the overall accuracy are 

0.81 and 0.84 for Qp  and Qc , respectively. Therefore, the information carried by 

PSI-BLAST method and SVM_GA for disulfide connectivity predictions is 

complementary. 
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 Table 10 compares the results of S-S predictor with other methods. The S-S 

predictor is the only one method that gives the overall prediction accuracy above 80% 

( Qp = 0.81, and Qc = 0.84), while the other methods give 0.29-0.74 in Qp  and 

0.38-0.78 in Qc . Therefore, S-S predictor is useful and helpful for disulfide 

connectivity prediction. 

 

CONCLUSION 

 The S-S predictor is a hybrid system to predict disulfide connectivity; it first 

performs PSI-BLAST method; however, if homologs can not be found, and then 

implements machine learning method. S-S predictor also provides a website for 

large-scale disulfide connectivity prediction; furthermore, the input interface of S-S 

predictor is clear and easy for user to paste or upload protein sequence with FASTA 

format, and to choose options to guess the positions of oxidized cysteines or directly 

input the positions of oxidized cysteines. On the other hand, the output interface not 

only offers the disulfide connectivity, but also presents the protein sequence with 

positions of disulfide cysteines and indicating the disulfide bonds. This information is 

convenient for users to obtain the locations of disulfide connectivity in protein 

sequence, and understand the local environment of disulfide cysteines. The of S-S 

predictor is an outstanding method to predict disulfide and its performances are 0.81 
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and 0.84 in Qp  and Qc , respectively. 
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Table 1. Comparison number of disulfide patterns which are observed in CYS090506 and in 

statistics according to number of disulfide bond. 

 

Disulfide Bonds poN a ppN b 

2=B  3 3 

3=B  15 15 

4=B  51 105 

5=B  69 945 

6=B  42 10395 

7=B  22 135135 

8=B  24 2027025 

 

a
poN = number of observed disulfide patterns in CYS090506. 

b
ppN =number of possible disulfide patterns in statistics. 
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Table 2. The performance of PSI-BLAST method on different dataset. 

 

  Ba=2     B=3    B=4    B=5    Overall 
Dataset Qp

b Qc
c Qp Qc Qp Qc Qp Qc Qp Qc 

SP39-ID30 0.52 0.52 0.49 0.51 0.42 0.49 0.29 0.42 0.47 0.49
CYS040307-NR 0.91 0.91 0.90 0.92 0.91 0.92 0.86 0.90 0.90 0.91
CYS090506 0.96 0.96 0.93 0.93 0.95 0.96 0.90 0.93 0.95 0.97

 

aB represents the number of disulfide bond in a protein. 

bQp = accuracy in protein-based level. 

cQc = accuracy in disulfide-bridged level. 
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Table 3. The performance of PSI-BLAST method according to different windowsize. 

 

  Ba=2     B=3    B=4    B=5    Overall 
Dataset Qp

b Qc
c Qp Qc Qp Qc Qp Qc Qp Qc 

CYS090506(25)d 0.92 0.92 0.88 0.88 0.94 0.95 0.88 0.90 0.90 0.91
CYS090506 0.96 0.96 0.93 0.93 0.95 0.96 0.90 0.93 0.95 0.95

 

aB represents the number of disulfide bond in a protein. 

bQp = accuracy in protein-based level. 

cQc = accuracy in disulfide-bridged level. 

dCYS090506(25) represents residues around disulfide cysteines with windowsize 25 

are kept and others are replaced as X. 
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Table 4. Sub patterns of KLK_PIG. 

 

Protein Disulfide connectiviey 

KLK_PIG (query protein) 26_42 121_190 155_169 180_205 
1hiaB  39_104 71_85 94_119 
1hiaY  39_104 71_85 94_119 
2kaiB  39_104 71_85 94_119 
2pkaB  39_104 71_85 94_119 
2pkaY  39_104 71_85 94_119 
1tfxB  116_181 148_162 171_195 
1zr0C 25_41 116_181 148_162  
1gvzA 26_42  149_163  
1hiaA 26_42    
1hiaX 26_42    
2kaiA 26_42    
2pkaA 26_42    
2pkaX 26_42    
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Table 5. Sub patterns of HGF_HUMAN 

 

Protein Disulfide connectiviey 

HGF_HUMAN (query protein) 70_96 74_84 128_206 149_189 177_201 
2hgfA 40_66 44_54    
1gmnA    112_154 140_164 
1gmnB    53_93 81_105 
1ki0A   4_82 25_65 53_77 
1i5kA   2_79 23_62 51_74 
1i5kB   3_80 24_63 52_75 
1kiv_   1_78 22_61 50_73 
3kiv_   2_79 23_62 51_74 
1jfnA   25_102 46_85 74_87 
1b2iA   1_78 22_61 50_73 
1i71A   2_79 23_62 51_74 
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Table 6. The performance of the SVMs based on a single feature vector type  

 B = 2 B = 3 B = 4 B = 5 B = 2…5 

Method Qp Qc  Qp  Qc Qp Qc Qp Qc Qp  Qc  

R 0.33 0.33 0.06 0.20 0.01 0.14 0.001 0.11 0.14 0.20 

A 0.61 0.61 0.38 0.51 0.13 0.20 0.07 0.27 0.39 0.42 

S 0.67 0.67 0.47 0.60 0.17 0.24 0.12 0.32 0.45 0.48 

D 0.67 0.67 0.54 0.64 0.28 0.39 0.12 0.30 0.50 0.54 
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Table 7. The performances of the SVMs based on multiple feature vectors  

 B = 2 B = 3 B = 4 B = 5 B = 2…5 

Method Qp  Qc  Qp Qc  Qp Qc  Qp Qc  Qp  Qc  

D + A 0.74 0.74 0.54 0.64 0.28 0.39 0.12 0.30 0.52 0.55 

D + S 0.71 0.71 0.60 0.66 0.30 0.41 0.12 0.30 0.54 0.55 

D + S + A 0.74 0.74 0.61 0.69 0.30 0.40 0.12 0.31 0.55 0.57 
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Table 8. Comparison of predictive performances of different approach to predict 

disulfide connectivity  

 B = 2 B = 3 B = 4 B = 5 B = 2…5 

Method Qp  Qc  Qp Qc  Qp Qc  Qp Qc  Qp  Qc  

MCGM14 0.56 0.56 0.21 0.36 0.17 0.37 0.02 0.21 0.29 0.38 

NNGM15 0.68 0.68 0.22 0.37 0.20 0.37 0.02 0.26 0.34 0.42 

RNN16 0.73 0.73 0.41 0.51 0.24 0.37 0.13 0.30 0.44 0.49 

DiANNA18 0.62  0.40  0.55  0.26  0.49  

CSP17 0.74 0.74 0.44 0.53 0.26 0.44 0.18 0.31 0.49 0.52 

This work19 0.74 0.74 0.61 0.69 0.30 0.40 0.12 0.31 0.55 0.57 

pairSVM20 0.79 0.79 0.53 0.62 0.55 0.70 0.58 0.71 0.63 0.70 

2-level SVM21 0.85  0.67  0.57  0.58  0.70  

SVM_GA22 0.86 0.86 0.75 0.80 0.63 0.77 0.48 0.71 0.74 0.79 

SVR43 0.87 0.87 0.67 0.73 0.79 0.85 0.47 0.64 0.74 0.78 
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Table 9. The performance of PSI-BLAST method based on different method. 

 

  Ba=2     B=3    B=4    B=5    Overall 
Method Qp

b Qc
c Qp Qc Qp Qc Qp Qc Qp Qc 

PSI-BLAST 0.52 0.52 0.49 0.51 0.42 0.49 0.29 0.42 0.47 0.49 
SVM_GA 0.86 0.86 0.75 0.80 0.63 0.77 0.48 0.71 0.74 0.79 
S-S predictor 0.90 0.90 0.80 0.84 0.75 0.84 0.60 0.76 0.81 0.84 

 

aB represents the number of disulfide bond in a protein. 

bQp = accuracy in protein-based level. 

cQc = accuracy in disulfide-bridged level.  
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Table 10. Comparison of predictive performances of different approach to predict 

disulfide connectiviry  

 B = 2 B = 3 B = 4 B = 5 B = 2…5 

Method Qp  Qc  Qp  Qc  Qp  Qc  Qp  Qc  Qp  Qc  

MCGM14 0.56 0.56 0.21 0.36 0.17 0.37 0.02 0.21 0.29 0.38 

NNGM15 0.68 0.68 0.22 0.37 0.20 0.37 0.02 0.26 0.34 0.42 

RNN16 0.73 0.73 0.41 0.51 0.24 0.37 0.13 0.30 0.44 0.49 

DiANNA18 0.62  0.40  0.55  0.26  0.49  

CSP17 0.74 0.74 0.44 0.53 0.26 0.44 0.18 0.31 0.49 0.52 

This work19 0.74 0.74 0.61 0.69 0.30 0.40 0.12 0.31 0.55 0.57 

pairSVM20 0.79 0.79 0.53 0.62 0.55 0.70 0.58 0.71 0.63 0.70 

2-level SVM21 0.85  0.67  0.57  0.58  0.70  

SVM_GA22 0.86 0.86 0.75 0.80 0.63 0.77 0.48 0.71 0.74 0.79 

SVR43 0.87 0.87 0.67 0.73 0.79 0.85 0.47 0.64 0.74 0.78 

S-S predictor 0.90 0.90 0.80 0.84 0.75 0.84 0.60 0.76 0.81 0.84 
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Figure 1. The formation of a disulfide bond.
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Figure 2. The flowchart of S-S Predictor.
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Figure 3. The number of disulfide proteins versus disulfide bond B in (A) 

CYS040307-NR and (B) CYS090506. 
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Figure 4. The distribution of disulfide connectivity based on disulfide pair for (A) B=2, 

(B) B=3, (C) B=4, (D) B=5, (E) B=6, (F) B=7, (G) B=8 in dataset CYS090506. 
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Figure 5. Comparison the performance based on different methods in dataset 

SP39-ID30 with (A) protein-based assessment index pQ , and (B)  cysteine 

pair-based assessment index cQ , and the disulfide bond number in searching dataset 

is the same with query protein. Square (■) represents disulfide pair method, triangle 

(▲) represents disulfide pattern method, and cross (×) represents hybrid method. 
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Figure 6. Comparison the performances based on (A) the number of disulfide bond in 

searching dataset is the same with query protein B , and (B) the number of disulfide 

bond in searching dataset include 5,...4,3,2=B , and the searching dataset is 

SP39-ID30. Protein-based assessment index pQ (■), and cysteine pair-based index 

cQ (▲) based on different criteria. 
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Figure 7. Comparison the performances based on (A) the number of disulfide bond in 

searching dataset is the same with query protein B , and (B) the number of disulfide 

bond in searching dataset include 5,...4,3,2=B , and the searching dataset is 

SP39-ID30. Protein-based assessment index pQ (■), and the accuracy sQ (×) based 

on the proteins whose disulfide connectivity have been predicted. 
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Figure 8. Comparison (A) protein-based assessment index pQ , and (B) cystein 

pair-based index cQ  based on different sequence identity in searching dataset 

CYS090506. Diamond (◆) represents B=2, square (■) represents B=3, triangle (▲) 

represents B=4, and cross (×) represents B=5.  
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Figure 9. Comparison (A) protein-based assessment index pQ , and (B) cystein 

pair-based index cQ  based on different windowsize in searching dataset 

CYS090506(w); w represents windowsize around cysteine. Diamond (◆) represents 

B=2, square (■) represents B=3, triangle (▲) represents B=4, and cross (×) represents 

B=5.  
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 >2kaiA:26_42 

 IIGGRECEKN  SHPWQVAIYH  YSSFQCGGVL  VNPKWVLTAA  HCKNDNYEVWL 

GRHNLFENE  NTAQFFGVTA  DFPHPGFN 

 >2kaiB:39_104 71_85 94_119 

 GKDYSHDLML  LRLQSPAKIT  DAVKVLELPT  QEPELGSTCE  ASGWGSIEPG 

 DFEFPDEIQC  VQLTLLQNTF  CADAHPDKVT  ESMLCAGLPG  GDTCMGDSGG 

PLICNGMWQG  ITSWGHTPCG  ANKPSIYTKL  IFYLDWIDDT  ITENP 
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  >1zr0C:7_137 25_41 109_207 116_181 148_162 

  IVGGYTCGAN  TVPYQVSLNS  GYHFCGGSLI  NSQWVVSAAH  CYKSGIQVRL 

  GEDNINVVEG  NEQFISASKS  IVHPSYNSNT  LNNDIMLIKL  KSAASLNSRV 

  ASISLPTSCA  SAGTQCLISG  WGNTKSSGTS  YPDVLKCLKA  PILSTSSCKS  

   AYPGQITSNM  FCAGLEGGDS  CQGDSGGPVV  CSGKLQGIVS  

WGSGCAKNKP     GVYTKVCNYV  SWIKQTIASN 
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  1gvzA:7_138 26_42 149_163 

  IIGGWECEKH  SKPWQVAVYH  QGHFQCGGVL  VHPQWVLTAA  HCMSDDYQIW 

  LGRHNLSKDE  DTAQFHQVSD  SFLDPQFDYD  DISHDLMLLR  LAQPARITDA 

  VKILDLPTQE  PKLGSTCYTS  GWGLISTFTN  RGSGTLQCVE  LRLQSNEKCA 

  RAYPEKMTEF  VLCATDDSGS  ICLGDSGGAL  ICDGVFQGIT  SWGYSECADF 

  NNFVFTKVMP  HKKWIKETIE  KNS 

 

 

Figure 10. The cartoon models and sequences of (A) the KALLIKREIN A (2kai:A,B), 

(B) the cationic trypsin (1zr0:C), and (C) the KALLIKREIN (1gvz:A). The disulfide 

bonds are represented in the ball-and-stick model. Purple represents disulfide bond in 

proteins are aligned with disulfide bond 26_42, green are aligned with 121_190, blue 

are aligned with 155_169, and red are aligned with 180_205 in protein KLK_PIG. 
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>2hgfA:40_66 44_54 

GQRKRRNTIH  EFKKSAKTTL  IKIDPALKIK  TKKVNTADQC  ANRCTRNKGL 

PFTCKAFVFD  KARKQCLWFP  FNSMSSGVKK  EFGHEFDLYE  NKDYIRN 
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>1gmnA:112_152 140_164 

TIHEFKKSAK  TTLIKIDPAL  KIKTKKVNTA  DQCADRCTRN  KGLPFTCKAF 

VFDKARKQCL  WFPFNSMSSG  VKKEFGHEFD  LYENKDYIRN  CIIGKGRSYK 

GTVSITKSGI  KCQPWSSMIP  HEHSFLPSSY  RGKDLQENYC  RNPRGEEGGP 

WCFTSNPEVR  YEVCDIPQCS 
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>1i71A:2_79 23_62 51_74 

DCYHGDGQSY  RGSFSTTVTG  RTCQSWSSMT  PHWHQRTTEY  YPNGGLTRNY 

CRNPDAEIRP  WCYTMDPSVR  WEYCNLTQCP  VME 

 

 

 

Figure 11. The cartoon models and sequences of (A) the HEPATOCYTE growth factor 

(2hgf:A), (B) the HEPATOCYTE growth factor (1gmn:A), and (C) the 

APOLIPOPROTEIN (1i71:A). The disulfide bonds are represented in the 

ball-and-stick model. Green represents disulfide bond in proteins are aligned with 

disulfide bond 70_96, red are aligned with 74_84, cyan are aligned with 128_206, 

blue are aligned with 149_189 and purple are aligned with 177_201 in protein 

HGF_MUNAN. 
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Figure 12. Example of disulfide patterns consisting of four cysteines c1c2c3c4 , which 

form two disulfide bonds. Three possible disulfide patterns are c1c2,c3c4( ) , 

c1c3,c2c4( ) and c1c4 ,c2c4( ), where cic j  indicates a disulfide bridge between ci and 

c j . And the corresponding cysteine spacing patterns are given by (d12,d34 ) (solid 

lines), (d13,d24 ) (dashed line) and (d14,d23) (dotted line). 



 86

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  The ribbon models of (A) the bovine pancreatic trypsin inhibitor (1tpa:I), 

(B) the nonspecific lipid transfer protein (1afh), (C) porcine pancreatic procolipase 

(1pcn), and (D) peptidylglycine-hydroxylating monooxygenase (1phm). The disulfide 

bonds are represented in the ball-and-stick model. The correctly predicted disulfide 

bridges are in red, while the incorrectly predicted in green. The molecular images were 

generated by UCSF Chimera.60
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Figure 14. Input form of S-S predictor. 
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Figure 15. Output form of S-S predictor. 

 


