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SUMMARY

Peptide-protein interactions are very prevalent,
mediating key processes such as signal transduction
and protein trafficking. How can peptides overcome
the entropic cost involved in switching from an
unstructured, flexible peptide to a rigid, well-defined
bound structure? A structure-based analysis of
peptide-protein interactions unravels that most
peptides do not induce conformational changes on
their partner upon binding, thus minimizing the
entropic cost of binding. Furthermore, peptides
display interfaces that are better packed than
protein-protein interfaces and contain significantly
more hydrogen bonds, mainly those involving the
peptide backbone. Additionally, ‘‘hot spot’’ residues
contribute most of the binding energy. Finally,
peptides tend to bind in the largest pockets available
on the protein surface. Our study is based on
peptiDB, a new and comprehensive data set of 103
high-resolution peptide-protein complex structures.
In addition to improved understanding of peptide-
protein interactions, our findings have direct implica-
tions for the structural modeling, design, and manip-
ulation of these interactions.

INTRODUCTION

Protein-protein interactions play an important role in the living

cell. These interactions are versatile and come in various flavors.

Although many interactions between proteins involve the clas-

sical, well-characterized binding between two globular domains,

an increasing number of interactions have recently been re-

ported to involve peptide-protein interactions, where short linear

peptides bind to globular protein receptors (Pawson and Nash,

2003). These linear peptides might origin from a loop within

a structured domain, or from a disordered region in protein

termini or between defined domains. Peptide-protein interac-

tions have been acknowledged as important mediators of

protein-protein interactions, predominantly in signaling and

regulatory networks (Pawson and Nash, 2003), and a number

of examples for such interactions have been studied (Neduva

and Russell, 2006; Petsalaki and Russell, 2008). Peptide-protein

interactions are also attractive drug targets both for small mole-

cules and for designed inhibitory peptides (Hayouka et al., 2007;

Parthasarathi et al., 2008; Zhao and Chmielewski, 2005). For

these reasons, it is very compelling to investigate basic princi-

ples that govern these interactions.

What are the strategies that peptides use for binding? How do

they compensate for the configurational entropy lost upon

binding?What stabilizes these interactions?What is the recogni-

tion process for these binding events? To address these ques-

tions, there is a need for a comprehensive structural data set of

peptide-protein interactions. At the sequence level, an increasing

amount of sequences of peptide-protein interaction has been

deposited in databases such as DOMINO (Ceol et al., 2007). In

addition, short, linear motifs have been shown to define certain

peptide-protein interactions (e.g., ELM [Puntervoll et al., 2003]).

These motifs were indeed used to extract a collection of

peptide-protein complex structures (Parthasarathi et al., 2008;

Stein and Aloy, 2008); other peptide-protein complexes data

sets have been collected aswell (Petsalaki et al., 2009). However,

a broad structural characterization of protein-peptide complexes

is still lacking. Pioneering structural studies of peptide-protein

interactions are more than a decade old and thus based on

very small data sets (e.g., Stanfield and Wilson, 1995; Zvelebil

and Thornton, 1993). Thus, while several analyses have charac-

terized protein-protein interfaces (e.g., Bahadur et al., 2004;

Jones et al., 2000; Lo Conte et al., 1999; Nooren and Thornton,

2003; Reynolds et al., 2009; Rodier et al., 2005; Xu et al., 1997),

and recent studies have also investigated the binding character-

istics of intrinsically unstructured proteins (IUPs) to proteins

(Fonget al., 2009;Meszaroset al., 2007;Mohanet al., 2006;Vacic

et al., 2007), no thorough examination of unique characteristics of

peptide-protein complexes is yet available.

In order to investigate the structural basis of peptide-protein

interactions, we have created a non-redundant database of

high-resolution structures of peptide-protein complexes (termed

peptiDB). Analysis of this database shows that peptides bind to

proteins in a fashion that minimizes the conformational changes

of the protein partner, while maximizing the enthalpy gained by

hydrogen bonds and packing. This might allow the peptide to

overcome its own configurational entropy loss upon binding.

Similar to protein interactions, binding is mediated by ‘‘hot

spot’’ residues (as suggested by Stein and Aloy, 2008). Finally,

we show that peptides usually bind within the largest pocket

on the protein surface, a finding that can complement

recent attempts to computationally predict the binding sites of

peptides (e.g., Petsalaki et al., 2009). Insights from this study
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can be incorporated to improve both the structural modeling of

peptide-protein interactions, as well as their structure-based

manipulation.

RESULTS

PeptiDB: A Database of High-Resolution
Protein-Peptide Complexes
We created a database of 103 high-resolution peptide-protein

complexes, named peptiDB (see Table S1 available online).

This set is the basis for our analysis to understand the binding

strategies of short peptides (5 to 15 residues long; Figure 1A)

to proteins. The peptide-protein interactions included are

involved in various cellular activities, such as signal transduction,

protein trafficking and transport, antigen binding, enzyme

substrates/inhibition, and others, and it appears that many of

the peptides are in fact linear recognition motifs (LMs) that are

derived from a larger protein (see Results below, and Fuxreiter

et al., 2007).

The data set of 103 peptide-protein complexes contains no

two protein monomers that share more than 70% sequence

identity. To ensure that no bias due to fold overrepresentation

is introduced, we also created a smaller set of 61 protein-peptide

complexes, in which no two protein monomers share the same

fold (according to CATH [Orengo et al., 1997]; see Experimental

Procedures and Table S1). Analysis of these two data sets

yielded overall similar results. We therefore report here our

results from analysis of the set of 103 complexes (and detail

about the small set if results differ significantly).

Most of the peptides bind in either extended or coiled confor-

mation; merely 18 of the peptides were found to bind as helices,

while 19 bind as a b strand adjacent to or within a b sheet in the

binding partner (Figure 1B). Examination of Ramachandran plots

for the remaining 66 coiled peptides that do not adopt a regular

secondary structure shows a f/j distribution that is similar to

that of b strand peptides and includes only few outliers (see

Figure S1). Certain binding features can differ between peptides

that adopt different secondary structures, and will be described

in detail. Despite variability in structure and function, our analysis

of the peptide binding features below suggests that, in general,

similar binding strategies are shared by most peptides.

Characterization of Peptide-Protein Binding versus
Protein-Protein Binding
Various studies have tried to characterize features of homodi-

meric, heterodimeric, and transient protein-protein interactions

(Bahadur et al., 2004; Jones et al., 2000; Lo Conte et al., 1999;

Nooren and Thornton, 2003; Reynolds et al., 2009; Rodier

et al., 2005; Xu et al., 1997), as well as interactions between

IUPs and their partners (Meszaros et al., 2007; Mohan et al.,

2006; Vacic et al., 2007). A noticeable variance exists between

the reported results, due to different data sets and different im-

plementations of the measurements. In this study we evaluated

a set of features on the data sets of Mintseris and Weng

(2003) (PPI, 205 complexes), Meszaros et al. (2007) (IUPPI,

35 complexes), and the present peptiDB as representatives of

protein-protein, protein-IUP, and peptide-protein interactions,

respectively (see Table 1 for a summary of values, standard

deviations, and statistical significance of observed differences;

and Experimental Procedures for a description of evaluated

features, as well as statistical tests). In addition, we compare

our calculated values to those reported in the literature (see

Table S2, and Bahadur et al., 2004; Jones et al., 2000; Lo Conte

et al., 1999; Nooren and Thornton, 2003; Reynolds et al., 2009;

Rodier et al., 2005; Xu et al., 1997).

Although both peptides and IUPs lack a defined structure

when unbound, and gain structure upon binding, and although

there are cases in which the peptide is but a subset of a larger

IUP (or protein), peptides and IUPs define two different classes

of interaction and indeed their binding features are significantly

Figure 1. The peptiDB Data Set of Peptide-Protein Interactions

The distribution of different features is shown.

(A) Peptide sizes in the data set.

(B) Peptide secondary structure.

(C) Conformational changes of the binding protein.

‘‘ > 1 chain’’ indicates cases where the binding protein is composed of two chains; in these cases no free conformations were evaluated. Most peptides are

between 6 and 11 residues long, adapt a coiled conformation, and induce no significant conformational changes in the protein partner upon binding.
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different, as described below. This differencemight be explained

by findings in a recent study, which reported that although LMs

tend to locate to unstructured regions, their amino acid compo-

sition differs substantially from the composition observed both in

their surrounding flanking regions, as well as in IUPs (Fuxreiter

et al., 2007). Analysis of the amino acid propensities in our

data set indeed showed the highest degree of similarity to

LMs, in particular to the subset of specificity determining resi-

dues (RSs in the study of Fuxreiter et al.), and the lowest corre-

lation to the distribution in IUPs or flanking regions around

LMs, indicating that the predominant part of our data set

consists of LMs (see Figure S2).

The average solvent-accessible surface area that is buried

upon peptide binding to a protein (ASA) is around 500 Å2,

compared with an area twice as large in protein-protein

complexes, and almost three times as large in IUP-protein inter-

actions (Table 1). However, within this small buried area,

peptides optimize different binding features, and in particular

hydrogen bonds. Binding shape analysis shows that peptides

tend to bind in a more planar fashion than proteins and IUPs.

They also display better packing at the interface, with an average

RosettaHoles score (Sheffler and Baker, 2009) of 3.0 compared

with 4.1 and 4.0 in IUPPI and PPI, respectively. We should note

that the RosettaHoles score is sensitive to the structure’s resolu-

tion. Therefore, structures in the IUPPI set receive on average

poor scores (because the resolution of the structures in this set

is lower). A subset of the PPI set with resolution < 2 Å (64/205)

obtained an average score of 3.3, which is still significantly

higher than the peptide-protein set (pval = 5.8e-14).

Peptides Use More Hydrogen Bonds Than Proteins
in Binding to Their Protein Partner, and Many of the
Hydrogen Bonds Involve the Peptide Backbone
An average of 8.1 hydrogen bonds are formed in peptide-protein

interfaces, compared with 9.7 hydrogen bonds in protein-protein

interfaces (11.0 in a high-resolution subset of the PPI set, see

Experimental Procedures), and 9.3 in IUP-mediated interactions.

Considering the smaller interface, this clearly indicates that

peptides form more hydrogen bonds per interface area (about

50% more than in protein-protein interactions, and more than

double of IUP-protein interactions per 100 Å2 ASA; see Table 1).

This increase in hydrogen bond density, however, cannot be

attributed to different amino acid propensities, because

peptides display a similar distribution of polar/nonpolar atoms

at the interface as protein-protein interfaces do, whereas inter-

estingly, IUP-mediated interactions show significantly more

hydrophobic regions in the interface, as already noted by

Meszaros et al. (2007) (see Table 1).

The number of hydrogen bonds formed upon peptide binding,

as well as the distribution of different types of atoms at the

Table 1. Interface Characteristics of Peptide-Protein Complexes, Compared with Protein-Protein Interactions, and Interactions

between Intrinsically Unstructured Proteins and Proteins

Complex Type Peptide-Protein (n = 103a) PPI (n = 205) IUPPI (n = 35)

Size Mean ±SD Mean ±SD Significanceb Mean ±SD Significance

Peptide length 9.2 ±2.7 40.3 ±26.5

ASA (Å2) 512 ±177 1151 ±605 < < e-100 1361 ±707 < < e-100

Interface residues 20.8 ±8.6 33.2 ±18.5 27.3 ±15.8

Interface atoms 56.1 ±20.5 100.1 ±47.7 104.7 ±57.7

% Atoms polar 34.2 ±9.7 32.9 ±9.5 NSc 28.7 ±8.5 0.03

% Atoms nonpolar 44.7 ±9.9 45.2 ±13.5 NS 55.9 ±13.4 5.1e-6

% Atoms neutral 19.8 ±8.3 20.3 ±8.9 NS 15.2 ±8.0 0.049

Shape

Planarity 2.6 ±0.7 3.1 ±1.1 5.0e-4 3.1 ±1.2 0.016

Eccentricity 0.7 ±0.1 0.8 ±0.2 NS 0.8 ±0.2 1.8e-3

RosettaHoles score 3.0 ±0.3 4.1 ±1.7 1.2e-8 4.1 ±1.2 3.5e-12

Polar interactions

Hydrogen bonds (HB) 8.1 ±5.0 9.7 ±4.6 9.3 ±7.7

HB per 100 Å2 1.6 ±0.7 1.0 ±0.6 7.5e-12 0.7 ±0.4 9.6e-10

Peptide side-chain HB 3 ±2.6 6.0 ±3.7 4.7 ±4.8

Peptide main-chain HB 5.1 ±4.0 3.7 ±2.8 4.6 ±4.4

Salt bridges (SB) 1.2 ±1.0 2.6 ±2.7 2.9 ±3.1

SB per 100 Å2 0.2 ±0.2 0.2 ±0.3 NS 0.3 ±0.25 NS

Bridging H20 4 ±2.8 6.6 ±13

Bridging H20 per 100 Å2 0.8 ±0.5 0.7 ±1.5 NS

The different measures are described in Experimental Procedures.
a The size of each data set is indicated in parentheses.
b Statistical significance between the peptiDB set and other sets was assessed by a two-sample t-test. We report p-values after Bonferroni correction

for multiple testing (e.g., the p-value obtained from the statistical test is multiplied by the number of independent evaluations).
c NS indicates no significant difference between the two distributions.
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interface (e.g., nonpolar, polar, and neutral atoms), differs

substantially for both a-helical peptides and b strand peptides.

a-Helical peptides form on average a significantly smaller

number of hydrogen bonds with the protein (4.2), and contain

many more nonpolar atoms at the interface (53%). Helical wheel

analysis showed that most of these peptides form amphiphilic

helices and bind with a hydrophobic surface, which explains

the distinct properties of this class of peptides. b Strand

peptides, on the other hand, form many more hydrogen bonds

(12.5 on average), because they are involved in a b sheet that

is stabilized by main chain hydrogen bonds (see below).

Hydrogen bonds across the peptide-protein interface involve

substantially more main-chain atoms than in protein-protein

interfaces (see Figure 2A): A comparison of the distribution of

main-chain/main-chain, main-chain/side-chain and side-chain/

side-chain hydrogen bonds across protein-protein interfaces

(measured in a set of homodimers and a set of heterodimers

described in Cohen et al., 2008) and peptide-protein interfaces

revealed that the latter utilize significantly more main-chain/

main-chain hydrogen bonds (32% of the hydrogen bonds at

the interface), while keeping the same level of main-chain/side-

chain hydrogen bonds (40%) (see Figure 2A; pval = 6.2e-18,

assessed by c2 test). This overrepresentation of main-chain/

main-chain hydrogen bonds is mainly contributed by peptides

that bind as part of a b sheet. When these are excluded from

the data set, the distribution shifts toward a significant overrep-

resentation of main-chain/side-chain hydrogen bonds (pval =

1.2e-7, Figure 2A). Most of these hydrogen bonds involve

a peptide main-chain atom and a protein side-chain atom (Fig-

ure 2B). The few a-helical peptides contribute only a small

number of hydrogen bonds, (see above; these mainly connect

a main-chain and a side-chain atom), and therefore do not affect

this distribution significantly.

Note that a similar analysis on intrachain hydrogen bonds over

the proteins from these data sets showed identical distributions

for proteins that bind peptides, homodimers, and heterodimers.

Most hydrogen bonds were mediated bymain-chain/main-chain

interactions (66%), followed by 22% main-chain/side-chain and

12% side-chain/side-chain interactions. Thus, the observed

differences are not due to differences of the proteins in the

data sets used to evaluate protein-protein interactions and

protein-peptide interactions.

The density of salt bridges, on the other hand, is very similar for

the three different classes of interactions (0.2/100 Å2 ASA), as

well as the number of interface water-mediated hydrogen bonds.

Peptides Use Hot Spots to Bind to Proteins
It is well established that in protein-protein interfaces the critical

contribution to binding energy is due to a small number of resi-

dues, which have been termed hot spot residues (Clackson

and Wells, 1995; Dall’Acqua et al., 1996). We wanted to assess

whether hot spots are also observed in peptide-protein interac-

tions. For that purpose we used computational alanine scanning

(see Experimental Procedures) to mutate in turn every peptide

residue in each of the complexes to alanine. Residues that

were predicted to harm binding by more than a given threshold

(here DDG > 1 kcal/mol, see Experimental Procedures) were

defined as hot spots. Two possible strategies for peptide binding

would be: (1) each amino acid in the peptide contributes a small

amount to the binding energy (i.e., a uniform distribution of

binding energies), or (2) a few hot spots are responsible for

most of the binding energy.

As can be seen in Figure 3, the second option is observed in

peptide-protein complexes. Few hot spots mediate the major

part of the free energy of binding: more than 70% of the pre-

dicted decrease in binding free energy upon mutation to alanine

is contributed by hot spot residues in 77/103 (75%) of the

peptides. We note that when a more stringent threshold is

applied to define hot spots (DDG > 1.5 kcal/mol), the number

of predicted hot spots decreases, but still more than 60% of

the predicted decrease in binding free energy is due to hot spots

in 60% of the peptides. This correlates nicely with results from

Figure 2. Substantial Involvement of the Peptide Main Chain in Peptide-Protein Hydrogen Bonds
(A) Comparison of the distribution of hydrogen bonds across interfaces of heterodimers, homodimers, and peptide-protein complexes. Black represents main-

chain/main-chain hydrogen bonds; gray, side-chain/main-chain hydrogen bonds; white, side-chain/side-chain hydrogen bonds. Heterodimers and homodimers

were taken from Cohen et al. (2008). PeptiDB, full data set; PeptiDB w/o b, set without b sheet forming peptides.

(B) Distribution of side-chain/main-chain hydrogen bonds in peptiDB: in most cases the main-chain atom involved in the hydrogen bond is contributed by the

peptide.
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another study that claimed that most of the energy in peptide

binding is due to the binding of a core motif (Stein and Aloy,

2008). As an example, the androgen receptor is known to bind

ligands that contain the FxxLF motif (He et al., 2002). Our hot

spot analysis on a complex of this receptor bound to a decamer

peptide SSRFESLFAG (Protein Data Bank [PDB] ID 1T7R) indeed

predicts that only the knownmotif residues are binding hot spots

(i.e., positions F4, L7, and F8 result in an energy loss ofDDGbind =

3.0, 1.0, and 3.2 kcal/mol in Rosetta energy units, respectively).

Our present analysis, however, goes beyond known binding

motifs: it suggests that peptide hot spots are a general feature

that can be used to characterize also peptides with no known

binding motif.

We observed a slight dependency of the number of predicted

hot spots on the length of the binding peptide (see Figure S3A;

R2 = 0.4; pval < 0.005 in a one-tailed t-test. On average, there

are about 2 hot spots in peptides of lengths 6-8 (2.1 ± 1) and

about 3 hot spots in peptides of lengths 9–11 (2.9 ± 1.1). Hot

spots do not show a tendency to occur in the terminal residues,

rather, a certain preference for the central residues was

observed (see Figure S3B). The same holds for a more stringent

definition of hot spots (DDG > 1.5 kcal/mol) with an average

number of hot spots of 1.5 ± 1 for peptides of length 6–8 and

2 ± 1.4 for peptides of length 9–11.

Amino Acid Propensities of Peptide Residues
and of Peptide Hot Spot Residues
In order to seewhich amino acids are overrepresented in peptide

interface hot spots, we first calculated the amino acid frequen-

cies in the peptides of our data set (n = 853; polyproline peptide

were omitted here, to avoid a bias toward proline). Leucine

shows a very high frequency among peptide residues, much

higher than in protein-protein interfaces (Glaser et al., 2001)

(11% versus 8%; pval = 0.001 for c2-test; Figure 4A). We note

that leucine has also been observed at a high frequency in IUPPI

(Meszaros et al., 2007).

We next calculated the frequencies of each amino acid

among the peptide interface hot spots. Figure 4B shows the

overrepresentation of each amino acid as a peptide interface

hot spot, normalized by its background frequency in the

binding peptides. Peptide interface hot spot residues are

most significantly enriched in phenylalanine (pval = 6e-13),

leucine (pval = 1.8e-11), tryptophan (pval = 1.7e-7), tyrosine

(pval = 1.3e-6), and isoleucine (pval = 5e-5). The same residues

are overrepresented even with the more stringent hot spot defi-

nition. Thus, in addition to the high relative frequency of

aromatic residues among known interface hot spot residues

in protein-protein interfaces (Glaser et al., 2001), peptide inter-

face hot spots tend to be enriched in leucine and isoleucine as

well. Interestingly, even when taking into account its high

frequency in peptides, leucine is still overrepresented in hot

spot positions. This might be explained by the overrepresenta-

tion of Retinoid-X-receptor domain binding peptides in the data

set, which bare the LxxLL motif (ten entries). However, the

results were also reproduced on the smaller, fold nonredundant

set: leucine still prevails. This is in contrast to experimental data

regarding protein-protein interfaces in general, where accord-

ing to ASEdb (Bogan and Thorn, 1998) only 1 of 11 leucines

in protein-protein interfaces is a hot spot that contributes signif-

icantly to binding. However, interface leucines are underrepre-

sented in that database (with a frequency of just 3.6%) and the

definition of a hot spot is different as well, complicating this

comparison.

Peptides Adapt Themselves to the Unbound Structure
of the Protein
A previous analysis of the binding of MoRFs (molecular recogni-

tion features) to proteins reported specific examples of various

degrees of structural change (Vacic et al., 2007). We assess

here the conformational changes upon peptide binding on a large

set of proteins. Toward this goal, we constructed a data set of

corresponding protein structures solved without the peptide

(unbound set). Eighty-five entries in peptiDB involve one protein

chain that binds the peptide (in the remaining entries, the protein

partner is composed of two chains), and for 78 an unbound

monomer structure was found (or a close homolog, see

Figure 3. Peptide Hot Spot Residues

Contribute the Major Part of the Binding

Energy

The binding energy is not uniformly distributed

among all peptide residues, rather it concentrates

on a few hot spots. This histogram shows the

percentage of the total binding energy that is

contributed by these hot spots in each of the

peptide-protein complexes of peptiDB. The

contribution to binding energy by different resi-

dues is evaluated by calculating the predicted

effect of mutating each residue to alanine (see

Experimental Procedures). For example, in 30

complexes, 90%–100% of the binding energy is

contributed by peptide hot spots, whereas only

in 5 complexes 40%–50% of the binding energy

origins from peptide hot spots.
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Experimental Procedures). By comparing the structure of the

protein prior to its association with the peptide to its structure

after binding of the peptide, we could assess the degree of

conformational change induced by the peptide.

The results of this analysis are striking (Table 2): 67 proteins in

the data set (i.e., 86% of the unbound data set) do not change

substantially: we calculated an average value of 0.83 Å root-

mean-square deviation (rmsd) on interface Ca atoms, and

1.48 Å rmsd over all interface atoms (including side chains; see

Figure 5 for an example). Using a more stringent set (33 proteins

that include only unbound protein structures solved by X-ray

crystallography, with a resolution better than 2 Å and more than

90% sequence identity), the results are even more pronounced:

the average rmsd value over all interface atoms dropped to

1.06 Å (Table 2). Proteins that bind peptides in a b strand confor-

mation tend to undergo slightly larger conformational changes

than proteins that bind peptides a-helical or coiled conforma-

tions: their average Ca-atom rmsd value between the bound and

free conformations is 1.17Å (average all-atom rmsd = 1.91 Å).

Figure 4. Aromatic Amino Acids, as Well as

Leucine and Isoleucine, Are Overrepre-

sented in Peptide Hotspot Residues

(A) The frequency of different amino acids in

binding peptides (in peptiDB, black), compared

with protein-protein interfaces (as calculated by

Glaser et al. [2001], white).

(B) Amino acid overrepresentation in peptide hot

spot residues: the plot shows the overrepresenta-

tion of each amino acid type in hot spots, relative

to its frequency in binding peptides (shown in A).

Hot spot residues are enriched significantly with

amino acids W, F, Y, I, and L. Leucine is over-

represented in peptide hotspots, even when

normalized against its already high background

frequency in peptides.

In these cases, both sides undergo con-

formational changes when they extend

a b sheet.

For the remaining peptide-protein inter-

actions in our data set,we observed rather

singular binding strategies. In four cases,

the peptide displaces a part of the

unbound monomer, be it a strand within

a b sheet (in PDB IDs 1H6W and 3BFQ),

an a-helix (2B1Z), or a coil (1VZQ). In two other instances, a loop

at the binding site moves to accommodate the peptide (in 1KL3

and 2BBA), while in another three cases a disordered region at the

interface becomes structured upon peptide binding (in 2QOS,

2P1K, and 3BU3). Finally, in one last case a helix breaks down

to rearrange and become a part of the peptide binding interface

(in 2P1T).

For 7 proteins (out of the 85 complexes that involve one protein

chain, see above), no unbound structure without bound peptide

is available, maybe because they are not stable without the

peptide. This includes MHC proteins that have been reported

to form a stable structure only upon binding of the antigenic

peptide (Springer et al., 1998; Zarutskie et al., 1999), and

complexes in which the peptide participates in the formation of

a b sheet (e.g., 1N12, 2AI4, and 3BQF).

In principle, structural changes can also propagate to other

regions of the protein, for example in cases where allosteric

effects are involved in transferring the signal of the peptide

to other functional regions in the protein (e.g., Lockless and

Table 2. Conformational Changes Induced by Binding of the Peptide

Data Set Size No. of Ca Atomsa Ca Atom Rmsdb No. of Atomsc All Atom Rmsd Resolutionb % Sequence Identity

Full data set 67 15.73 ± 4.75 0.83 ± 0.7 128.1 ± 37.45 1.48 ± 0.86 1.82 ± 0.49d 85.2 ± 21.7

Stringent sete 33 15.73 ± 4.5 0.47 ± 0.33 130.35 ± 37.17 1.06 ± 0.5 1.54 ± 0.37 99.3 ± 1.7

Average values and standard deviations are indicated.
aNumber of protein Ca atoms at the interface (see Experimental Procedures for definition of interface).
b Rmsd and resolution are given in angstroms.
c Total number of protein atoms at the interface.
d The average resolution was calculated for the subset of structures determined by X-ray crystallography (12 structures were solved by nuclear

magnetic resonance).
e This data set contains structures with good resolution (<2 Å) and high sequence identity (>90%) only. See text for more details.
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Ranganathan, 1999). We confined ourselves to the immediate

interface, to increase our confidence that the observed changes

are indeed due to the peptide binding. However, we did not

observe cases of substantial structural changes in areas remote

from the peptide binding site (the average rmsd between bound

and unbound proteins was 1.26 ± 0.9, calculated over an

average of 88 ± 9% of the sequence).

It is also interesting to note that B-factor analysis of unbound

structures showed no consistent tendency for interface resi-

dues. In the bound structures, predictably, the interface residues

were colder than the protein average while the peptide was

warmer than the average (data not shown).

Peptides Tend to Bind in the Largest Pocket
on the Protein Surface
Where do peptides bind on the protein surface? Are there

favored regions that will optimize binding cost? Specifically,

are pockets preferred? We used the CASTp server (Dundas

et al., 2006) to define pockets on the protein structure and eval-

uated whether peptides indeed bind in those regions. On the

subset of 85 complexes in which the protein monomer consists

of one chain only (see Figure 1C), CASTp detected an average of

15 ± 10 pockets on each protein.

We detected two main binding strategies regarding the utiliza-

tion of pockets (see Figure 6A). Twenty-two peptides (26%) bind

to a very large pocket (pocket ASA > 100 Å2, calculated using the

algorithm of Lee and Richards (1971), in most cases to the

largest pocket available on the protein surface (18/22; see

Figure 6B and an example for such a complex in Figure 6C). Forty

peptides (47%) were found to bind to a small pocket (pocket

area < 100 Å2); in these cases, one of the peptide’s side chains

is buried in this pocket in a knob-hole fashion (see Figure 6D

for an example). Interestingly, even when the peptide latches

onto a small pocket, this is still in general the largest pocket avail-

able on the protein (29/40; see Figure 6B). Peptides that bind

through the knob-hole strategy display a relatively small overall

ASA of up to 600 Å2, while peptides that bind in large pockets

can display larger ASA of up to 1000 Å2. Pocket parameters

for these two groups are summarized in Table 3. a-Helical

Figure 5. Protein Side Chains Are Prearranged to

Accommodate the Peptide

The unbound human protein kinase PIM-1 (in red; PDB ID

2J2I:B) shows perfect agreement with the bound structure

(in orange, bound to the PIM-1 consensus peptide in

purple; PDB ID 2C3I): Note the exact placement of side

chains, and a very low interface atom rmsd value of 0.29 Å.

peptides tend to bind using the knob-hole

strategy, whereas b strand peptides prefer

pockets.

Of the peptides that did not bind to any kind of

pocket on the protein surface (detected by

CASTp), nine are polyproline peptides. Indeed,

extended polyproline conformation might not fit

into a compact pocket. Alternatively, in absence

of a suitable binding environment, incorporation of prolines may

be favorable for peptide binding, because this will restrict the

backbone flexibility and thus limit the configurational entropy

loss. Indeed, in a recent study that reported significantly

lower configurational entropy for known peptide inhibitors,

polyproline peptides were among those with lowest entropy

values (Unal et al., 2009). Lastly, two peptides were bound in

a cavity (not accessible to solvent) inside the binding proteins

(PDB IDs 1XOC and 2D5W) and two more peptides seem to

bind in a pocket undetected by CASTp (PDB IDs 1CZYand

1KL3).

DISCUSSION

Binding of peptides to proteins is met by challenges that are

common to, but also distinct from, those encountered by

proteins interacting with other proteins. Peptides are much

shorter than proteins, and still they are able to bind to proteins

in a very efficient way, thereby allowing integration of communi-

cation networks by the use of simple and small linearmotifs. How

are these interactions facilitated? How are they different from

interactions between two globular proteins? Here we have

analyzed for the first time a representative data set of atom-reso-

lution peptide-protein complex structures, and compared it with

the well-characterized structural properties of protein

complexes in general. By analyzing a range of different parame-

ters, we were able to define the prominent differences between

these two approaches to communication between molecules

in cells.

Ways to Optimize Peptide Binding to Proteins
In contrast to stable, folded protein domains, peptides are

usually flexible molecules in their free state (e.g., Ho and Dill,

2006) and lose a large amount of configurational entropy upon

association (e.g., Killian et al., 2009). How then do they pay the

price of the reduction in this entropy upon binding? Our analysis

suggests several possible answers to this question.

Proteins are surprisingly rigid regarding their association with

peptides. For most of the peptide-protein interactions, we
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could find only very small conformational changes at the

protein interface. Importantly, in roughly half of the complexes,

at least one bridging water molecule is bound already in the

free protein monomer, as part of the preformed complex.

Thus, some of the configurational entropic cost has been

paid in advance for the binding protein, as well as for water

molecules at the interface. This ‘‘prepaid strategy’’ might imply

that peptide binding will not induce a substantial reduction in

overall configurational entropy, thereby minimizing the cost of

association.

In other cases, the free protein structure is known to be

unstable and is stabilized only upon binding to the peptide.

Here, stabilization of the complete structure is apparently

achieved by a large enthalpic contribution. Often nonlocal,

long-range effects are known to be coupled with peptide-protein

association. The binding of antigenic peptides to MHC mole-

cules, for example, leads to conformational changes that allow

association and dissociation of additional proteins to the mole-

cule, such as of b2-microglobulin to the a chain of theMHCmole-

cule, and others (Springer et al., 1998; Stern and Wiley, 1992;

Zarutskie et al., 1999).

The rigidity of proteins upon binding is also observed in many

cases of protein-protein interactions: Docking Benchmark 3.0

(Hwang et al., 2008) contains a predominant group of ‘‘easy’’

docking targets (88/124) that do not change significantly upon

binding (an average of 0.83 Å interface Ca rmsd). A total of

50 of these 88 complexes are either enzyme-inhibitor complexes

or antibody-antigens complexes—both optimized by evolution

for tight binding.

An additional way to optimize binding can be seen in the

significant over-representation of hydrogen bonds in peptide-

protein interactions—although peptides bury a much smaller

interface area, they form a number of hydrogen bonds across

the interface that is comparable to protein-protein interfaces.

This is accomplished by recruiting in addition to the side

chains, also the backbone hydrogen bond donors and accep-

tors—after all, whereas the protein backbone is often rigid

and embedded in a regular secondary structure, peptide back-

bones are flexible and amenable to more interactions with the

partner.

When comparing the quality of packing at peptide-protein

interfaces to that of protein-protein complexes (either by

Figure 6. Peptides Tend to Bind in the Largest Pocket on the Protein Surface

(A) Distribution of peptide pocket binding strategies. Most peptides bind either to a large pocket, or latch on to a hole that accommodates one side chain.

(B) Whether binding to a large pocket or binding via a knob-hole fashion interaction, peptides tend to bind to the largest pocket on the surface.

(C) Complement protein C8 in complex with a peptide baring the C8 binding site (PDB ID 2QOS). The b hairpin peptide is bound in the largest pocket on the protein

surface.

(D) DnaK substrate binding PDZ domain bound to a substrate peptide (PDB ID 1MFG). The peptide is anchored to the protein via its C0-terminal valine knob that

fits into its corresponding hole in the PDZ domain.
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a knowledge based potential, or by measuring the volume of

voids at the interface normalized by the buried surface area),

we again observe that peptides optimize the packing to avoid

the entropic cost of voids.

Recognition of Binding Site on the Protein Monomer
Following our previous point, it seems that the protein interface is

predefined and ready to accommodate the binding peptide. The

peptide, however, has to ‘‘scan’’ the protein surface in an effi-

cient way. We propose that binding involves a two-step mecha-

nism for the recognition and binding of the peptide to its target

site, similar to what has been proposed for protein-protein

(Frisch et al., 2001; London and Schueler-Furman, 2008) and

protein-DNA recognition (Slutsky et al., 2004). In a first step, an

encounter complex is formed where the peptide searches for

a large enough pocket on the protein surface into which it can

bind. We showed that most of the peptides indeed bind in one

of the largest pockets available on the protein’s surface. Then,

in a second step, the peptide is latched on by binding of a small

number of hot spot residues that anchor it to the protein. Not

surprisingly, the number of these hot spots is roughly correlated

with the length of the peptide: for each 3 residues, another

anchoring hot spot is added to provide enough binding energy

(see Figure S3A). A previous study aimed at increasing the

binding affinity of a peptide to its partner by designing a longer

peptide (Sood and Baker, 2006). Although a longer peptide

could indeed be designed, it was difficult to improve its overall

binding affinity. This is in agreement with the observation that

with increased length, more hot spot residues are needed to

allow binding and to overcome a larger configurational entropic

cost. Additional affinity that would surpass the increased

configurational entropy of a longer peptide chain might be

possible within the context of a preoptimized peptide-binding

groove that would allow the introduction of several adjacent

hotspots.

Implication for Computational Modeling
Finally, the present analysis is a stepping-stone for the develop-

ment of a protocol for the computational structural modeling and

manipulation of peptide-protein interactions. The parameters

assessed in this study characterize existing peptide-protein

interactions and can be used to evaluate the quality of models.

In addition, this study offers a straight-forward protocol for

computational modeling of peptide-protein complexes: (1) The

finding that peptide bind in one of the largest pockets restricts

the search space to a small number of well defined pockets—

as opposed to protein-protein interactions, in which the potential

binding site is elusive for prediction and the search space for

initial encounter complexes is huge. This might improve on

current approaches (Petsalaki et al., 2009) for predicting

peptides binding regions. (2) The finding that the protein partner

does not substantially change its structure upon binding can

focus our computational resources toward the modeling of the

flexibility of the peptide partner within pockets on the protein

surface. We are currently developing such a modeling protocol

that incorporates insights from the present study. The ultimate

goal would be to predict binding peptides on a large scale based

on structure, and by this to curate and extend interaction

networks.

EXPERIMENTAL PROCEDURES

Creation of the PeptiDB Database

The PDB (version of 08.08.2008) (Berman et al., 2000) was queried for struc-

tures answering the following constraints: (1) the structure contains more

than one chain, (2) one of the chains is between 5 and 15 amino acids long,

(3) the structure does not contain DNA or RNA, and (4) it is a crystal structure

with resolution % 2.0 Å. This query extracted 866 putative complexes. These

were filtered for complexes that do not include any heteroatom at the interface

(defined as a nonwater heteroatomwithin 4 Å of the peptide), and are not cova-

lently linked, reducing the size to 387 complexes. We clustered these

complexes according to sequence similarity of the protein-binding partner,

and created a set of nonredundant protein-peptide complexes with pairwise

sequence identity below 70%. From each cluster, the structure presenting

the best resolution was chosen. In the few cases where these structures

contain clashes at the peptide-protein interface, they were replaced by

another representative from the same cluster. The final database contains

103 complexes, of which 85 are composed of a single-chained protein partner,

while the remaining 18 complexes involve a protein partner that consists of

two chains.

A threshold of 70% sequence identity will still include entries of structurally

similar proteins. Indeed, the main overrepresented folds in the data set are

Retinoid-X-receptor (10 complexes), antibody-antigen (9), Sh3 domain (9),

PDZ domain (5), and BIR domain (4). We therefore repeated our analysis on

a truly nonredundant subset of 61 peptide-protein complexes that does not

contain any protein pair from the same fold (defined based on CATH; Orengo

et al., 1997; see Table S1).

We note that our data set differs from previous compilations of interactions

that involve unstructured regions by the high resolution of the structures (e.g.,

no cutoff was applied in Meszaros et al., 2007), as well as the small size of the

included peptides (partners of sizes up to 70 residues have been included in

studies by Mohan et al., 2006 and Vacic et al., 2007).

We compared features in peptiDB with a representative data set of protein-

protein interactions taken from Mintseris and Weng, 2003 (PPI), as well as

a data set of IUP-protein interactions taken fromMeszaros et al., 2007 (IUPPI).

Because in these two data sets a very loose resolution threshold was applied

(<3.25 Å or none), structures of low resolution can bias the analysis. We there-

fore repeated our analysis on a subset of PPI that contains structures with

a similar resolution threshold as in peptiDB (64 out of 205).

Creation of Unbound Data Set

We used a BLAST (Altschul et al., 1990) search against the sequences in the

PDB (pdbaanr of 09.11.2008; Wang and Dunbrack, 2003) to extract the

Table 3. Peptide Binding Preference to Surface Pockets

Binding Mode Size Average Ranka Median Ranka No. of Pockets Pocket Areab Pocket Volumec

Large pockets 22 1.2 ± 0.5 1 17 ± 8 343 ± 196 340 ± 278

Knob-holes 40 4.3 ± 3.6 3 16 ± 8 40 ± 25 21 ± 16

Average values and standard deviations are indicated.
a Rank of peptide binding pocket on the protein monomer surface as ranked by the CASTp server).
b Pocket solvent-accessible surface area (Å2) as calculated by the Lee and Richards algorithm (Lee and Richards, 1971).
c Pocket volume (Å3) as calculated by the Lee and Richards algorithm.
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unbound monomer structures of the protein-binding partners in the peptiDB

data set. In cases where the unbound monomer structure contains more

than one chain, manual inspection validated that the structure does not bind

a peptide at the same interface. The unbound monomer structure with the

best resolution was selected to represent the complex in the unbound data

set. If no free structure of the protein could be found, we also included struc-

tures of homologs (with an average of 85% and a minimum of 32% sequence

identity). This allowed us to increase the number of cases where we could

evaluate the difference between the bound and free monomer conformations.

In principle, the difference in sequence may also introduce structural differ-

ences that are not necessarily related to the binding of the peptide, but this

effect was observed to be marginal (see Results).

Extraction of Parameters in the Unbound Monomer Structure

The protein interface residues with the peptide were defined as residues within

4.5 Å of any peptide atom. For each pair of bound and unboundmonomers, the

interface residuesweremapped onto the unbound structure (based on a global

sequence alignment [Needleman and Wunsch, 1970]). The subset of interface

residues was then used to superimpose the two structures and to calculate

rmsd values using the lsqman program (Kleywegt, 1996).

Characterization of Protein-Peptide and Protein-Protein Interfaces

We used a range of different measures to characterize protein-protein and

protein-peptide interfaces. The surface area buried upon binding (ASA); inter-

face residues; interface atoms; distribution of polar, nonpolar, and neutral

atoms at the interface; planarity; and eccentricity were calculated using the

ProtorP server (Reynolds et al., 2009). In the following, a short description of

each of these parameters is provided.

d ASA is the mean solvent-accessible surface area buried by the two chains

(e.g., Jones et al., 2000).

d Planarity is the rmsd of all interface atoms to a best-fit plane through all

interface atoms.

d Eccentricity measures the deviation of an ellipse from a circle.

Eccentricity =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
b2

l2

�s
;

where b and l are the breadth and length of the ellipse, respectively. Eccen-

tricity varies between 0 (perfect circle) and 1 (straight line).

d RosettaHoles score: RosettaHoles is a knowledge-based potential repre-

senting the packing environment of atoms in native structures (Sheffler and

Baker, 2009). We calculated the average score over all interface atoms

(defined as the atoms for which the packing score changes when the peptide

is removed).

d Hydrogen bonds were calculated using the HBplus software with default

parameters (McDonald and Thornton, 1994).

d Salt bridges are defined as opposite charges across the interface, within

a distance cutoff of 6.0Å.

d Bridging water molecules are defined as water molecules that form

a hydrogen bond with both chains at the interface.

Hot Spot Analysis

Hot spot residues were predicted by a computational alanine scan on each of

the complexes in the peptiDB data set, using the Rosetta software, as reported

by Kortemme et al. (2004). Hot spots were defined as residues that uponmuta-

tion to alanine are predicted to significantly decrease the binding energy

(DDGbind > 1 kcal/mol; measured in Rosetta energy units). This threshold

was verified against the ability to recover sequence motifs deposited in the

ELM database (Puntervoll et al., 2003, and data not shown). To assure robust-

ness, the analysis was repeated with a more stringent threshold of DDGbind >

1.5 kcal/mol, which yielded similar results (differences are indicated in the

text). In addition, we verified that the results are independent of the computa-

tional alanine scanning procedure used: an analysis using the FoldX software

(Guerois et al., 2002) produced similar results (computed changes in binding

energy are correlated with R2 = 0.6, whereby FoldX slightly overestimates

DDGbind in comparison to Rosetta; Figure S3C).

Surface Pocket Analysis

Pockets on the protein monomers were defined by the CASTp server (Dundas

et al., 2006), and ranked by their size (the peptide was removed for this anal-

ysis). The output of CASTp consists of a list of atoms participating in each

pocket. The binding pocket was defined as the pocket that has the most

contacts with the peptide (based on a 4.5 Å threshold). This analysis was per-

formed on the bound protein structures, and similar results can be expected

for the unbound structures, since these are very similar (see Results).

Statistical Tests

All statistical evaluations were performed with the R package (Ihaka and

Gentleman, 1996). The Bonferroni correction was applied to account for

multiple testing.

A two-sample t-test was applied to assess the statistical significance of the

difference between feature values extracted from peptide-protein interfaces

and protein-protein, or IUP-protein interfaces, respectively.

A c2 goodness-of-fit test was applied to evaluate the statistical significance

of the difference between the number of hydrogen bonds and amino acid in

protein-protein and peptide-protein interfaces.

The hypergeometric distribution was used to evaluate the statistical signifi-

cance of the enrichment in peptide hot spots for specific amino acid types.
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Note Added in Proof

Two recent additional relevant studies by Vanhee et al. have just been

published about the structural basis of peptide-protein interactions. One

study describes PepX, a structural database of peptide-protein complexes

(Vanhee, P., Reumers, J., Stricher, F., Baeten, L., Serrano, L., Schymkovitz,

J., and Rousseau, F. [2010]. PepX: a structural database of non-redundant

protein-peptide complexes. Nucleic Acids Res. 38, D545-D551), and another

study demonstrates that peptide-protein complexes use the same set of

structural motifs as protein monomer structures (Vanhee, P., Stricher, F.,

Baeten, L., Verschueren, E., Lenaerts, T., Serrano, L., Rousseau, F., and

Schymkovitz, J. [2009]. Protein-peptide interactions adopt the same struc-

tural motifs as monomeric protein folds. Structure 17, 1128-1136).
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