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Prediction of Disulfide Connectivity from Protein Sequences

Student: Yu-Ching Chen Advisor: Dr. Jenn-Kang Hwang

Institute of Bioinformatics
National Chaio Tung University

Abstract

The disulfide bonds have great influences in stabilizing protein structures and
regulating protein functions. At present there is a gap between protein sequences and
protein structures; therefore, it would be a great help to predict disulfide connectivity
from protein sequences. However, the difficulties in predicting disulfide connectivity
from protein sequences lie in the nonlocal properties of the disulfide bridges that
involve cysteine pairs at large sequence separation. Although many scientists develop
various methods to solve this problem;. it is. still. a challenge. These methods are
limited by the number of disulfide bonds should equal or less than five, because as the
increase of disulfide bonds in:proteins the number of disulfide connectivity grows
rapidly, and it is more difficult to predictdisulfide connectivity.

In this research, I developed a method to predict disulfide connectivity and
named S-S predictor; it combines sequence alignment method and machine learning
method. The searching dataset of sequence alignment are disulfide proteins with
known structures; therefore, the advantages of this method integrate sequence and
structure information to predict disulfide connectivity. On the other hand, when
homologs of query protein can not be found, the support vector machines are used to
solve problem. I found some useful feature vectors in this research; such as the
coupling evolutionary information between the local sequence environments of
cysteine pairs, the cysteines sequence separations, and the global sequence descriptor,

amino acid content. The performance of S-S predictor based on a dataset whose

sequence identity between two proteins is lower than 30% is 0.81 and 0.84 in Q,

and Q_, respectively. The accuracy of this method is higher than other method, and
there is no limitation on the number of disulfide bond. S-S predictor is a useful and

practical tool to study disulfide connectivity, and the website of S-S predictor is
http://140.113.239.214/~ssbond.
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Chapterl

GENERAL INTRODUCTION

A protein sequence is constituted by twenty amino acids, and cysteine is one of
the twenty. The particular side chain of cysteine is thiol group (-SH); however, the
thiol-from cysteine is the most reactive amino acid under physiological conditions.
When the oxidation of two thiol groups forms a disulfide bond (S-S) [Fig. 1], itis a
covalent bond and can connect two distant cysteines. In fact, the formation of
disulfide bond is one type of post-translational. medification, and the protein is in a
reducing redox environment. Therefore, most proteins containing stable disulfide bond
in bacteria can be found in extracytoplasmic compartments or secreted into the
external medium, disulfide proteins in eukaryotic cells are located in compartment
such as the plasma membrane, the endoplasmic reticulum or secreted into external
medium. However, oxidants and proteolytic enzyme in the extracellular environment
can inactivate proteins; disulfide bond can protect proteins from damage and increase
their half-life by stabilizing protein structure.'" Generally, cysteine residues can be
classified as free cysteine, ligand-bound cysteine, inter-chain half cystine, and

intra-chain half cystine.



Disulfide bonds have great influences in determining protein structure and
mediating biological function. In structure, disulfide bonds play a vital role in the
folding process of many proteins.>® Anfinsen reduced whole disulfide cystines of
pancreatic bovine ribonuclease in vitro, then re-oxidized them, correct disulfide
connectivity and native structure was restored.* Since disulfide bond has its specific
C,—-S, and S, —S, bond lengths, 1.81 and 2.04 A, respectively, C,-S,-S,
bond angle of 104.15°°, and a single disulfide bridge can stabilize the protein by 2-5
kcal/mol.®” According to disulfide bond number and location in a protein, they can
contribute to the thermodynamic stability of the 3D structure and increase protein
stability. Because disulfide bonds‘add strong structural constraints, reduce the search
in the conformational space.*”.Proteins containing disulfide bond have diverse
functions such as hydrolase, inhibitor, hormones and toxins. For example,
ligand-bound cysteines fix heme in cytochromes.'"” Enzyme thioredoxin, which is
related with photosynthesis, seed germination, transcription, acts as a regulatory
switch of target proteins by reducing their disulfide bonds."" Cone snails are venomous
mollusks and their venoms contain disulfide-rich peptide conotoxin having two
disulfide bonds."”” Thus, the knowledge of the disulfide connectivity is vital in the
study of structure and function of proteins.

At present, there are several kinds of methods, experimental determination and

2



machine learning prediction, to solve disulfide connectivity in proteins. The
experimental methods include chemical methods, nuclear magnetic resonance (NMR)
spectroscopy, and X-Ray crystallography. From chemical experiments disulfide
connectivity can be inferred by series chemical reactions. On the other hand,
structures of disulfide proteins can be resolved by NMR spectroscopy” and X-Ray
crystallography; consequently, disulfide connectivity can be detected from protein
structures. These methods can offer correct and more confident disulfide connectivity.

Nevertheless, the sequence-structure gap is widened rapidly as a consequence of
the large-scale whole genome projects. In the absence of an experimentally
determined structure, protein sequences do-not teport reliable information relating
either the oxidized form of cysteines~or disulfide-bridge locations. Therefore, it is
necessary and helpful to predict disulfide connectivity from protein sequence by
machine learning method. First, disulfide connectivity is predicted based on graph
representation of difulfide bridges, where vertices are oxidized cystines and edges
represent a pair of cystines calculated from contact potential optimization.'* Next,
neural network predictions were used to replace contact potential optimization for
increasing predictive power.”” In a subsequent improvement'’, a recursive neural
networks and evolutionary information were used, and cysteine separation profiles

(CSPs)"” of proteins were adopted for the prediction of disulfide connectivity.

3



Furthermore, secondary structure information and diresidue frequencies based on
neural network were designed to solve disulfide connectivity.”® Meanwhile,
pattern-wise method using SVM based on feature vectors such as coupling between
the local sequence environments of cysteine pairs, the cysteine separations, and the
amino acid content were used to predict disulfide connectivity.'” On the other hand,
sequential distance between oxidized cysteines combined with SVM was also applied
to determine disulfide connectivity.”® Then, two-level models integrate SVM models
and cysteins separation search to tackle the problem.”’ Nevertheless, SVM coupled
with genetic algorithm (GA) for feature selection to remove noisy or irrelevant
features was applied to infet disulfide connectivity.” Recently, support vector
regression (SVR) based on multiple sequences feature vectors and predicted
secondary structures are used to infer disulfide connectivity. The performance of these
methods ranged from 29% to 74%, and 38% to 79% for Q, and Q, respectively.

In this thesis, I proposed a hybrid system, S-S Predictor, which combines
PSI-BLAST method and machine learning method to study disulfide connectivity.
PSI-BLAST method is used to search homologous disulfide proteins with known
structures; meanwhile, structures record the information of disulfide connectivity and
in general similar sequences may have analogous structures. Therefore, utilizing

sequence-to-structure mapping can infer the disulfide connectivity of query proteins.

4



However, not all of the query proteins can find homologs, if homologs can not be

found; feature vectors from protein sequence are prepared to feed into SVM to infer

disulfide connectivity. The flowchart is shown in Figure 2.



Chapter 2

Prediction of disulfide connectivity using blast method




INTRODUCTION

Disulfide bonds are known to play an important structural role in stabilizing
protein conformations by reducing the number of unfolded conformations.>*** Since
disulfide bonds impose geometrical constraints on the protein backbones, the disulfide
patterns may well dictate to a certain degree the overall three-dimensional (3D)
protein structures. Indeed, recent works®~* have shown that the disulfide patterns are

893349 t5 model

closely related to protein structures. There are a number of efforts
disulfide bridges or disulfide-rich systems either from protein sequences or from 3D
structures. On the other hand, disulfide bonds ‘are more than just inert structural
motifs — it is known that the functions of some: secreted soluble proteins and
cell-surface receptors depend on the cleavage of their disulfide bonds." Therefore, the
knowledge of the disulfide patterns is vital in the study of structure and function of

proteins.

5,14,15,17-19,21,22,41-43

Nowadays many computational approaches are used in predicting

disulfide connectivity. They in terms of contact potential*, neural network'®", support

1922 cysteine separation profile computations'’ and genetic algorithms

vector machine

methods™ etc., utilize restricted training data for prediction to prevent overtraining.

Now the better average performance can reach 74% in Q and 79% in Q. within B



= 2 ...5”. On the other hand, more and more protein structures are solved in the
Protein Data Bank (PDB), which is the worldwide depository of information about the
three-dimensional structures of large biological molecules including proteins and
nucleic acids.** When the protein structure is built, disulfide connectivity is also
determined; therefore, sequence-to-structure mapping techniques can be used to
identify potential disulfide bonds. The purpose of this research is to take the
advantages of huge PDB data, and extracts abundant information from it. Hence, most
information can be used to predict disulfide connectivity, and the performance of this

work can be complementary with machine learning method.

In this work, homologous “search -tool,” PSI-BLAST, was used to search
evolutionarily related disulfide proteins with PDB structure; further, according to
evolutionary relationship within PDB proteins infers the disulfide connectivity of
query proteins. On the other hand, the contribution of residues between disulfide

cysteines and the geometrical pattern of disulfide cysteines are investigated, too.

MATERIALS AND METHODS

Disulfide connectivity prediction



PSI-BLAST method was used to find homologs of query protein, and the
searching dataset includes proteins with disulfide bonds from PDB structure. There are
three kinds of methods to infer the disulfide connectivity based on the PSI-BLAST
consensus, such as, disulfide pair method which applies cystein pair as a unit,
disulfide pattern method which uses disulfide pattern as a unit, and a hybrid method
which combines disulfide pair method and disulfide pattern method to predict

disulfide connectivity.
Disulfide pair method

I used the notation ¢ = {C1 ,Cz} tordenote the cysteine pair comprising C, and
C,. For each cysteine pair, there are two possible: bonding states: o, =C, ®C,,
where @ denotes a disulfide bridge between"C, and C,, and o, =C, ®C,,
where ® denotes no disulfide bridge between C, and C, . In this way, I can define
the disulfide connectivity patterns in terms of the bonding states.

The connectivity matrix M is defined in terms of the bonding states, C OC,,
which are predicted by PSI-BLAST method. The initial matrix elements M, are set
to 0, p and g that represent the order of cysteines in query protein sequence. The

rules to construct the matrix are:

My =M, +1,if ©=® (1)



My =M, if =@ )

pa >
The score Q; of the disulfide connectivity pattern T was computed from M by
Q=) "M, 3)

Where Y ' indicates that any two index pairs (i,]j), and (i' ,j') under the
summation sign should satisfy the requirements i =i and j# j. The disulfide

pattern with the maximal score, i.e. max{Q; }, is taken as the prediction.

Disulfide pattern method

For a disulfide protein with n_.eysteinés«(i.e., c,,C,,...C, ), its disulfide pattern

is denoted by (cC;,C.C.,..),mwhere C;C/ designates a disulfide bridge formed
1 i j (Lt

between cysteines i and j ,-and the 'mumber of possible disulfide pattern is

(28][28—2)(28—4} (2}
2 2 2 )2
N, = :(28—1)!!=| |(2i—1). However, the disulfide

P B! Ll
pattern is taken as a unit and can be directly predicted by PSI-BLAST method. For
example, homologs of query protein can be found after PSI-BLAST; examine
homologs to see if disulfide cysteines of the query protein are all aligned with
disulfide cysteines of homologs. Therefore, the frequency of each disulfide pattern, T,

was calculated from homologs whose disulfide cysteines can be aligned with all

disulfide cysteines of the query protein and the frequency was assigned as score Q;

10



of the disulfide connectivity pattern T . Finally, the disulfide pattern with the

maximal score, i.e. max{Q; }, was taken as the result.

Hybrid method

This method combines disulfide pair method and disulfide pattern method. When
the disulfide connectivity of a query protein can be predicted from disulfide pattern
method, the disulfide pair method will be neglected. On the other hand, if whole
disulfide cysteines of the query protein are not totally aligned with homologs, the pair

method uses disulfide pairs to present and predict disulfide connectivity.

Performance Indices

To evaluate the performance of the classifiers, use two assessment of
measures:'*'* Q., a disulfide-bridged measure of the fraction of the correctly
predicted disulfide bridges, and Q,, a protein-based measure of the fraction of

proteins whose global disulfide pattern is correctly predicted. Q, is the more

stringent performance index. Specifically, they are defined as

RN

Q=24 4
1 &

Q, =25, 5)

11



where &, is defined for the i" disulfide bridge as

Ci

3 { 1, if the i" predicted disulfide bridge is correct
0, if the i" predicted disulfide bridge is incorrect

and N, is the total number of disulfide bridges. Similarly, &, is defined for the i"

disulfide proteins as

3 { 1, if the predicted connectivity pattern of thei" protein is correct

P10, if the predicted connectivity pattern of thei" protein is incorrect

and N is the total number of disulfide proteins.

There is another assessment of measure: Q, a pattern-based measure of the
number of proteins whose global disulfide jpattern is correctly predicted over the
number of proteins which disulfide connectivities. are predicted by PSI-BLAST

method. It is defined as

N

1
Q. =29 (6)

s i=1

where & is defined for the i" disulfide protein as

Si

3 {l,if the predicted connectivity pattern of thei™ protein is correct

0,if the predicted connectivity pattern of thei™ protein is incorrect ’

and N, is the total number of disulfide proteins whose disulfide connectivities are

predicted by blast method.

12



Datasets

There are three datasets used in this research; one named SP39-ID30, another
named CYS040307-NR, and the other named CYS090506.
SP39-1D30

In order to compare my methods with previous works'*'®, I followed the same
criteria in selecting the sequences from the SWISS-PROT database release No. 39.%
The constructed dataset contains only the sequences with experimentally verified
intra-chain disulfide bridge annotations, and excludes the sequences whose disulfide
bonds are assigned as 'probable’, 'potential' or 'by similarity'. I consider the sequences
with 2 to 5 disulfide bridges-(B'=2....,5); which account for more than 80% of
SWISS-PROT sequences. The final dataset contains 482 sequences, of which 168 are
with two disulfide bonds (B = 2), 177 three (B = 3), 95 four (B =4) and 42 five
(B =5). Then group the sequences into 4 sets according to their disulfide bond
number as predicting set— each set was selected in such a way that sequence
homology among the sets is less than 30%, and the number of sequences of each set is
approximately equal. Further, these sets are used for the 4-fold cross validation
procedures as in the previous work.'*'®

On the other hand, there are two kinds of training set for PSI-BLAST searching

datasets; one is intra-B SP39-ID30 and the other is inter-B  SP39-ID30. When the
13



disulfide bond number in training set is the same with predicting set, and these

training sets are named intra- B SP39-ID30; however, disulfide proteins with

B=2,...,5 in training set is named as inter- B SP39-ID30.

CYS040307-NR

The cys proteins in CYS040307-NR are extracted from Non-redundant PDB set,

nrpdb.040307, in National Center for Biotechnology Information (NCBI), and this

dataset is used in PSI-BLAST method for BLAST database. There are total 91,398

proteins by chain in nrpdb.040307, after filtering out non disulfide bond proteins and

selecting non redundant proteing; there pares 5;913+ disulfide proteins, and is named

CYS040307-NR. The dataset contains séquence with 1-26 disulfide bonds: 1,850

sequences with one disulfide bonds (B= 1), 1,673 two ( B = 2), 983 three (B = 3), 651

four (B=4), 231 five (B=15), 178 six (B=6), 138 seven (B=7), 75 eight (B = 8),

38 nine (B=9), 20 ten (B= 10), 10 eleven (B=11), 7 twelve (B= 12), 3 thirteen

(B=13), 5 fourteen (B = 14), 4 fifteen (B= 15), 16 sixteen (B = 16), 16 seventeen

(B= 17), 4 eighteen (B= 18), 4 nineteen (B= 19), 1 twenty-two (B= 22), 2

twenty-three ( B = 23), 3 twenty-five (B = 25), and 1 twenty-six ( B = 26). Figure 3(A)

shows the distribution of disulfide proteins versus their disulfide bond number B.

CYS090506

14



The cys proteins in CYS090506 are extracted from Non-redundant PDB set,

nrpdb.090506, in National Center for Biotechnology Information (NCBI), and this

dataset is used in PSI-BLAST method for BLAST database. There are total 81,641

proteins by chain in nrpdb.090506, after filtering out non disulfide bond proteins; the

set of 15,252 disulfide proteins, is named CYS090506. The dataset contains sequence

with 1-26 disulfide bonds: 5,537 sequences with one disulfide bonds (B= 1), 4,021

two (B =2), 2,054 three ( B = 3), 1,634 four (B=4), 635 five (B=15), 560 six ( B=6),

334 seven (B=7), 149 eight (B=28), 87 nine (B=9), 36 ten (B=10), 8 eleven (B =

11), 15 twelve (B = 12), 5 thirteen (B = 13), 12 fourteen ( B= 14), 7 fifteen (B = 15),

37 sixteen (B = 16), 66 seventeen (B = 17), 6 eighteen (B = 18), 1 nineteen (B =19),

1 twenty (B= 20), 1 twenty-orie (B= 21), 2 twenty-two (B = 22), 2 twenty-three

(B=23), 5 twenty-five (B = 25), and 1 twenty-six ( B = 26). Figure 3(B) shows the

distribution of disulfide proteins versus their disulfide bond number B.

Furthermore, in order to explore the influence of residues nearby cysteines;

disulfide proteins in CYS090506 were modified and named CYS090506(w), and w

represents window size around cysteine. In this dataset, the residues within window

size around disulfide cysteines are kept, and other residues are replaced by symbol X

in protein sequence. Symbol X has a special function in PSI-BLAST; it is used to

filter out noisy residues in protein sequence and the coupling scores with other amino

15



acids are assigned in scoring matrix.

RESULTS AND DISCUSSION

Distribution of cysteine pairs

Figure 4 show the distribution of disulfide bridges for B =2,....8 in the dataset

CYS090506. When the circles locate near the diagonal mean the positions of two

cysteines are nearby in the sequence, the circles deviate diagonal represent the

location of cystein pairs are distant in the;sequence. The positions of a disulfide pair

are nearby in the sequence in thé'case of ‘B:1=2; 5, and 8 [Fig. 4(A, D, G)]; however,

the positions of cysteines are distant'in’-B+=#456, and 7 [Fig. 3(C, E, F)].In B =3

[Fig. 4(B)], some locations of cysteine pairs are close in sequence; some are distant.

In the case B =2 [Fig. 4(A)], two of the most popular disulfide pairs are C,C, and

C,C,, and the dominant disulfide connectivity is [C,C,,C,C,]. As the increase of

disulfide bond number, the distributions of disulfide pairs become more complicated

[Fig. 4(B-G)]. When B = 3 [Fig. 4(B)], disulfide pairs C,C,, C,C, and C.C

are the most dominant, C,C, and C,C, are second dominant, and the frequent

disulfide pattern 1s [C,C,,C,C,,C,C(]. For B = 4 [Fig. 4(C)], the disulfide pairs

C,C, and C,C; are most dominant ones, and the others are C,C,, C,C, and

16



C,C,, then the most popular disulfide connectivity is [C,C,,C,C,,C,C,,C,C,]. For

B =5 [Fig. 4(D)], most popular disulfide pairs are C,C,,, the others are C,C,,

cC,, CC,, CC,, and C,C,; two dominant disulfide connectivity are

[CC,.C.C,.C.C.CC,.CC,] and [CC,,C,C,C,C,.CC,C)C,] In B =6

[Fig. 4(E)], the dominant disulfide pairs are C,C,, C,C,, C,C,,, C.C, , C,C,,

and C,C, ; dominant disulfide connectivity 1s

[c.c,.C,C,.C,C,,.C.C,,.C,C,,C,C, ]. In the case B =7, C,C,, C,C,, C,C,,

cc,, ¢cc,, cC,, CC,, and C,C,, are dominant disulfide pairs, and

[ cC;.C,C,,CC,,C.Cu.CC .CE, CC ] and

[CC;.C,C,,C,C,C,C,;.C.CL.CC, .C,C;;] arc dominant disulfide connectivities.

Finally, in the case B = 8, the"dominant disulfide pairs are C,C,, C,C,, C,C,,,

and C,C, ; dominant disulfide connectivity are
[ C1C3 ’C2C4 ’C5C7 ’C6C8 ?C9C117C10C12 ’C13C15 ’C14C16 ]9
[ C.C,.C,GC,.CCy;,CCy6,C,C,C5C 1, ,CC,CLC ] and

[C1C6 ’C2C3 ’C4C5 ’C6C15 ’C7C14 ?C8C9 ’CIOCII 7C12C13 ]

Disulfide connectivity prediction

After homology search, there are three methods to determine disulfide

17



connectivity. One is disulfide pair method uses disulfide pairs to represent disulfide
connectivity; the other one is disulfide pattern method directly uses disulfide
connectivity as prediction unit, and finally is hybrid method. The performances of
three methods are very similar no matter in Q, [Fig. 5(A)] or Q. [Fig. 5(B)];
however, the hybrid method is equal or slightly better than other methods. Therefore,
the hybrid method is used for following experiments. It is reasonable use disulfide
pattern method first, because whole disulfide cysteines are all aligned at once means

this alignment is conserved and significant.

The disulfide number in searching dataset

In order to compare the performance with previous results, four cross-validations
are used by PSI-BLAST in SP39-ID30. There are two different searching databases,
one is intra- B dataset where the disulfide number, B, in searching database is the
same with query proteins. The other is inter- B dataset whose disulfide number, B,
in searching database is not only the same with query proteins but also includes other
disulfide bond number proteins expect query proteins. The average accuracies by

using intra- B dataset [Fig. 6(A)] is 0.22 and 0.24, and inter- B dataset [Fig. 6(B)] is

0.47 and 0.49 for Q, and Q., respectively. There is an over 20% improvement with

18



inter- B dataset as searching dataset, implying the existence of sub patterns in

disulfide connectivity. For example the homologs of protein KLK PIG are list in table

4, and the native disulfide connectivity of KLK PIG is [26 42, 121 190, 155 169,

180 205] where 26 42 represents the positions of cysteines in sequence, 26 and 42,

forms a disulfide bond. The disulfide connectivity of KLK PIG is constituted by

piecing up the sub patterns from homologs; however, the sub patterns of KLK PIG

can be classified as four groups such as [121 190, 155 169, 180 205], [26 42,

121 190, 155 169], [26 42, 155 169], and [26 42]; they are named according to the

locations of disulfide bonds in the query protein.:Some protein structures were further

examined [Fig. 10(A-C)] based on different sub patterns of query protein. In figure

10(A), 2kaiA offers a sub pattern {26 42] and thecelor of the disulfide bond is purple;

besides, 2kaiB provides a sub pattern [121 190, 155 169, 180 205] and the color of

disulfide bonds are green, blue and red, respectively. Combination the sub patterns of

2kaiA and 2kaiB, the native disulfide connectivity of query protein is completed. In

figure 10(B), the sub pattern of 1zrOC is [26 42, 121 190, 155 169]; the colors of

these disulfide bonds are purple, green, and blue, and the sub pattern of 1gvzA is

[26 42, 155 169], and the colors of disulfide bonds are purple and blue. The

differences between figure 10(A) and figure 10(B) are 2kai contains two protein

chains, 2kaiA and 2kaiB; moreover, there is an inter-disulfide bond between china A
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and chain B, and the color of this bond is CPK; also has another intra-disulfide bond

[94 119] (red) connect loops. Examining figure 10(B), there is only one protein chain,

1zr0C, and has two additional intra-disulfide bonds (CPK). One locates similarly with

inter-disulfide bond in 2kai, and the other lies ahead on the big helix; however, there

is no intra-disulfide bond connect loops which is relative to red disulfide bond in

figure 10(A). On the other hand, 1gvzA [Fig. 10(C)] involves one protein chain, when

it compares with figure 2kai; it lack two disulfide bonds green and red in 2kai, and it

also contains a intra-disulfide bond, which locates similarly with inter-disulfide bond

in 2kai. Although the number of disulfide bonds.and the locations of these disulfide

bonds within these four protein.chains are different, their protein structures are similar.

It also implies that disulfide connectivity might -be modified during evolution to

maintain the protein structure to keep protein function.

Another example is HGF_ HUMAN; its native disulfide connectivity is [70 96,

74 84,128 106, 149 189, 177 201], and the sub patterns are list in table 5; however,

there are three types of sub patterns, [70 96, 74 84], [149 189, 177 201], and

[128 206, 149 189, 177 201], and their structures are shown in figure 11(A), (B), and

(C), respectively. The structure of 2hgfA [Fig. 11(A)] is similar to the upper part of

IgmnA [Fig. 11(B)]; however, there is a sub pattern in 2hgfA, and there is no disulfide

bonds in that part of 1gmnA. Furthermore, there is an overlap of sub patterns between
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IgmnA and 1i71A [Fig. 11(C)], the structure of 1171A is analogous with the lower
part of 1gmnA, and there is a one more disulfide bond in 1i71A. Therefore, sub
patterns of specific disulfide connectivity might carry their own structures, be
modified during evolution, reveal evolutionary information, and might be used in help
constructing phylogenetic tree.

In fact, not all disulfide connectivity of query proteins can be predicted by
PSI-BLAST method; it needs to have homologous proteins. Therefore, a performance

index Q. is used to evaluate the accuracy based on the disulfide proteins whose

S

disulfide connectivity can be predicted by PSI-BLAST. According to figure 7, the

performance index Q, is higher than Q, not only in intra-B dataset [Fig. 7(A)]

but also in inter- B dataset [Fig. “7(B)]. However, it means if the disulfide

connectivity of a query protein can be predicted by PSI-BLAST method, the average

accuracy Q 1s 0.5 and 0.72 in intra- B dataset and inter-B dataset, respectively.
For this reason, homologous search is a confident method to predict disulfide

connectivity.

Performance based on different searching datasets

In Table 2, the average accuracy in SP39-ID30 is 0.47 and 0.49 for Q, and Q_,
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respectively, in CYS040307-NR is 0.90 and 0.91; meanwhile, in CYS090506 is 0.95
and 0.97. As the searching datasets are larger, it includes various disulfide proteins and
involves more disulfide information; therefore, the accuracy is greatly improved. It
also implies when PSI-BLAST method are used to predict disulfide connectivity, the
abundance of disulfide protein dataset is necessary. Otherwise, as the disulfide bond
number is raised, the accuracy is decreased; it is reasonable because aligning more
cysteines with homologs are getting harder and disulfide environment is slightly

different in proteins with distinct disulfide bond number.

Performance based on different sequence‘identity

The accuracies rise in Q, [Fig..8(A)] and” Q. [Fig. 8(B)] because of higher

similar of sequence identity. When the sequence identity among query protein and
target proteins is between 0 to 20%, it doesn’t have any contribution in predicting
disulfide connectivity. However, in 0 to 30% the performances of Q, and Q. in
B =5 are 0.02 and 0.15 respectively; average performances are 0.29 and 0.30.
Generally 30% sequence identity is a threshold to find a template in homology
modeling; similarly 40% sequence identity is a threshold in disulfide connectivity

prediction. Therefore, it is consistent more alike between two sequences are more
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parallel in their properties such as structures, functions and so on. Furthermore, when
sequence identities raised from a range of 0 to 30% to 0 to 40% , the accuracies
showed sharp increases. For example, Q, and Q. are equal or below 40% versus
disulfide bonds B in sequence identity 0-30%, and are equal or below 60% in
sequence identity 0-40%. Nevertheless, the accuracies predicted from sequence
identities ranging from 0-40% to 0-90% are gradually increased and sharply increased
from 0-100% identity. When query and target proteins are more similar, the more

reliable information can be used for prediction disulfide connectivity.

Performance based on different windowsize

Only consider the influences of reésidues nearby disulfide cysteine and locations
of disulfide cysteines in protein sequence to disulfide connectivity prediction;

therefore, reserve the residues with windowsize W around disulfide cysteines and

replace other resides as X. From figure 9 the performances in Q, [Fig. 9(A)] and
Q. [Fig. 9(B)] are constantly upward according to the increase of windowsize until w

= 13, and the performances are 0.84 and 0.84 in B=2 for Q, and Q., 0.84 and

0.85 im B =3, 091 and 093 in B = 4, 0.86 and 0.88 in B = 5, average

performance are 0.85 and 0.87. However, when w =25 Q, and Q, are 0.92 and
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092in B =2,0.88and 0.88in B =3,094and 095in B =4, 0.88 and 0.90 in

B =35, finally average performances are 0.90 and 0.91 for Q, and Q, respectively.

Therefore, the average performances can reach 0.91 and 0.92 for Q, and Q. when

w > 25.

Table 3 summarizes the performances based on different windowsize in
CYS090506, and the performances in CYS090506 are better than CYS090506(25) in
B =2..5; therefore, the overall performances of CYS090506 are higher than
CYS090506(25), the improvement are about 5% and 4% in Q, and Q, respectively.
It demonstrates that residues nearby disulfide cysteines contain sufficient information
and play an important role in-disulfide bonds forming; meanwhile, other residues
carry less related information. Therefore, the formation of disulfide connectivity is
mostly determined on the local residues around disulfide cysteines, the suitable

windowsize is 25.

CONCLUSION

The better performance of PSI-BLAST method is established by abundant

information of searching dataset; therefore, searching dataset CYS090506 is used for
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this method. Meanwhile, the accuracy of PSI-BLAST method using inter- B
searching dataset is better than using intra- B searching dataset; it reveals that there
might exist sub patterns of specific disulfide connectivity. Furthermore, those proteins
with sub patterns of specific disulfide connectivity might be evolutionary related, and
these sub patterns might play an important role in protein structures or protein
functions during evolution. This research also indicates sequence identity is higher
between query protein and homologs, and then the performance of disulfide
connectivity prediction is better; however, the lowest threshold of sequence identity is
30%. Moreover, local residues with: windowsize 25 around disulfide cysteines carry
significant messages to direct the formation of disulfide connectivity, and the overall
performances are 0.90 and 0.91 for. Q; "and~Q_ , respectively. This is consistent with
previous studies that local information brings sufficient knowledge to predict disulfide
bonds. However, whole residues are utilized in the prediction, the average
performances reach 0.95 and 0.95 for for Q, and Q, respectively. It describes that
local resides and non-local residues possess different information, and there
information are complementary. The limitation of this prediction is that when a novel
disulfide protein appears, the homologs of the query protein may not be found,

therefore, machine learning method will be applied, this is in chapter 3.
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Chapter 3

Prediction of disulfide connectivity from protein sequences
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INTRODUCTION

Recently, computational biology has made significant progress in the prediction
of the bonding states from protein sequences.** A number of approaches based on

4799 statistical analysis® or support vector machines*® have been

neural networks
shown to be quite effective in predicting the bonding state of cysteine (around 81-90%
prediction accuracy). However, predicting disulfide connectivity from protein
sequences remains a challenging problem in computational biology. This is because
the disulfide bridges are non-local in nature (i.e., though the two cysteines that form
the disulfide bridge are close in 3D space, they may be far apart from each other in the
sequence). Hence, the prediction of disulfide connectivity requires extracting
information about spatial proximity. of cysteing pairs from one-dimensional protein
sequences. The problem is further complicated by the rapid increase of possible
disulfide patterns as the number of disulfide bridges increases. For example, when the
number of disulfide bridges is 2, there are 3 possible disulfide patterns; but when the

number of disulfide bridges increases to 5, the possible number of disulfide patterns

rapidly increases to 945.

In general, disulfide-predicting approaches can be classified as two kinds,

pattern-wise method and pair-wise method; furthermore, pattern-wise method utilizes
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disulfide connectivity as unit and pair-wise method is in terms of cystein pair as a
base to predict disulfide connectivity. In fact, pair-wise method emphasize local
environment of two disulfide cysteines, use local sequence information as an input. To
the best of my knowledge, the first attempt to predict the locations of disulfide bridges
directly from protein sequences based on pair-wise method was done by Fariselli and
Casadio." They reduced disulfide connectivity to the graph matching (GM) problem
in which the graph vertices are equivalent to the residues of cysteine-forming disulfide
bridges, and the weight edges contact potentials. Then, the Monte-Carlo (MC)
simulated annealing method is usedito optimize the weights and the disulfide bridges
are then identified by finding the maximal weight perfect matching. This method will
be referred as MCGM. Further, Fariselli et al."> improved their results by using the NN
to predict the cysteine pair wise interactions. This method will be referred to as
NNGM. Next, Ferre and Clote'® capture secondary structure information and diresidue
frequencies based on neural network. Furthermore, Tsai et al.*® apply sequential
distance between oxidized cysteines using SVM to generate bonding potentials of

cysteine pairs.

In the researches of pattern-wise method, Vullo and Frasconi'® use an ad hoc
recursive neural network (RNN) to predict disulfide connectivity. Later, Zhao et al."”

compare cysteine separation profiles from testing and template dataset to solve this
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problem. Next, Song et al.” use multiple sequence feature vectors such as
cysteine-cysteine coupling pair; amino acid compositions etc. and secondary structure
rely on support vector regression (SVR) to predict disulfide connectivity. On the other
hand, Chen et al.*' develop a two-level hierarchical framework combining pair-wise

and pattern-wise method.

In general, these approaches predict 29-74% of the disulfide patterns for a
dataset sharing less than 30% sequence identity, after a 4-fold cross validation
procedure. In this research”, I use SVMs based on feature vectors such as the coupling
between the local sequence envirenments of cysteine pairs, the cysteine separations,
and the amino acid content. Later, this method is modified® as disulfide pairs to
present disulfide connectivity and genetic algorithm are used for optimizing the

parameters.

MATERIALS AND METHODS

The support vector machine

Support Vector Machine (SVM)™ has found many applications*>'™ in
computational biology and has been shown to be a quite effective machine-learning

method. Its basic idea is to map data into a high dimensional space and find a
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separating hyperplane with the maximal margin between two kinds of data. Since this
method is quite well known, we give only a brief description of the basic theory
behind the SVM. The SVM is basically a binary classifier. Given training vectors
X;, 1=1..,1 and a vector y defined as: y,=1 if X, is in class [, and y,=-1 if
X; 1s in the class II. The support vector technique tries to find the separating
hyperplane WTXi +b=0 with the largest distance between two classes, measured

along a line perpendicular to this hyperplane, which is equivalent to solving the

following problems:
1 I
. T T
min_w'w+ C(ggi) and Y, [(w g )b ]2 1- 4, (7)

Constraints Y, [(WT ¢(Xi))+ b]Z 1-¢ lallow that training data may not be on the
correct side of the separating hyperplane-w'X+b=0. C is the penalty parameter to
be optimized. In practice, the explicit form of @#(X) is not required, and we only need

to calculate the kernel function given by K(Xi,x j)z ¢(Xi)T ¢(X j). We use the Radial

i =xi]

2
Basis Function (RBF) kernel given by e for all the computations, where y is

the kernel parameter. All the SVM calculations are performed using LIBSVM.* For
SVM training, a few parameters such as the penalty parameter C and the kernel

parameter y of the RBF function must be determined in advance. Choosing optimal

parameters for support vector machines is an important step in SVM design. In this
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work, we use the cross validation on different parameters for the model selection.”

Data sets

1416 and is

SP39-1ID30 is used for comparing this method with previous works
classified as four sets to perform 4-fold cross validation procedures. Dataset,
SP39-1D30), is extracted from the SWISS-PROT database release No. 39*°, and there
are total 482 proteins with with 2 to 5 disulfide bridges (B =2,...,5); furthermore, the

sequence homologous within proteins are less than 30%. The details of SP39-ID30,

please see methods in chapter 2.

The feature vectors

The selection of relevant features in large and complex biological data sets
significantly affects the effectiveness of the SVM method. We select three types of
feature vectors: the coupling between the local sequence environments of cysteine

pairs, the cysteine sequence separations, and the amino acid content.

The cysteine-cysteine coupling

A sequence window of size 2l+1 amino acids centered on the cysteine is used

to describe the neighboring sequence environment of the cysteine. Evolution
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information of the protein sequence is included in the window by using the sequence
profile generated by PSI-BLAST,*® i.e., the position specific substitution matrix
(PSSM). The use of the PSSM has the advantage of avoiding the time-consuming
multiple-sequence alignment procedures. The PSSM of a protein sequence isa L x20
matrix, where L is the sequence length and 20 is the number of amino acid types
(the amino acid type is numbered from 1 to 20). The matrix element p;; of the PSSM
represents the log-odds score of the i" amino acid of type j. Each 20-clement row
vector of the PSSM represents the distribution of the occurrences of 20 amino acid
types at the specific position. Let W, =(ay,,...,a8,,,8,,,,,...,8;,,) denote the
sequence window of size 2l|%1%centered dround the bonded cysteine at the i
position, where a, is the k"amino aeid. " A20-element vector v, = (V" v)",...v}})
associated with the sequence window w, is defined, where v," is the PSSM
element of the amino acid type K. If the amino acid of a given type occurs more than
once within the window, v," is the sum of the associated PSSM elements. The

+th

coupling between the i" and j" cysteines is computed by Si =Ci’vWj +ctv

1w

where c| is the PSSM element of cysteine type at the k™ row. For a given disulfide

pattern, sum up all the possible cysteine pairs to get S= Zsij . The symbol S is used
ij

to denote the cysteine-cysteine coupling of disulfide patterns. After preliminary
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experiment, set the window size to be 21 for B=3 and 5, 7 for B=2, and 27 for

B=4.

Cysteine-spacing patterns

For a disulfide protein with n cysteines, i.e., C,,C,,...,C,, its disulfide pattern is

denoted by (c.C

ivjo

CiCj,...), where cC; designates a disulfide bridge formed between

cysteine i and j. For a given disulfide pattern (c,C

iC;,CiC;...), there is an associated
cysteine spacing pattern given by (d,d;;,...), where d; is the sequence spacing c;
and C;. Anexample is given in figure 12. For a protein with four cysteines c,C,C,C,,
which form two disulfide bonds, there will be three*possible disulfide configurations:
C,=(ccCC4¢,), C,=(cCs,C,0;) and “Cy=(ccC,,65C;). The three corresponding

cysteine spacing patterns are ‘i given. by D =(d,.d;,) , D,=(d;.d,,)

and D, =(d,,,d,;). The symbol D is used to denote the cysteine separation vector.

Amino acid content

Amino acid composition has been shown to be a useful global sequence
descriptor in fold recognition,” and in the prediction of the bonding states of
cysteines® and protein subcellular localization.> Amino acid composition is
represented by the composition vector A=(a,,a,....,a,,), where a, =n,/n,. Here n,

is the number of occurrences of the amino acid of type k and n, is the total number

33



of amino acids of the query sequence. The notation A 1is used to denote the encoding

of the amino acid composition.

Performance Indices

Q, and Q. are used to evaluate the performance of disulfide connectivity, and

the definitions can be seen in Methods of Chapter 2.

RESULTS AND DISCUSSIONS

Table 6 summarizes the performances of SVMs based on various encodings. The
results computed from the random predictor is also listed, and referred to as R, as the
reference of the base performance. The Q, and Qof the random predictor are given
by 1/2B-1)!! and 1/(2B-1), respectively." In general, the pattern-based Q, is
lower than the disulfide bridge-based Q,, since the former counts only those proteins
whose complete disulfide patterns are correctly predicted. In the case of B =2, both
D and S classifiers perform similarly (67%). However, it is interesting to note that
the much simpler A classifier, which uses only global sequence information of amino

acid composition, gives fairly good results (61%). In the case of B=3, the
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differences in the predictive performance among the classifiers start to show
themselves. The D classifier performs significantly better, and, in terms of the more

stringent Q,, it is 16% and 7% higher than A and S, respectively. Note that the D

encoding does not contain any information about the explicit amino acid sequence
other than the cysteine separations. This is consistent with previous works>~
indicating that disulfide patterns and cysteine separations are closely related to each
other and that disulfide patterns can be effectively used to detect remote homologues
undetectable by the sequence alignment methods. In the case of B=4 and 5, the
prediction accuracies of the SVMs, though significantly better than those of the
random predictor, are not yet practical at present. The poor results for these cases are
due to the relatively smaller numbet of the reliably annotated proteins with higher
number of disulfide bridges in the dataset (see the Datasets Section). However, the
situation is expected to improve when more known structures are available in the
future. On the other hand, when comparing the results of the D classifiers with those
of the random predictor R, there is a phenomenon that, the ratios of Q, between D

and R are 28 and 120 for B=4 and 5, respectively, indicating that the SVM is still

effective in these cases.

Using multiple feature vectors can improve on the performance of the SVM

classifiers based on a single feature vector type has previously shown in many
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biological applications **>*. I selected the following linear combinations: D+ w,A,
D+w,S and D+w,A+w S, where w, is the weight associated with the d
encoding. After preliminary experiment, we set the weights to be w, =1 and
W =0.001. For the sake of simplicity, I use the simpler notations D+ A, D+S and
D+ A+S, with the understanding that w, and wg are omitted from the notations.
Table 7 compares the performances of the SVMs based on the multiple feature vectors.
As expected, the SVMs based on the multiple feature vectors in general perform better

than those based on a single feature vector type.

Figure 13 shows some typieal examples of-the predictions by the D+ A+ S
classifier. Figure 13(A) shows the case of B'= 3, ltpa:1,”” which is a bovine pancreatic
trypsin inhibitor, Figure 13(B) the case of B = 4,".*1afh,”® a nonspecific lipid transfer
protein, and Figure 13(C), the case of B = 5, 1pcn,” a porcine pancreatic procolipase.
In these cases, the disulfide bridges are all perfectly predicted. The number of
incorrectly predicted disulfide bridges, if any, will be either greater than or equal to 2,
since one incorrectly predicted disulfide bridge will necessarily give rise to another
one. An example is given in Figure 13(D). The observed and the predicted disulfide
patterns of 1phm® ( peptidylglycine -hydroxylating monooxygenase ) are
[1-6,2-4,3-5,7-10,8-9] and [1-6,2-4,3-8,7-10,5-9], respectively (the incorrect

predictions are in italics). Hence, in the case of B = 2, the cysteine pair-based measure
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Q.of a protein is either 0 or 1, while in the case of B =3, Q, is 1, 1/3 or 0.

Table 8 compares the results of the D+ A+ S with those of other methods.

Using 50% of accuracy of Q, as threshold, the overall prediction accuracy of
D+S+A is above 50% (Q,=0.55 and Q,=0.57), which is higher than those
from methods such as MCGM, NNGM, RNN, DiANNA, and CSP, which give
0.29-0.49 in Q, and 0.38-0.52 in Q.. Besides, these methods are all pair-wised
method, except D+ A+ S. MCGM applies contact potential to predict bonding state
of disulfide pair, NNGM uses neural network, RNN uses evolutionary information
based on recursive neural networks, DIANNA employs secondary information and
diresidue frequencies with neural networks-and CSP calculate the smallest divergence
value between cysteine separation‘profiles of query protein and templates. The feature
vectors of these methods focus on local environment of disulfide pairs; or protein
length. On the other hand, performances of some methods are better than this work
such as pairSVM, 2-level SVM, SVM_GA, SVR; furthermore, pairSVM and the first
level of 2-level SVM utilize local amino acids and distance between disulfide pair as
feature vectors, second level of 2-level SVM uses output of first level, cysteine
separation profile, and protein length as input of SVM. Their performances are 0.63

and 0.70 in Q, for pairSVM and 2-level SVM, respectively. However, the

performances of SVM_ GA are based on my feature vectors, SVR also utilizes my
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feature vectors and others, and their average performances are all 0.74 in Q,. The
feature vector cysteine-cysteine coupling possess the local environment information of
disulfide connectivity, and evolutionary interaction between two disulfide cysteines;
amino acid contents show the global information of whole protein sequence;
furthermore, cysteine spacing patterns represent the relative distances between
disulfide cysteines. It demonstrates that these feature vectors are important and useful

in prediction of disulfide connectivity.

CONCLUSION

Though the SVM is known to be a powerful machine learning method, due to the
complexity of biological data, the identification and selection of relevant biological
features becomes an important issue in the applications of SVMs to biological
problems. In this work, I tested SVMs in the prediction of disulfide connectivity using
biological features characteristic of disulfide bridges. My results indicate that both
cysteine-cysteine sequence couplings and cysteine separations are important features
in predicting disulfide connectivity. This is consistent with the previous studies®

indicating that a close relationship exists between cysteine separations and disulfide

patterns, and that such a relationship can be utilized to identify the remote homologs
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undetectable by sequence alignments. I showed that the SVM based on the cysteine
separations give the best predictive performance among the SVMs based on the single
feature vector. I also showed that the SVMs based on the multiple feature vectors

out-performs those based on the single feature vector.
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CHAPTER 4

S-S Predictor: a disulfide connectivity prediction server
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INTRODUCTION

Cysteines stand an important role in protein sequence; not only two oxidized
cysteines can form a disulfide bond but also some cysteines modulate the protein

functions 3,23,25,26,28,

6192 Therefore, prediction the bonding state of cysteines can help in
determination protein structure and infer the influence of cysteine in protein function.
As we known, disulfide bond is a distant bond; it connects two distant cysteines;
therefore, constraints the searching space of protein sequence from denatured state to
native state. On the other hand, ligand-bound cysteines are involved in protein
function, for example, inner mitochondrial membrane protein sco 1p that contains a
CxxxC motif** and this motif isyinvolved ifr copper transport. In fact, a number of

46-49,65-67

computational approaches are’'developed to predict the bonding states of

cysteines. Chen et al.*

develop a method to predict the bonding states of cysteines
using SVM based on multiple feature vectors and the cysteine state sequences;
consequently, the performance is 90% in overall prediction accuracy and 0.77
Matthews correlation coefficient.

Hence, according to the previous researches, disulfide connectivity can be
predicted in terms of the knowledge of bonding state cysteines. Disulfide bonds play

an important role in stabilizing protein structure and regulating protein function.

Therefore, the ability to infer disulfide connectivity directly from protein sequence is
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valuable in both structural modeling and functional analysis. The previous study”
showed that disulfide proteins with the same disulfide connectivity are usually having
similar folds, even if these proteins have very low sequence identities. The disulfide
connectivity prediction has been investigated by a variety of computational

methodsl4,l6—22,42,43

with the prior knowledge of bonding states of cysteines. However,
Lu et al. use the cysteine-cysteine coupling, cysteine spacing patterns, and amino acid
content feature vectors' based on SVM and adjust parameters by GA , the average
performance is 74% in Q, and 79% in Q.

In general, there are two stages i predicting disulfide connectivity, first predict
the bonding states of cysteines,-and then infer'the disulfide connectivity from oxidized
cysteines. However, during the“two-part predictions, the overall performance will
decrease. In my research, homologous search is used to solve this problem; it can
directly predict disulfide connectivity by sequence-to-structure mapping without
knowing oxidized cysteines in advance, but not all query proteins can find homologs.
Therefore, 1 develop an approach to predict disulfide connectivity from protein
sequences, which is referred as S-S Predictor (http://140.113.239.214/~ssbond). The
S-S Predictor is a hybrid method based on both sequence alignment and machine

learning method. It first performs PSI-BLAST search to identify the sequence

homologs that have known disulfide connectivity. The S-S Predictor then predicts the
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disulfide pattern of the query sequence based on the similarity of the cysteine

separation vectors. If no homologs of known disulfide patterns are found, the S-S

Predictor switches to the support vector classifier to predict the disulfide patterns.

The S-S Predictor integrates both sequence alignment and the machine learning

method to predict disulfide connectivity. This method will be useful to biologists

interested in the study of disulfide proteins. The S-S Predictor server can be accessed

from http://140.113.239.214/~ssbond.

MATERIALS AND METHODS

Dataset

There are two dataset used in this research; one is SP39-ID30, which contains

482 disulfide proteins, and is divided as four sets for 4-fold cross validation; the other

searching dataset for PSI-BLAST is CYS090506, which contains 15,252 disulfide

proteins with known structures. The details of these dataset are described in the

Methods in Chapter 2.

Disulfide connectivity prediction

According to the PSI-BLAST consensus, the hybrid method was applied to

43



predict disulfide connectivity. (Please see the Methods in Chapter 2.)

Support vector machine
(Please see the Methods in Chapter 3.)
Feature vectors

Cysteine-cysteine coupling, cysteine spacing patterns, and amino acid content
feature vectors are used in this research (Please see the Methods in Chapter 3.), and
SVM_GA* is adopted as the machine learning method. Therefore, disulfide
connectivity is presented as cysteine pairs in machine learning part of this predictor,
and there are two kinds of cysteine pairs CP;-and CP, . CP, uses one cysteine pairs,
and then CP, uses two cysteine ‘pairs as a unit to display disulfide connectivity. For
example, the native disulfide connectivity is [C,C,,C,C,]; however, CP, method
shows this disulfide connectivity as
[C,®C,C ®C,C ®C,C,&C,C,&C,,C,R®C,,], and CP, method shows this
disulfide connectivity as [C, ®C, -C, ®C,,C,®C,-C,®C,,C, ®C,-C, ®C,],
where @ denotes bonding state between two cysteines, and & denotes
non-bonding state between two cysteines. Furthermore, the bonding states of disulfide
pairs are predicted by SVM. Finally, cysteines are identified as vertices and disulfide

bonds are presumed as edges; therefore, finding correct disulfide connectivity is
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treated as computing the maximum-weight perfect matching ®.

Feature selection

Genetic algorithm (GA)* is used to optimize feature selection such as an
m-dimensional vector, parameter C and the kernel parameter 7 of the SVM. There
are three steps in GA: selection operator, mutation operator, and crossover operator;
meanwhile, the prediction accuracy of disulfide connectivity is defined as fitness
function. N solutions are produced in initial population, and denotes as 0" ; half of
indicated as mother population.-In'the step of selection operator, it determines the best
solutions of father and mothér i 7" population based on fitness function.
Furthermore, there are two types of mutations in mutation operator, first every bit in
U, = 0.1; second randomly choose a bit from each feature vector to be mutated in

Ny,,..n - Finally, crossover operators are performed between n,, , and n, , where

2p>°

p=1,.,N/2, and if the crossover rate is less than crossover threshold x, = 0.5,

one-point crossovers are implemented.

S-S Predictor process
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The flowchart of S-S predictor is described in figure 2. First, the query protein

searches for homologous disulfide proteins in dataset CYS090506 by PSI-BLAST. If

whole bonding cysteines in a query protein are totally aligned with some homologous

disulfide protein, then calculate the frequencies of disulfide connectivity appeared in

the matched homologs and the number of all possible disulfide connectivity is

(2B—1)!"! where B is the number of disulfide bond. Finally, assign maximal

number of disulfide connectivity as a result. In fact, not all of bonding cysteines in

query protein can be totally fit with cysteines in homologs; therefore, treat disulfide

pair as a unit, count the number ,of various disulfide pairs, B (2B —1), in partial

matched homologs, and assign ‘disulfide cennectivity with maximal number of

disulfide pairs as the result. When homologs of the-query protein can not be found by

PSI-BLAST, feature vectors of a query protein are prepared and feed into SVM with

GA optimization to predict disulfide connectivity. In summary, according to the

aligned level of bonding cysteines between query protein and homologs, if total

bonding cysteines are aligned with homologs, the PSI-BLAST method in terms of

disulfide connectivity as basis to predict disulfide connectivity, or in terms of disulfide

pair as basis. Consequently, when no homologs can be found with query protein, the

SVM_GA is used to predict disulfide connectivity.
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RESULTS AND DISCUSSION
Interface

The website of the S-S predictor is http://140.113.239.214/~ssbond, and the input
interface is shown in figure 14. The main options in the interface are as follow.

Predict options The default value of the options is “let me guess the
positions of oxidized cysteines”; S-S predictor can predict the bonding states and
disulfide connectivity at the same time by PSI-BLAST method. If the oxidized
cysteines are understood in advance, then users can check the option of “input the
positions of oxidized cysteines”, .and input the.positions of oxidized cysteines in
sequence at the same time; however, the pesitions of oxidized cysteines should be
separated by a blank space.

Query sequence A query protein sequence is presented as standard amino
acid one-letter codes, and FASTA format is accepted in this predictor; therefore, users
can write annotation of the query protein after the sign of “>". Meanwhile, spaces and
newline will be automatically stripped.

Upload file  Offer another choice for users, not only can copy paste a query
protein in the interface, but also can upload query protein sequence from text file as
FASTA format.

When users choose proper options from input interface, push “Submit” button to
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send the query information. Consequently the output interface is shown as figure 15,
the main contents includes:

Prediction method It can tell users the disulfide connectivity is predicted by
blast method or SVM method; furthermore, users can click Blast method to see the
result of alignment.

Sequence label The FASTA format is accepted in input interface; therefore,
what users write after “>" will be recorded in this part for labeling the query sequence.

Sequence length It records the number of amino acids in a query protein.

Number of bonded cysteines It records.the number of cysteines which are
related with disulfide bonds in a-query protein.

Number of free cysteinesIt records the number of cysteines which do not
participate the forming of disulfide bonds in a query protein.

Number of disulfide bonds It records the number of disulfide bonds in a query
protein.

Predicted disulfide connectivity It presents the disulfide connectivity of a
query protein; meanwhile, disulfide bond between two bonded cysteines is connected
by “-” and every disulfide bond is separated by a blank space.

Output sequence It shows the query protein sequence and the format is one

row contains fifty amino acids and every ten amino acids are separated as a blank
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space. Furthermore, the positions of disulfide cysteines are labeled and every pair of
disulfide bonds is linked by a red line. Therefore, it is clear and convenient for users to
identify the locations of disulfide bonds and positions of disulfide cysteines among

the query sequence.

Performance

Compare the performances of PSI-BLAST method, SVM_GA, and S-S predictor
[Table 9] according to dataset SP39-1D30 with 4-fold cross validation, and the overall
accuracies of SVM_GA are 27% and 30% better than PSI-BLAST in Q, and Q;
however, this is because the advantages of PSI-BIZAST method are based on sequence
homologous, the similarity of évery two séquences within SP39-ID30 is equal or
lower than 30%. Otherwise, SVM_GA can capture sufficient information to predict
disulfide connectivity no matter what the sequence similarities are between query
protein and training dataset. Consequently, the performances of S-S predictor, a hybrid
method of PSI-BLAST and SVM_GA, are 0.90 and 0.90 in B=2, 0.80 and 0.84 in
B=3, 0.75 and 0.84 in B=4, 0.60 and 0.76 in B=5, and finally the overall accuracy are
0.81 and 0.84 for Q, and Q, respectively. Therefore, the information carried by
PSI-BLAST method and SVM GA for disulfide connectivity predictions is

complementary.
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Table 10 compares the results of S-S predictor with other methods. The S-S
predictor is the only one method that gives the overall prediction accuracy above 80%
(Q,= 0.81, and Q.= 0.84), while the other methods give 0.29-0.74 in Q, and

0.38-0.78 in Q.. Therefore, S-S predictor is useful and helpful for disulfide

connectivity prediction.

CONCLUSION

The S-S predictor is a hybrid system to predict disulfide connectivity; it first
performs PSI-BLAST method; however, if homologs can not be found, and then
implements machine learning -method. S-S<predictor also provides a website for
large-scale disulfide connectivity: prediction; furthermore, the input interface of S-S
predictor is clear and easy for user to paste or upload protein sequence with FASTA
format, and to choose options to guess the positions of oxidized cysteines or directly
input the positions of oxidized cysteines. On the other hand, the output interface not
only offers the disulfide connectivity, but also presents the protein sequence with
positions of disulfide cysteines and indicating the disulfide bonds. This information is
convenient for users to obtain the locations of disulfide connectivity in protein
sequence, and understand the local environment of disulfide cysteines. The of S-S

predictor is an outstanding method to predict disulfide and its performances are 0.81
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and 0.84in Q, and Q. respectively.
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Table 1. Comparison number of disulfide patterns which are observed in CYS090506 and in

statistics according to number of disulfide bond.

Disulfide Bonds N, ® Nppb

B=2 3 3
B=3 15 15
B=4 51 105
B=5 69 945
B=6 42 10395
B=7 22 135135
B=8 24 2027025

*N ,, = number of observed disulfide patterns in CYS090506.

°N op —number of possible disulfide patterns- in statistics.
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Table 2. The performance of PSI-BLAST method on different dataset.

Dataset

B*=2 B=3 B=4 B=5 Overall
QX Q° Q Q Q Q Q Q Q Q

SP39-1D30
CYS040307-NR
CYS090506

0.52 052 049 051 042 049 029 042 047 0. c9
091 091 090 092 091 092 0.86 0.90 0.90 0.91
096 096 093 093 095 096 090 0.93 0.95 097

‘B represents the number of disulfide bond in a protein.

*Q, = accuracy in protein-based level.

‘Q, = accuracy in disulfide-bridged level.
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Table 3. The performance of PSI-BLAST method according to different windowsize.

B*=2 B=3 B=4 B=5 Overall
Dataset QX Q°F Q Q Q Q Q Q Q Q
CYSO90506(25)d 092 092 0.88 0.88 094 095 0.88 0.90 0.90 0.91
CYS090506 096 096 093 093 095 096 090 0.93 095 0095

‘B represents the number of disulfide bond in a protein.
pr = accuracy in protein-based level.
‘Q. = accuracy in disulfide-bridged level.

YCYS090506(25) represents residues around disulfide cysteines with windowsize 25

are kept and others are replaced as X.
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Table 4. Sub patterns of KLK PIG.

Protein Disulfide connectiviey

KLK PIG (query protein) 26_42 121 190 155 169  180_205
lhiaB 39 104 71 85 94 119

lhiaY 39 104 71 85 94 119

2kaiB 39 104 71 85 94 119

2pkaB 39 104 71 85 94 119

2pkaY 39 104 71 85 94 119

1tfxB 116 181 148 162 171 195
1zr0C 25 41 116 181 148 162

lgvzA 26 42 149 163

lhiaA 26 42

lhiaX 26 42

2kaiA 26 42

2pkaA 26 42

2pkaX 26 42
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Table 5. Sub patterns of HGF HUMAN

Protein Disulfide connectiviey

HGF _HUMAN (query protein) 70_96 74_84 128 206 149 189 177_201
2hgfA 40 66 44 54

lgmnA 112 154 140 164
lgmnB 53 93 81 105
1kiOA 4 82 25 65 53 77
liSkA 279 23 62 51 74
1i5kB 3 80 24 63 52 75
lkiv_ 1 78 22 61 50 73
3kiv_ 279 23 62 51 74
1jfnA 25 102 46 85 74 87
1b2iA 1 78 22 61 50 73
1i71A 279 23 62 51 74
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Table 6. The performance of the SVMs based on a single feature vector type

B=2 B=3 B=4 B=5 B=2..5
Method Qp QC Qp QC Qp Qc Qp Qc QP QC
R 033 033 0.06 020 001 0.14 0.001 0.11 0.14 0.20
A 0.61 061 038 051 013 020 0.07 027 0.39 0.42
S 0.67 067 047 060 0.17 024 0.12 032 045 0.48
D 0.67 067 054 064 028 039 0.12 030 0.50 0.54
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Table 7. The performances of the SVMs based on multiple feature vectors

B=2 B=3 B=4 B=5 B=2...5
Method Qp QC Qp Qc Qp Qc Qp Qc QP Qc
D+A 074 074 054 064 028 039 012 030 052 0.55
D+S 071 071 0.60 066 030 041 012 030 054 0.55
D+S+A 074 074 061 069 030 040 0.12 031 0.55 0.57
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Table 8. Comparison of predictive performances of different approach to predict
disulfide connectivity

B=2 B=3 B=4 B=5 B=2...5

Method Qp QC Qp Qc Qp QC Qp Qc Qp Qc
MCGM* 056 056 021 036 0.17 037 0.02 021 0.29 0.38
NNGM" 068 068 022 037 020 037 002 026 034 0.42
RNN'¢ 073 073 041 051 024 037 0.13 030 044 0.49
DiANNA'® 0.62 0.40 0.55 0.26 0.49

CSP" 074 074 044 053 026 044 0.18 031 0.49 0.52
This work" 074 074 061 0.69...030 040 0.12 031 0.55 0.57
pairSVM? 079 079 0.53  ;0.62 | 055, 070 0.58 0.71 0.63 0.70
2-level SVM?! 0.85 0:67 0.57 0.58 0.70

SVM_GA* 0.86 0.86 0.75; 080 0.63 7077 048 0.71 0.74 0.79
SVR* 0.87 087 067 073 079 085 047 064 074 0.78
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Table 9. The performance of PSI-BLAST method based on different method.

B'=2 B=3 B=4

MethOd an QCC QD QC QD QC

PSI-BLAST 0.52 0.52 049 0.51 042 049

SVM_GA 0.86 0.86 0.75 0.80 0.63 0.77 048 0.71 0.74 0.79
S-S predictor 0.90 0.90 0.80 0.84 0.75 0.84 0.60 0.76

‘B represents the number of disulfide bond in a protein.
*Q, = accuracy in protein-based level.

‘Q, = accuracy in disulfide-bridged level.
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Table 10. Comparison of predictive performances of different approach to predict
disulfide connectiviry

B=2 B=3 B=4 B=5 B=2..5

Method Qp QC Qp QC Qp Qc Qp Qc Qp Qc
MCGM* 056 056 021 036 017 037 0.02 021 0.29 0.38
NNGM*® 068 068 022 037 020 037 0.02 026 0.34 0.42
RNN!¢ 073 073 041 051 024 037 0.13 030 0.44 0.49
DiANNA'® 0.62 0.40 0.55 0.26 0.49

CSP"’ 074 074 044 053 026 044 0.18 031 0.49 0.52
This work" 074 074 061 0.69 030 040 0.12 031 0.55 0.57
pairSVM* 079 079 053 _062°70:55 070 0.58 0.71 0.63 0.70
2-level SVM?! 0.85 0:67 0.57 0.58 0.70

SVM_GA* 086 086 0.75 _ 0807 063 0577 048 0.71 0.74 0.79
SVR® 087 087 0.67-.:0.73 0.79.% 085 047 0.64 0.74 0.78
S-S predictor 090 09 080 084 075 084 0.60 0.76 0.81 0.84
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Figure 1. The formation of a disulfide bond.
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Figure 2. The flowchart of S-S Predictor.
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Figure 5. Comparison the performance based on different methods in dataset
SP39-ID30 with (A) protein-based assessment index Q,, and (B) cysteine

pair-based assessment index Q. , and the disulfide bond number in searching dataset
is the same with query protein. Square (m) represents disulfide pair method, triangle
(a) represents disulfide pattern method, and cross (%) represents hybrid method.
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Figure 6. Comparison the performances based on (A) the number of disulfide bond in
searching dataset is the same with query protein B, and (B) the number of disulfide
bond in searching dataset include B=234,.5, and the searching dataset is

SP39-ID30. Protein-based assessment index Q, (M), and cysteine pair-based index

Q. (a) based on different criteria.
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searching dataset is the same with query protein B, and (B) the number of disulfide
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SP39-ID30. Protein-based assessment index Q,(m), and the accuracy Q(*) based

on the proteins whose disulfide connectivity have been predicted.
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Figure 8. Comparison (A) protein-based assessment index Q,, and (B) cystein

pair-based index Q, based on different sequence identity in searching dataset
CYS090506. Diamond (e) represents B=2, square (m) represents B=3, triangle ( )

represents B=4, and cross () represents B=5.
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Figure 9. Comparison (A) protein-based assessment index Q,, and (B) cystein

pair-based index Q, based on different windowsize in searching dataset

CYS090506(w); w represents windowsize around cysteine. Diamond (e) represents
B=2, square (m) represents B=3, triangle ( ) represents B=4, and cross () represents
B=5.
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>2kaiA:26 42

ITGGRECEKN SHPWQVAIYH YSSFQCGGVL
GRHNLFENE =~ NTAQFFGVTA  DFPHPGEN

>2kaiB:39 104 71 8594 119

GKDYSHDLML ~ LRLQSPAKIT DAVKVLELPT
DFEFPDEIQC VQLTLLQNTF CADAHPDKVT
PLICNGMWQG ~ ITSWGHTPCG ~ ANKPSIYTKL

79

VNPKWVLTAA

QEPELGSTCE
ESMLCAGLPG
IFYLDWIDDT

HCKNDNYEVWL

ASGWGSIEPG
GDTCMGDSGG
ITENP



>1zr0C:7_ 13725 41109 207 116_181 148 162

IVGGYTCGAN  TVPYQVSLNS ~GYHFCGGSLI NSQWVVSAAH CYKSGIQVRL
GEDNINVVEG NEQFISASKS IVHPSYNSNT LNNDIMLIKL KSAASLNSRV
ASISLPTSCA  SAGTQCLISG WGNTKSSGTS YPDVLKCLKA PILSTSSCKS
AYPGQITSNM  FCAGLEGGDS ~ CQGDSGGPVV  CSGKLQGIVS
WGSGCAKNKP GVYTKVCNYV ~ SWIKQTIASN
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Figure 10. The cartoon models and sequences of (A) the KALLIKREIN A (2kai:A,B),
(B) the cationic trypsin (1zr0:C), and (C) the KALLIKREIN (1gvz:A). The disulfide
bonds are represented in the ball-and-stick model. Purple represents disulfide bond in
proteins are aligned with disulfide bond 26 42, green are aligned with 121 190, blue
are aligned with 155 169, and red are aligned with 180 205 in protein KLK PIG.
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>2hgfA:40 66 44 54
GQRKRRNTIH EFKKSAKTTL IKIDPALKIK TKKVNTADQC ANRCTRNKGL
PFTCKAFVFD KARKQCLWFP FNSMSSGVKK ~EFGHEFDLYE NKDYIRN
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>1gmnA:112 152 140 164

TIHEFKKSAK
VFDKARKQCL
GTVSITKSGI
WCFTSNPEVR

TTLIKIDPAL
WEPENSMSSG
KCQPWSSMIP
YEVCDIPQCS

KIKTKKVNTA  DQCADRCTRN KGLPFTCKAF
VKKEFGHEFD ~ LYENKDYIRN CIIGKGRSYK
HEHSFLPSSY  RGKDLQENYC RNPRGEEGGP
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>1i71A:2 7923 6251 74
D{ YHGDGQSY RGSFSTTVIG RTCQSWSSMT PHWHQRTTEY YPNGGLTRNY
CRNPDAEIRP WCYTMDPSVR WEYCNLTQ P VME

Figure 11. The cartoon models and sequences of (A) the HEPATOCYTE growth factor
(2hgf:A), (B) the HEPATOCYTE growth factor (Igmn:A), and (C) the
APOLIPOPROTEIN (1i71:A). The disulfide bonds are represented in the
ball-and-stick model. Green represents disulfide bond in proteins are aligned with
disulfide bond 70 96, red are aligned with 74 84, cyan are aligned with 128 206,
blue are aligned with 149 189 and purple are aligned with 177 201 in protein
HGF_MUNAN.
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Figure 12. Example of disulfide patterns consisting of four cysteines c,C,C,C,, which
form two disulfide bonds. Three  possible disulfide patterns are (CC,,C,C,),
(ccs.c.c,) and (cC,,C.C, ), where“€i¢, indicates a disulfide bridge between c; and
C;. And the corresponding cysteine spacing patterns are given by (d,,,d,,) (solid
lines), (d;,d,,) (dashed line) and (d,,,d,;) (dotted line).
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Figure 13. The ribbon models of (A) the bovine pancreatic trypsin inhibitor (1tpa:l),
(B) the nonspecific lipid transfer protein (lath), (C) porcine pancreatic procolipase
(1pcn), and (D) peptidylglycine-hydroxylating monooxygenase (1phm). The disulfide
bonds are represented in the ball-and-stick model. The correctly predicted disulfide
bridges are in red, while the incorrectly predicted in green. The molecular images were
generated by UCSF Chimera.*
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MBC Molecular Bioinformatics Center

National Chiao Tung University

S-S Predictor

Options:
(® Let me guess the positions of oxidized cysteines
O Input the positions of oxidized cysteines: (example: 3 29 45 £3)
3294563

Paste the query sequences in FASTA format below

>2ersd
ITCPPPHSYERADIWVESYSLYSRERY ICHSGFEREAGTSSLTECYINEATHYAHWTTPSLECIRD

Or upload from file:

Contact

[fyou use DGR inyour publications, please cite ane ofthe fallowing publications.

{13 Chen YC, Lin Y8, Hwang JI; Prediction of the honding states of cysteines using the suppartvector machines hased on myltiple feature
vertors and cysteing state sequences. Prafeina: Shucture, Function and Biainformatics 2004, 55:1036-1043.

(AChen YT, Hiwang JK Prediction of disulfide connectivity from protein sequences. Prafains. Striciure, Funclion and Bioinfanmatics 2006,
61:507-512,

(A0 CH, Chen YT, YU G5, Hwang JK. Predicting disulfide connectiity pattems. Profeins: Structure, Funchion and Bininfarmatics (2008)
accepted

Figure 14. Input form of S-S predictor.
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MBC Molecular Bioinformatics Center

Mational Chiao Tung University

S-S Predictor

Prediction output
Prediction method: Blast method
Sequence label: 2ERSA
Sequence length : 66
Mumber of bonded cysteines: 4
Mumber of free cysteines: 0

Mumber of disulfide bonds: 2
Predicted disulfide connectivity: 3-45 29-63

! ) '
ITCPPPMSVE HADIMVKSYS LYSRERYICN SGFKRKAGTS SLTECVLNKA
TNVAHNTTPS LKCIRD

Caontact

Figure 15. Output form of S-S predictor.
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