
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 7, Numbers 3/4, 2000
Mary Ann Liebert, Inc.
Pp. 503–519

Universal DNA Tag Systems:
A Combinatorial Design Scheme

AMIR BEN-DOR,1;2 RICHARD KARP,3 BENNO SCHWIKOWSKI,2;4

and ZOHAR YAKHINI1;5

ABSTRACT

Custom-designed DNA arrays offer the possibility of simultaneously monitoring thousands
of hybridization reactions. These arrays show great potential for many medical and scienti� c
applications, such as polymorphism analysis and genotyping. Relatively high costs are asso-
ciated with the need to speci� cally design and synthesize problem-speci� c arrays. Recently,
an alternative approach was suggested that utilizes � xed, universal arrays. This approach
presents an interesting design problem—the arrays should contain as many probes as pos-
sible, while minimizing experimental errors caused by cross-hybridization. We use a simple
thermodynamic model to cast this design problem in a formal mathematical framework. Em-
ploying new combinatorial ideas, we derive an ef� cient construction for the design problem
and prove that our construction is near-optimal.

Key words: universal DNA arrays, zipcodes arrays, combinatorial design, De Bruijn sequences,
SNP genotyping.

1. INTRODUCTION

Oligonucleotides are short single-stranded pieces of DNA (typically 15–50 nucleotides) made
by chemical synthesis. In solution, oligonucleotides tend to speci� cally hybridize (bind) with their

Watson–Crick complements (Watson et al., 1996) and form a stable DNA duplex. This speci� city is
exploited in molecular hybridization assays, in which oligonucleotides are used as probes to identify any
complementary (or near-complementary) DNA from a complex mixture of target DNA.

Array-based hybridizationassays, introduced in the late 1980s (Drmanac et al., 1991; Khrapo et al., 1991;
Lin et al., 1996; Solas et al., 1994; Blanchard and Hood, 1996; De Risi et al., 1997), offer the possibility
of simultaneously monitoring a multitude (currently up to tens of thousands) of hybridization reactions.
These assays show great potential for many different applications such as SNP genotyping (Hacia, 1999),
gene expression pro� ling (Alon et al., 1999), and resequencing DNA (Kozal et al., 1996; Hacia, 1999). A
DNA array (or array for short) consists of a set of oligonucleotides that is bound to a solid support surface
(e.g., silicon or glass). A � uorescently labeled target sample mixture of DNA or RNA fragments is brought
in contact with the array and allowed to hybridize with the synthesized oligonucleotides. Theoretically,

1Agilent Laboratories, 3500 Deer Creek Road, Palo Alto, CA 94304.
2Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195.
3International Computer Science Institute, University of California at Berkeley, Berkeley, CA 94704.
4Institute for Systems Biology, Seattle, WA 98105.
5Computer Science Department, Technion, Haifa 32000, Israel.

503



504 BEN-DOR ET AL.

the assay conditions are such that hybridization occurs only in sites on the surface that are Watson–Crick
complements to some substring in the target. Therefore, scanning the resulting array � uorescence pattern
reveals information about the content of the sample mixture. In practice, cross-hybridization is a main
source of cross-signal contamination in any array-based hybridization assay.

In typical array-based hybridization assays, the set of oligonucleotides that is bound to the surface is
target-speci� c, that is, the array consists of oligonucleotides that are subsequences of the target DNA
sample. While this approach enables direct measurements of the target content, it suffers from cross-
hybridization and from the high cost of manufacturing target-speci� c arrays. An alternative approach was
recently suggested by S. Brenner and others (Brenner, 1997; Morris et al., 1997). In the new approach,
the same � xed (universal) array is utilized, instead of the custom-made arrays used in the conventional
approach. A crucial design step of the new approach (detailed below) is the selection of a large set of
oligonucleotides, called tags, such that each tag hybridizes well to its the Watson–Crick complement (the
antitag), while exhibiting very poor hybridization to other antitags.

Before describing a possible application of the universal array approach in detail, we describe its general
operation. In contrast to conventional microarrays, the analysis of a DNA sample now consists of three
steps. In the � rst step, a set of reporter molecules, DNA sequences consisting of a target-speci� c probe part
and a unique tag part, are prepared. In the second step, a solution-phase hybridization takes place between
each piece of target DNA present in the sample and the probe part of the corresponding reporter molecules.
In some cases, a reaction is performed that labels the reporter molecule � uorescently or otherwise. In the
third step, a solid-phase hybridization on the universal array takes place between the tag parts of the reporter
molecules that were involved into probe–target hybridizations in the previous step and the corresponding
antitags on the array. Due to the complementarity between the tag part of each reporter molecule and the
corresponding antitag on the array, each reporter molecule is sorted into the location on the array where
the corresponding antitag is present. Therefore, in this approach, features of target DNA are indirectly
mediated by the reporter molecules and are detectable on the appropriate locations on the array.

Note that the tag parts of the reporter molecules, and their counterparts on the universal array, can
be designed independently of the particular DNA target. In this paper, we propose formal criteria and a
method for the practical construction of such a set of universal tags, which we call a Universal DNA Tag
System.

Compared to conventional microarrays, universal arrays have several advantages:

° Complicated array manufacturing processes are required only for the � xed, universal component of the
assay. These universal components can therefore be mass-produced, signi� cantly reducing manufactur-
ing costs.

° The assay components that need to be designed for a speci� c target are involved in solution-phase
processes. The underlying nucleic acid chemistry and thermodynamics are better understood than the
same aspects of surface-based processes. Therefore, a more ef� cient and effective design process is
facilitated.

Notice that, similar to conventional oligonucleotide microarrays, universal arrays can be employed for
detecting various features of DNA targets. Before we address the speci� c design questions associated
with a Universal DNA Tag System, we describe one example in which the universal array serves as a
multiplexed SNP genotyping assay. SNPs (Single Nucleotide Polymorphisms) are single base differences,
across the population, within an otherwise conserved genomic sequence (Wang et al., 1998). Genotyping
is a process that determines the variants present in a given genomic DNA. Consider a set of SNPs to be
genotyped. The assay is performed as follows (see Figure 1):

1. A set of reporter molecules (one for each SNP) is synthesized in solution. Each reporter molecule
consists of two parts that are ligated together. The � rst part is the Watson–Crick complement of the
upstream sequence that immediately precedes the polymorphic site of the SNP. The second part of
each reporter molecule is a unique tag from the universal set of tags.

2. When an individual is to be genotyped, a sample is prepared that contains the sequences � anking each
of the SNP loci. The sample is mixed with the reporter molecules. Solution-phase hybridization then
takes place. Assuming that speci� city is perfect, this results in the � anking sequences of the SNPs
paired only with the appropriate reporter molecule.

3. Single nucleotides, A,C,T,G , � uorescently labeled with four distinct colors, are added to the mixture.
These labeled nucleotides hybridize to the polymorphic site of each SNP and are ligated to the



UNIVERSAL DNA TAG SYSTEMS 505

FIG. 1. Schematic for SNP genotyping using a DNA tag system.

corresponding reporter molecule. That is, each reporter molecule is extended by exactly one labeled
nucleotide.

4. The extended reporter molecules are separated from the sample fragments and brought into contact
with the universal array. Assuming that speci� city is perfect, the tag part of each reporter molecule
will hybridize only to its complementary antitag on the array. Thus, the extended reporter molecules
sort into the array sites where the corresponding antitag is present.

5. For each site of the array, the � uorescent colors present at that site are detected. The colors indicate
which bases were used for the extension at the corresponding SNP site and thus reveal the SNP
variations present in the individual.

The problem of designing a DNA tag system presents a trade-off. Clearly, it is desirable to have as many
tags as possible, in order to maximize the number of SNPs that can be genotyped in parallel. On the other

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050916&iName=master.img-000.png&w=380&h=480


506 BEN-DOR ET AL.

hand, if too many tags are used, similar tags will necessarily entail cross-hybridization events (where tags
hybridize to foreign antitags), reducing the accuracy and � delity of the assay.

This design problem was identi� ed in previous work and several formulations and solutions were pro-
posed (Frutos et al., 1997; Brenner, 1997; Morris, 1997; Shoemaker et al., 1996; Garry et al., 1999). These
papers differ both in the way hybridization is modeled and in the algorithmic approach employed to � nd
high-quality DNA tag systems. In Frutos et al. (1997) a tag system is described as a component of a
surface-based DNA computing strategy. The authors take a coding theory approach and choose to model
cross-hybridization constraints as general Hamming distance conditions. A set of 108 8-mers, with a 50%
G/C content, which differ in at least 4 bases from each other, is constructed and experimentally tested for
cross-hybridization.

In Garry et al. (1999) the method of using a DNA tag system to sort target DNA is presented, together
with several examples of applications. The model assumption is that two oligonucleotides of length n need
to have perfectly complementary substrings of length more than ¸ in order to form a reasonably stable
duplex. A set of n-mers is said to be a ¸-free code if no two elements of the set have a common substring
of length more than ¸. Given n, the design problem implied in Brenner (1997) is to construct the largest
possible ¸-free code.

A De Bruijn sequence of order ¸ is a cyclic sequence in which each possible ¸-mer occurs exactly
once (de Bruijn, 1946). In Morris et al. (1997) the authors observe that by parsing a De Bruijn sequence
of order ¸, an optimal ¸-free code of size 4¸=.n ¡ ¸ 1 1/ can be obtained. However, the authors also
recognize the shortcoming of their highly simpli� ed mathematical model. To capture cross-hybridization,
a model has to embody thermodynamic properties of DNA duplexes. The work we present here improves
on this aspect by using De Bruijn sequences in a different way.

Additionally, Morris et al. (1997) suggest a greedy approach to designing DNA tag systems—starting
with an empty set and iteratively adding a new tag to it, provided it does not hybridize with any of the
complements of the tags already included. This approach clearly allows the use of arbitrarily complex
thermodynamic models. However, there is no analysis for the performance of such greedy heuristics.

Recently, a small prototype universal array was used to detect K-ras mutations in tumor and cell line
DNA (Garry et al., 1999). The results reported suggest that universal arrays may be used to rapidly detect
low-abundance mutations in any gene of interest.

In the context of hybridization arrays, the DNA tag system is used in order to facilitate sorting molecules
into de� ned physical locations. The same idea is also applicable for other addressing systems, such as coded
beads.

In this paper we use a simple thermodynamic model of hybridization to give a precise formulation of
the tag system design problem. We employ new combinatorial ideas to provide an ef� cient construction
and prove that our solution is near-optimal.

1.1. Thermodynamic model

In this section we describe a simple thermodynamic model of DNA duplex formation and use this model
to derive a formal tag design problem. DNA duplexes are held together by weak hydrogen bonds formed
between Watson–Crick complementary nucleotides. Denaturation (or melting) of a DNA duplex is generally
achieved by heating the solution to a temperature which disrupts the hydrogen bonds. The energy required
to separate complementary DNA strands is dependent on a number of factors, notably: strand length—
longer duplexes contain a large number of hydrogen bonds and require more energy to separate them—and
base composition, because C–G pairs have one more hydrogen bond than A–T pairs, strands with higher
C–G content are more dif� cult to separate than those with low C–G content (Strachan, 1997).

As the assay temperature increases, the probability that a duplex will be separated increases. A useful
measure of the hybridization behavior of two oligonucleotides U and V is their melting temperature
tM.U; V / (in degrees Celsius). This is the temperature at which, under stated experimental conditions, half
of the U and V oligonucleotides will be in a single-stranded form and half will occur in duplexes.

Let f denote the fraction of duplexes formed at a speci� c array site between an immobilized oligonu-
cleotide and a � uorescently labeled tag. We assume that we are given two design parameters 0 µ ® µ ¯ µ 1
such that:

° If f > ¯, the resulting � uorescent level is interpreted as a positive result.
° If f < ®, the resulting � uorescent level is reported as a negative result.



UNIVERSAL DNA TAG SYSTEMS 507

Moreover, we assume that the experiment is performed at temperature t . The parameters ® and ¯ can be
translated into two temperature parameters, C and H (C < t < H ) with the following property: If a duplex
has a melting temperature of at most C, in the experiment (done at temperature t), at most a fraction ² of
the duplexes will form. Similarly, if a duplex has a melting temperature of at least H , then at temperature
t , at least a fraction ± of the duplexes will form.

The design goal is to construct a large DNA tag system such that

1. for each tag U , tM.U; U/ ¶ H , and
2. for any two distinct tags U and V , tM.U; V / < C.

Such a system, if used with temperature t , would allow each tag–antitag hybridization to be detected,
without any cross-hybridization errors. Note that, in a practical application, C can be lowered and H can
be increased to provide a buffer against parameter inaccuracies and limitations in the melting temperature
model used, imperfect temperature control, and further experimental biases.

For estimating the melting temperature of a duplex between a tag and its antitag, we employ the 2–4
rule that is commonly used for short oligonucleotides (Strachan, 1997): The melting temperature of a
sequence and its complement is approximately twice the number of A–T base pairs plus four times the
number of C–G base pairs. This model also enables us to state a condition that is suf� cient to exclude cross-
hybridization errors. The suf� cient condition is derived from a characterization of the duplex formation
process by Southern et al. (1999).

The process begins by the formation of a transient nucleation complex from the interaction of very few
base pairs. Duplex formation proceeds, one base pair at a time, through a zippering process. At any point
the reaction may go in one of two directions, pairing or separation: if bases are complementary and freely
available for pairing, duplex formation is more likely to proceed; if bases are non-complementary or a
stable structure inhibits base pair formation, the block to the zippering process may drive the nucleation
complex to fall apart. Duplex formation, and hence duplex yield, will be determined by the stability of the
nucleation complex and of intermediates up to the point in the zippering process where the likelihood of
strand separation is negligible.

Based on the above characterization and the 2–4 rule, we make the following assumptions.

1. Stable hybridization is always initiated by the formation of a nucleation complex.
2. A nucleation complex is a region of perfect base pairs between the tag and the foreign antitag.
3. The melting temperature of the nucleation complex can be computed according to the 2–4 rule.

Following these assumptions, we aim at avoiding the situation where a tag contains a substring x and a
noncomplementary antitag contains x, where tM.x; x/ ¶ C. Since tags and antitags are complementary to
each other, the above requirement can be stated in terms of solely the tag sequences.

2. TAG SYSTEM DESIGN PROBLEM

We can now formally de� ne the tag system design problem. Our goal is to construct a tag system with
a maximum number of tag–antitag pairs such that the following properties are satis� ed:

(1) For each tag–antitag pair .U; U/, the melting temperature (using the 2–4 rule) satis� es tM.U; U/ ¶ H .
(2) For any two distinct tags U and V , and for each oligonucleotide x that occurs as a substring in both

U and V , tM .x; x/ < C.

We now present a conservative formalization of the above tag design problem. Speci� cally, we not only
forbid that a string x with tM .x; x/ ¶ C occurs in any two distinct tags, but we also forbid that it occurs
twice in the same tag. This mild restriction has also been imposed in previous work (Morris et al., 1997)
and allows a rigorous analysis and a near-optimal constructive solution.

As usual, we model oligonucleotides as strings over the alphabet 6 5 fA; C; T; Gg. We assume that the
parameters C and H are � xed. To keep our exposition simple, we assign to each string the number that
corresponds to half of its melting temperature in degrees Celsius.



508 BEN-DOR ET AL.

FIG. 2. A valid 4–10 code with 12 tags.

De� nition 1. The weight w.s/ of a string s 5 a1a2 ak is
Pk

i 5 1 w.ai/, where w.A/ 5 w.T/ 5 1
and w.C/ 5 w.G/ 5 2. Given two parameters c and h, we call a set T of strings or “tags” a valid c-h
code if the following two conditions are satis� ed:

Condition 1. Each tag has a weight of h or more.

Condition 2. Any substring of weight c or more occurs at most once.

Note that a valid c–h code corresponds to a solution of the tag design problem in which the lower
melting temperature C is 2c and the upper melting temperature H is 2h. We call the problem of � nding
a maximum valid c–h code the Combinatorial Tag Design Problem. See Figure 2 for an example of a
valid code.

In the next section we derive an upper bound that, in particular, implies that the code in Figure 2 is
optimal. That is, there exists no valid 4–10 code with more than 12 tags.

3. UPPER BOUND

In this section we derive a tight upper bound for the number of tags in a valid c–h code. The idea
is to associate a numerical resource with each tag. We show that any tag has to use a certain minimum
amount of resource and the global resource usage over all tags cannot exceed a certain maximum. The
upper bound on the number of possible tags then follows from dividing the global upper bound by the
minimum amount of resource used by each tag.

Roughly speaking, the limited resource we consider consists of those substrings in a tag with a weight
of c or more that can occur only once in a valid c–h code. The following de� nition captures the minimal
suf� xes that can occur only once in a valid c–h code.

De� nition 2. We call a string t a c-token if w.t/ ¶ c, but t does not properly contain a suf� x of
weight ¶ c.

It is straightforward to see that a substring of weight ¶ c occurs twice if and only if some c-token
occurs twice. We can therefore replace Condition 2 in our problem by the following equivalent condition.

Condition 2’. Any c-token occurs at most once.

Hereafter, we refer to a c-token simply as a token. With each token, we associate its tail weight, the
weight of its terminal character. The tail weight of a tag T is the sum of the tail weights of all the tokens
it contains as substrings. Figure 3 gives an example for T 5 GACCAAT and c 5 4.

Notice that all characters of T except the � rst two terminate a token and thus contribute their weight
to the tail weight of T . The � rst two characters do not terminate a token because they do not terminate

FIG. 3. Tokens and tail weight.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050916&iName=master.img-002.png&w=203&h=71


UNIVERSAL DNA TAG SYSTEMS 509

a suf� x of weight ¶ c. In the general case of a tag T in a valid c–h code, the maximal pre� x that does
not contain a suf� x of weight ¶ c has a total weight of at most c ¡ 1. Since the weight of a tag in a valid
code is at least h (Condition 1), we have the following lower bound.

Lemma 1. Any tag in a valid c–h code has a tail weight of at least h ¡ c 1 1.

Based on Conditions 1 and 2’, we now derive the upper bound on the total tail weight of a valid c–h

code. We use <n> to denote the set of strings with weight n 2 N , and Gn to denote the number of such
strings. It is straightforward to derive the recurrence G1 5 2, G2 5 6, and Gn 5 2 Gn ¡ 2 1 2 Gn ¡ 1 for
n ¶ 3, and for the sake of simplicity we de� ne G0 :5 1. Using standard techniques for solving recurrences,
it can be shown that, for all n 2 N , Gn is the nearest integer to

Á
3 1

p
3

6

! ±
1 1

p
3
²n

:

To compute the maximal total tail weight of the tokens in a valid code, we partition tokens into four
classes. In our symbolic representation of these classes, we denote any character with a weight of 1 (A or T)
by W (“weak”) and a character with a weight of 2 (C or G) by S (“strong”). To see how the set of tokens is
partitioned, observe that any token is terminated by either a strong or a weak character, and it has a weight
of either c or c 1 1. Tokens of weight c 1 1 begin with a strong character, since a string of weight c 1 1
that begins with a weak character properly contains a suf� x of weight c. Table 1 lists the corresponding
four classes of tokens, their maximal cardinalities, and the maximal total tail weight they can contribute
in a valid code.

The total tail weight of each class is computed by multiplying its size by the weight of the terminal
character of its members. Only the last row requires additional explanation: Observe that any token in the
class S<c ¡ 2>W contains a token of the form S<c ¡ 2> as a substring, and thus only 2 Gc ¡ 2 tokens of
this form can exist in a valid code. Therefore the number of tokens of the form S<c ¡ 2>W cannot exceed
2 Gc ¡ 2. Summing up the rightmost column proves the following lemma.

Lemma 2. The total tail weight of all tags contained in a valid c–h code is at most

2 Gc ¡ 1 1 6 Gc ¡ 2 1 8 Gc ¡ 3:

Combining this with Lemma 1 yields the following upper bound.

Theorem 1. Any valid c–h code contains at most

2 Gc ¡ 1 1 6 Gc ¡ 2 1 8 Gc ¡ 3

h ¡ c 1 1
tags.

For h 5 10 and c 5 4, the upper bound is 2 161 6 61 8 2
10 ¡ 41 1 5 12, which proves:

Corollary 1. The 4–10 code in Figure 2 is optimal.

Table 1. Bounds on the Number of Tokens and
Their Tail Weight in a Valid c–h Code

Token Max. occurrences Max.
class in valid code tail weight

<c ¡ 2>S 2 Gc ¡ 2 4 Gc ¡ 2
S<c ¡ 3>S 4 Gc ¡ 3 8 Gc ¡ 3
<c ¡ 1>W 2 Gc ¡ 1 2 Gc ¡ 1

S<c ¡ 2>W 2 Gc ¡ 2 2 Gc ¡ 2



510 BEN-DOR ET AL.

4. OUR CONSTRUCTION USING CIRCULAR STRINGS

In this section we describe a method of constructing a nearly optimal c–h code for arbitrary values of
c and h. Speci� cally, our code comprises at least

2 Gc ¡ 1 1 6 Gc ¡ 2 1 4 Gc ¡ 3

h ¡ c 1 3
¡ 1 tags.

Comparing our code with the upper bound, and using the recurrence for Gn, one � nds that our method
at least achieves a factor of approximately 0:89 .h ¡ c 1 1/=.h ¡ c 1 3/ relative to the upper bound. For
the values c 5 12 and h 5 30 that can be seen as relevant in practice, our construction yields 12119 tags,
which corresponds to 87:6% of the upper bound of 13840 one gets from Theorem 1.

Throughout our exposition we will assume that the parameters c and h ¶ c are � xed. In addition we
will assume that c is even. The case of an odd value of c requires only small modi� cations.

4.1. Construction overview

Our construction proceeds in two stages. In the � rst stage we construct a set of circular strings in which
each token occurs at most once. The characters of a circular string are arranged in a cyclic order, and
when convenient, we will assume that a speci� c character is designated as its origin.

In the second stage of our construction, the tags of our design are extracted as substrings from the
circular strings, as illustrated in Figure 4. To satisfy Condition 1, each of the extracted substrings has a
weight of h or more. To satisfy Condition 2’, the overlap between two tags has a weight of at most c ¡ 1.

Tags can be extracted from a circular string by a straightforward greedy algorithm that iterates the
following operation. Starting at some position, the algorithm collects characters until their cumulative
weight reaches or exceeds h, forming one tag, and then tracks back over as many characters as possible
without collecting a weight of c or more. This operation is repeated until some overlap of weight ¶ c

with the � rst extracted tag occurs, and the last retrieved tag is discarded. Given the best start position,
this algorithm produces the largest number of tags that are substrings of a given circular string and can be
included in a valid code. Observe that, since each character has a weight of 1 or 2, each tag extracted in
this manner has a weight of at most h 1 1 and the overlap between two tags is at least c ¡ 2. Therefore,
each circular string C leads to at least w.C/

h¡ c1 3 ¡ 1 tags. This lower bound for the number of tags extracted
from each cycle motivates us to consider the following formal problem.

De� nition 3 (Circular String Problem). Given the parameters c > 0 and h > c, construct a set C of
circular strings that contain any substring of weight ¶ c at most once, and maximize

X

C2 C

± w.C/

h ¡ c 1 3
¡ 1

²
: (1)

The construction we will describe optimally solves this problem. Speci� cally, our construction will yield
a single cycle with the maximal possible weight among all set of circular strings that contain each substring
of weight ¶ c at most once.

FIG. 4. Second stage—extracting tags from circular strings.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050916&iName=master.img-003.png&w=176&h=123


UNIVERSAL DNA TAG SYSTEMS 511

FIG. 5. Encoding of each character into one meta-character and one bit.

FIG. 6. A string corresponds to its meta-string bit string pair.

4.2. Meta-Strings and De Bruijn sequences

Our construction is based on the encoding of the nucleotides as given in Figure 5. Each character a 2 6

is identi� ed with a pair .¹; ¯/, where ¹ 2 fW; Sg and ¯ 2 f0; 1g. Extending this to strings over fA; C; T; Gg,
we identify each string s with its pair of meta-strings ¹.s/ and bit string ¯.s/. In this context, we will
also call the string s an instance of the meta-string ¹. Figure 6 gives an example.

Each circular string (or “cycle”) in our construction will be an instance of a long circular meta-string
that arises from repeating a shorter meta-string. If s is a string, we will denote k repetitions of s by sk .

De Bruijn sequences. To avoid generating several identical tokens from repetitions of a meta-string ¹,
our construction will ensure that each instance of ¹ is paired with a different pattern in the bit-string.

For k 2 N , a binary De Bruijn sequence of order k is a cyclic binary sequence of length 2k in which
each possible substring of length k occurs exactly once (de Bruijn, 1946). Such sequences exist for all
k 2 N and can be constructed in linear time. We assume that a � xed De Bruijn sequence of order k is
given for each k 2 N . Reading this sequence once, starting from a speci� c offset i relative to a � xed
origin position, we obtain a linear string, a linearization that we denote by Di

k .

4.3. Cycle construction

Each cycle in our construction is based on a meta-string ¹ of weight c. Before describing the case of
general meta-strings ¹, we illustrate the construction principle for a special case.

4.3.1. Simple case. We consider meta-strings ¹ with the following two properties.

(P1) gcd.j¹j 1 1; 2j¹j/ 5 1, i.e., the greatest common divisor of j¹j 1 1 and 2j¹j is 1.1

(P2) ¹W cannot be represented as a concatenation of two or more identical substrings.

For meta-strings ¹ that satisfy the two conditions above, our construction contains the cycle

C0.¹/ 5
±
.¹W/2j¹j

;
¡
D0

j¹j
¢j¹j1 1

²
:

Figure 7 shows C0.¹/ for c 5 4 and ¹ 5 SS. Notice that the meta-string .¹W/2j¹j
not only contains the

meta-string ¹ 5 SS four times as a substring, but also contains the meta-strings SSW and SWS four times.

4.3.2. General case. The construction for general meta-strings ¹ is a generalization of the above
construction. Let ® 5 ®.¹/ be the shortest period of ¹W, i.e., the shortest substring such that ¹W can be

1Note that this condition is equivalent to the simpler “j¹j is even,” but we prefer the above form in this context.



512 BEN-DOR ET AL.

FIG. 7. Construction of the cycle C0.SS/.

written as ¹W 5 .®/p , and set k 5 k.¹/ 5 gcd.j®j; 2j¹j/. De� ne the meta-cycle MC.¹/ and the bit cycles
BCi.¹/ as follows:

MC.¹/ :5 .®/2j¹j=k;

BCi.¹/ :5
¡
Di

j¹j
¢j®j=k

; i 5 0; : : : ; k ¡ 1:

For every meta-string ¹ with w.¹/ 5 c, our code contains the k cycles

Ci.¹/ 5
±
MC.¹/; BCi.¹/

²
; i 5 0; : : : ; k ¡ 1:

Using the above notation, the set of cycles we construct is

C :5
[

w.¹/5 c

k.¹/¡ 1[

i5 0

Ci.¹/:

We illustrate our construction using the parameters c 5 4 and h 5 10. Notice that all cycles in C are
generated by the three meta-tokens ¹ 5 SS, SWW, and WWWW. Using the De Bruijn sequences D2 5 0011,
D3 5 00011101 , and D4 5 0000111101100101 , Table 2 displays the set of cycles we construct.

4.4. Validity of our construction

In this section we prove that our construction yields a valid set of cycles, i.e., that any token of weight
c or c 1 1 occurs at most once. We will � rst state the proof for the case of tokens of weight c and then
extend the proof to tokens of weight c 1 1.

Let t be a token of weight c, and denote by .¹; ¯/ the corresponding pair of meta-string and bit string.
Clearly, t occurs if and only if both ¹ and ¯ occur together, i.e., in the same position of a meta-cycle
MC and an associated bit cycle BCi . To show that t occurs at most once, we � rst show that ¹ can
only occur in the meta-cycle MC.¹/. Then we show that ¹ and ¯ occur together at most in one cycle
Ci.¹/ 5

¡
MC.¹/; BCi.¹/

¢
, and, in such a cycle, they can occur together at most once.

We need some notations and two technical lemmas. For a string x and an integer b, denote by xjb the
string obtained by cyclically rotating x to the left by b characters. That is, if x 5 x0; : : : ; x ¡̀ 1,

xjb :5 xb mod `; x.b1 1/ mod `; : : : ; x.b1 ` ¡ 1/ mod `:

Table 2. The Set of Cycles Ci.¹/ We Construct for c 5 4 and h 5 10

¹ 5 SS ¹ 5 SWW ¹ 5 WWWW

®.¹/ 5 SSW ®.¹/ 5 SWWW ®.¹/ 5 W

k.¹/ 5 1 k.¹/ 5 4 k.¹/ 5 1

i 0 0 1 2 3 0

MC.¹/ SSWSSWSSWSSW SWWWSWWW SWWWSWWW SWWWSWWW SWWWSWWW WWWWWWWWWWWWWWWW

BCi .¹/ 001100110011 00011101 00111010 01110100 11101000 0000111101100101

Ci .¹/ CCTGCAGGACGT CAATGTAT CATTGATA CTTTCTAA GTTAGAAA AAAATTTTATTAATAT



UNIVERSAL DNA TAG SYSTEMS 513

Lemma 3. If y is a cyclic rotation of x, the shortest period of y is a cyclic rotation of the shortest
period of x .

Proof. Let b be an integer such that y 5 xjb. If x 5 .®/p , for some string ® and some positive integer
p, then y 5 .®jb/p .

Lemma 4. Let x be a meta-string of weight c that occurs in a meta-cycle MC. Then x is followed by
a weak character in MC.

Proof. By our construction, MC is formed by repeating a meta-string ® where .®/p is of weight c 1 1.
As x is a meta-string of weight c that occurs in MC, there exists a cyclic rotation ® 0 of ® such that x is a
pre� x of .®0/p. Moreover, as .®0/p is of weight c 1 1, we conclude that xW 5 .®0/p occurs in MC.

We can now complete the � rst part of the validity proof.

Theorem 2. The meta-string ¹ can occur in no meta-cycle except for MC.¹/.

Proof. Assume that ¹ occurs in a meta-cycle MC.¿/ for some meta-string ¿ of weight c. By Lemma 4,
¹W then also occurs in MC.¿/. As w.¹W/ 5 w.¿W/, we get that ¹W is a cyclic rotation of ¿W. Applying
Lemma 3, we conclude that the shortest period of ¹W is a cyclic rotation of the shortest period of ¿W, and
thus MC.¹/ 5 MC.¿/.

We now prove that ¹ and ¯ can occur together at most once in in one of the cycles fCi.¹/gi 5 0;:::;k ¡ 1.
Denote by ® the shortest period of ¹W, and set k 5 gcd.j®j; 2j¹j/ as before. In the next lemma we compute
the positions in which ¹ and ¯ occur in the meta-cycles and bit cycles. In Lemma 6 we show that ¹ and
¯ occur in the same position only in one cycle of the form Ci.¹/. Finally, in Lemma 7 we show that, in
such a cycle, ¹ and ¯ can occur together only at most once.

Lemma 5. The meta-string ¹ occurs in the meta-cycle MC.¹/ in positions

p.¹/ :5
n

j j®j
­­­j 5 0; : : : ;

2j¹j

k
¡ 1

o
:

The bit-string ¯ occurs in the i-th bit cycle BC i.¹/ in positions

pi.¯/ :5
n

b0 1 ` 2j¹j ¡ i

­­­̀5 0; : : : ;
j®j
k

¡ 1
o

;

where 0 µ b0 < 2j¹j is some � xed constant.

Proof. By construction, ® has exactly 2j¹j=k occurrences in MC.¹/, spaced j®j apart, as de� ned by
p.¹/. Since occurrences of ® and ¹ start in the same positions, p.¹/ also describes where occurrences of
¹ start. Consider now the bit string ¯. Since it has a length of j¹j, it occurs exactly once in the De Bruijn
sequence D0

j¹j, in position b0 (for some 0 µ b0 < 2j¹j). Therefore, in BC0.¹/, it occurs in positions

b0 1 ` 2j¹j. As the i-th bit-cycle BCi.¹/ is a cyclic rotation of BC0 by i characters, we obtain the above
expression for pi.¯/.

Lemma 6. The meta-string ¯ occurs together with ¹ in at most one of the cycles Ci.¹/.

Proof. As k 5 gcd.j®j; 2j¹j/, for every position p 2 p.¹/, we have

p mod k 5 0:

Similarly, for every position q 2 pi.¯/, we have

q mod k 5 .b0 ¡ i/ mod k:

Thus, p and q can be equal only if i 5 b0 .mod k/, i.e., i 5 b0, since 0 µ i < k.



514 BEN-DOR ET AL.

Lemma 7. In any cycle Ci.¹/, ¹ and ¯ occur together at most once.

Proof. The distance between any two consecutive occurrences of ¹ in MC.¹/ is j®j. The distance
between two consecutive occurrences of ¯ in BCi.¹/ is 2j¹j. The least common multiple of these two
distances is identical to j®j 2j¹j=k, the length of Ci.¹/, which proves our claim.

From Theorem 2 and Lemmas 6 and 7 we immediately obtain that ¹ and ¯ occur together at most once
over all cycles in our set C of cycles, and therefore the following holds.

Theorem 3. The set C of cycles does not use any token of weight c twice.

It remains to be shown that also tokens of weight c 1 1 do not occur more than once. To see why this
holds, assume that t is a token of weight c 1 1 and denote by .¹; ¯/ the corresponding pair of meta-string
and bit string. As we assume here that c is even, ¹ contains at least one weak character. Let i be the
position of the � rst weak character in ¹. Set ¹0 5 ¹ji 1 1, i.e., rotate ¹ left by i 1 1 characters. This brings
the weak character of ¹ to the last position of ¹0. Denoting the c-weight pre� x of ¹0 by ¿ , we have
¹0 5 ¿W. By Theorem 2, we conclude that ¹0, and thus ¹, can occur only in the meta-cycle MC.¿/. Using
Lemmas 6 and 7, it follows that t occurs at most once in our construction. Thus we have the following.

Theorem 4. The set C of cycles is valid, i.e., it uses no token twice.

4.5. Token content of our cycles

We now examine how many tokens of weight c and c 1 1 the set of cycles C contains.

Lemma 8. C contains each token of weight c exactly once.

Proof. Let ¹ be an arbitrary meta-string of weight c. Observe that, in each cycle Ci.¹/, i 5 0; : : : ;

k ¡ 1, ¹ occurs 2j¹j=k times, each time paired with a different ¹-bit substring of Di
j¹j. Therefore C contains

all k 2j¹j=k 5 2j¹j distinct instances of each meta-string of weight c, which means that each token of
weight c occurs exactly once.

Lemma 9. C contains exactly half of the tokens of weight c 1 1, and each of these occurs exactly once.

Proof. Let ¹ be an arbitrary meta-string of weight c 1 1. Since we have assumed that c is even, ¹

contains at least one weak character. Thus, ¹ can be represented as a rotation of some meta-string ¹0W,
where ¹0 is a meta-string of weight c. Therefore, all instances of ¹ occur in the cycles of the type Ci.¹

0/,
alternating with instances of ¹0. Due to the alternation, the numbers of instances of ¹0 and ¹ contained
in any Ci.¹

0/ are identical. Instances of ¹ in these cycles are also distinct, because each time ¹ occurs,
it occurs with a distinct bit string. Since we have seen in Lemma 8 that all instances of ¹0 occur exactly
once and the maximally possible number of instances for ¹ is twice as high, we can conclude that exactly
half of the instances of ¹ occur in C .

Together with Table 1, Lemmas 8 and 9 yield:

Corollary 2. The total tail weight of C is 2 Gc ¡ 1 1 6 Gc ¡ 2 1 4 Gc ¡ 3.

4.6. Pasting the cycles together

Before extracting tags from the cycles in C , we combine all cycles into a single cycle, without modifying
the set of tokens that occur. This avoids the “end effect” that occurs when we extract tags from the cycles:
Recall that every cycle can possibly leave all characters of a nearly complete tag unused. By pasting all
cycles into a single cycle before the extraction, this situation occurs only once.

With the basic operation we present here, one can paste any two cycles A and B together if they share
a common substring s with a weight of c ¡ 1. If this is the case, A can be written as A0s, where A0 is
some string, and, analogously, B can be written as B0s. Then paste.A; B/ :5 A0sB0s de� nes a new cyclic



UNIVERSAL DNA TAG SYSTEMS 515

string. The following lemma guarantees that the tail weight and the validity of the set of tokens contained
in the circular code is preserved.

Lemma 10. For any two cycles A and B that share a common substring of weight c ¡ 1, paste.A; B/

contains exactly the union of the tokens contained in A and the tokens contained in B .

Proof. Observe that a token t cannot have the form x<c ¡ 1>y , with x; y 2 6, since <c ¡ 1>y

already has a weight of c or more. Therefore, assuming that A and B share a common substring s, any
token t contained in A0s is contained in at least one of its linearizations A0s and sA0. Analogously,
any token contained in B0s is contained in at least one of its linearizations B0s and sB0. Since all
above linearizations are substrings of paste.A; B/ 5 A0sB0s, all tokens in A and B are also contained in
paste.A; B/. Conversely, any token contained in A0sB0s is contained in one of the above four linearizations,
and thus also present in A or B .

Lemma 11. There exists a sequence of paste operations that merges all cycles of C into a single cycle.

Proof. The central observation is that each cycle Ci.¹/, where ¹ is a meta-string containing k ¶ 1
strong characters, can be pasted with a cycle of the form Cj .º/, where º contains only k ¡ 1 strong
characters. To see how this works, observe that the circular meta-string of Ci.¹/ can be expressed as a
repetition of ¹0S for some meta-string ¹0 of weight c ¡ 1. Consider an instance s of ¹0 in Ci.¹/. The
string sT is a token of weight c and, according to Lemma 8, does occur in some cycle Cj .º/ with º 5 ¹0W.
Observe that the meta-string º contains only k ¡ 1 strong characters. Since both cycles Ci.¹/ and Cj .º/

contain s as a substring, they can be pasted together.
Iterating the above paste operation leads from any given cycle Ci.¹/ to the one cycle Ci.Wc/ that contains

no strong characters. Since substrings of weight c ¡ 1 are preserved by the paste operation, all cycles of
C can indeed be pasted into a single cycle.

Together with Corollary 2, Lemmas 10 and 11 prove our earlier claim.

Theorem 5. The above construction yields at least

2 Gc ¡ 1 1 6 Gc ¡ 2 1 4 Gc ¡ 3

h ¡ c 1 3
¡ 1 tags.

As mentioned before, this means that, asymptotically, our code achieves 89:8% of the upper bound from
Theorem 1. For the values of c 5 12 and h 5 30, our code achieves 87:6% of the upper bound.

For our example with the parameters c 5 4 and h 5 10, Figure 8 shows how the set of cycles we
constructed in Table 2 can be pasted together. Each cycle Ci.¹/ appears in layer k, where k is the number
of strong characters in ¹.

According to the constructive proof of Lemma 11, each cycle in any layer k ¶ 1 shares a common
substring of weight c ¡ 1 5 3 with a cycle in the layer k ¡ 1 below it. In Figure 8, the common substrings
are indicated by edges between the cycles. Viewing the � gure as a graph, the paste operation can be viewed

FIG. 8. Merging all cycles into one, for c 5 4, h 5 10.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050916&iName=master.img-007.png&w=305&h=125


516 BEN-DOR ET AL.

FIG. 9. Final step in our construction of a 4–10 code.

as a graph operation. Replacing two cycles A and B by paste.A; B/ corresponds to contracting an edge
between A and B to form a new node with the cycle paste.A; B/. As proven in Lemma 10, the set of
tokens, and therefore shared substrings among cycles, which are edges in the graph, are preserved by this
operation. In terms of the graph, Lemma 11 was proved by showing that the edges always form a spanning
tree, and therefore any sequence of edge contractions can be used to merge all cycles into a single cycle.

Contracting the edges in Figure 8 in the order from bottom to top and from left to right, we get a single
cycle, and can extract tags using the greedy algorithm described in Section 4.1. The resulting cycle and
the � nal tag set are depicted in Figure 9.

For the parameters c 5 4 and h 5 10, our construction yields 10 tags. Notice that, in this case, our
construction does not achieve the optimum of 12 tags (as does the optimal code given in Figure 2).
However, compared to the optimum (that here coincides with the upper bound), the achieved ratio of
83:3% is already close to the asymptotic ratio of 89:8%.

5. OPTIMALITY OF OUR CONSTRUCTION

In this section we show that our construction is optimal within the limits of the circular approach to tag
construction, i.e., our construction solves the Circular String Problem optimally. To this end, we prove that
any set of cycles that is valid (i.e., no token is repeated) has a weight of at most 2 Gc ¡ 1 1 6 Gc ¡ 2 1 4 Gc ¡ 3.
Note that, using the recursion for Gn , this can be written as Gc 1 2 Gc ¡ 1.

Let C 0 denote a valid set of cycles. We continue to discuss even values of c and use r to denote c=2.
To bound the total weight of C 0, we will bound the number of weak characters and the number of strong
characters in C 0. We need the following technical lemma.

Lemma 12. For k 2 f0; : : : ; r ¡ 1g, the number of instances of the meta-string SkW in C 0 is at most
2kG2.r ¡ k/.

Proof. To bound the number of instances of SkW, we bound the number of tokens that have an instance
of SkW as a suf� x. There are two cases to consider:

° Tokens of weight 2r, which have the form <2r ¡ 2k ¡ 1>SkW. There are 2k1 1G2.r ¡ k/ ¡ 1 tokens of this
type.

° Tokens of weight 2r 1 1, which have the form S<2r ¡ 2k ¡ 2>SkW. Since the pre� x S<2r ¡ 2k ¡ 2>Sk

has a weight of 2r, these tokens cannot occur more than 2k1 1G2.r ¡ k/ ¡ 2 times in C 0.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050916&iName=master.img-008.png&w=370&h=234


UNIVERSAL DNA TAG SYSTEMS 517

Therefore, the total number of tokens that have an instance of SkW as a suf� x is

2k1 1G2.r ¡ k/ ¡ 1 1 2k1 1G2.r ¡ k/¡ 2 5 2kG2.r ¡ k/:

As each instance of SkW in C 0 is the suf� x of exactly one token, our claim follows.

The following lemma is straightforward to prove.

Lemma 13. C 0 contains at most 2r instances of the meta-string Sr .

The case of k 5 0 in Lemma 12 implies that C 0 contains at most G2r weak characters. To bound the
number of strong characters in C 0, we need the following lemma.

Lemma 14. The number of strong characters in C 0 equals the number of instances of the meta-string
SkW (over k 5 1; : : : ; r ¡ 1), plus the number of instances of Sr .

Proof. We prove this lemma by mapping each character s in C 0 to instances of SkW or Sr in C 0. If the
r ¡ 1 characters ¾1; : : : ; ¾r ¡ 1 that follow s in C 0 are all strong, we map s to the string s; ¾1; : : : ; ¾r ¡ 1, an
instance of Sr in C 0. Otherwise, let i be the minimal index such that ¾i is a weak character. In this case,
s is mapped to s; ¾1; : : : ; ¾i , an instance of SkW in C . It is easy to verify that this mapping is one-to-one
and onto.

To establish a bound on the number of strong characters in C 0, we can now sum up the above bounds
on the total number of instances of SkW (k 5 1; : : : ; r ¡ 1) and the number of instances of Sr in C . In the
following lemma we show that this sum (and thus the upper bound on the number of strong characters in
C 0) equals G2r ¡ 1.

Lemma 15.
rX

k5 1

2kG2.r ¡ k/ 5 G2r ¡ 1

Proof. Using i 5 r ¡ k, the above equality is equivalent to

r ¡ 1X

i 5 0

2r ¡ i G2i 5 G2r ¡ 1

which is straightforward to prove by induction on r, using the above recursion for Gn .

Lemma 15 yields an upper bound of Gc ¡ 1 for the number of strong characters in C 0. Together with the
upper bound of Gc on the number of weak characters, we get the following.

Theorem 6. The total weight of any valid set of cycles is at most Gc 1 2 Gc ¡ 1.

This proves that our construction solves the Circular String Problem optimally.

6. DISCUSSION

This paper formulates the design of a universal set of tags as a combinatorial problem and achieves a
provably near-optimal solution. Our formulation rests on two assumptions:

1. If a sequence has weight greater than or equal to h (corresponding to melting temperature greater than
or equal to 2h in the 2–4 model) then the sequence will hybridize to its complement.

2. Sequence x will fail to hybridize to sequence y provided that there is no string z of weight greater
than or equal to c such that z is a substring of x and zC is a substring of y.



518 BEN-DOR ET AL.

In practice, the choice of the parameters h and c will depend on the concentrations of the reagents
involved in the hybridization process and on other hybridization conditions.

The present combinatorial formulation of the actual design problem is conservative in the following
sense: we require strings that may form a nucleation complex and initiate cross hybridization not only not
be common to two different tags but also not repeat within a given tag. All our results, including the upper
bound, are attained under this requirement.

Since our model of hybridization is only an approximate rule of thumb, it is inevitable that our design
will include tag–antitag pairs that violate the two assumptions. Secondary structure in a tag may cause it
to fail to hybridize to its antitag, even though its weight is greater than or equal to h. A tag and a foreign
antitag may hybridize together because of long substrings that are nearly complementary but not exactly
complementary.

Such violations depend on very speci� c properties of sequences, such as unusual dinucleotide com-
position, high-weight near-perfect matches or speci� c structural motifs. For example, a principal type of
secondary structure within a DNA sequence is a hairpin, which can occur when the sequence contains two
high-weight complementary substrings separated by at least three nucleotides. Such features occur infre-
quently in random sequences, and our method of tag construction does not appear to be strongly biased
toward their occurrence. The 4–10 code in Figure 2 contains no complementary substrings of weight 4
in a single tag. The 12–30 code our method yields contains no tag containing complementary substrings
of weight higher than 12. Only approximately 0.1% (14 tags out of a total of 12,119) contain a pair of
complementary substrings of weight 12.

Moreover, we can guard against possible bias by randomizing the choice of De Bruijn sequences in the
cycle formation stage of our construction. Thus, we believe that violations will not occur frequently in our
set of tags and antitags if the parameters h and c are chosen conservatively.

In order to make our design useful, it will be necessary to verify our belief that violations are infrequent,
and then get rid of the violations that do exist by deleting some tags. We can perform these tasks by a
combination of computational and experimental approaches.

The computational approach depends on the availability of re� ned models of DNA secondary structure
and of duplex formation between (not necessarily complementary) DNA sequences. For special types of
duplexes, such re� ned models are already available (Santa Lucia, 1998; Peyret et al., 1999). Given such
models, we can computationally screen our tags for secondary structure interfering with hybridization, and
screen the tag–antitag pairs for undesired hybridization. Because of the huge number of tag–antitag pairs,
an exhaustive approach to the latter task may be infeasible. Instead, it may be possible to use mathematical
properties of our design and of the model of duplex formation to limit the search. For example, it may be
possible to show that a tag x and a foreign antitag y are likely to form a duplex only if they have been
constructed from highly similar meta-tokens.

Another problem lies in the experimental validation of tag–antitag systems. Once a set of tags has been
screened computationally, one can perform further screening by building universal arrays and exposing
them to sets of antitags. Choosing these sets of antitags for this screening procedures poses another new
design problem.

ACKNOWLEDGMENTS

Amir Ben-Dor was supported by the Program for Mathematics and Molecular Biology (PMMB). Benno
Schwikowski was supported by a fellowship from the German Academic Exchange Service (DAAO). We
thank Deborah Nickerson for introducing us to the problem of designing universal arrays, and we gratefully
acknowledge the helpful remarks of the anonymous referees.

REFERENCES

Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., and Levine, A.J. 1999. Broad patterns of gene
expression revealed by clustering analysis of tumor and normal colon tissues by oligonucletide arrays. PNAS 96,
6745–6750.

Blanchard, A.P., and Hood, L. 1996. Sequence to array: probing the genome’s secrets. Nature Biotechnology 14, 1649.
Brenner, S. 1997. Methods for sorting polynucleotides using oligonucleotide tags, US Patent 5,604,097.



UNIVERSAL DNA TAG SYSTEMS 519

De Bruijn, N.G. 1946. A combinatorial problem. Proc. Kon. Ned. Akad. v. Wetensch. 49, 758–764.
DeRisi, J., Iyer, V., and Brown, P. 1997. Exploring the metabolic genetic control of gene expression on a genomic

scale. Science 278, 680–686.
Drmanac, R., Lennon, G., Drmanac, S., Labat, I., Crkvenjakov, R., and Lehrach, H. 1991. Partial sequencing by oligo-

hybridization: Concept and applications in genome analysis. In Proceedings of the First International Conference on
Electrophoresis Supercomputing and the Human Genome. Edited by C. Cantor and H. Lim, pages 60–75, Singapore,
World Scienti� c.

Frutos, A.G., Liu, Q., Thiel, A.J., Sanner, A.M.W., Condon, A.E., Smith, L.M., and Corn, R.M. 1997. Demonstartion
of a word design strategy for DNA computing on surfaces. Nucl. Acids Res. 25(23), 4748–4757.

Garry, N., Wotiwski, N., Day, J., Hammer, R., Barany, G., and Barany, F. 1990. Universal DNA microarray method
for multiplex detection of low abundance point mutations. J. Mol. Bio. 292, 251–262.

Hacia, J.G. 1999. Resequencing and mutational analysis using oligonucleotide micro arrays. Nature Genetics 21(1),
42–47.

Khrapko, K.R., Khorlin, A., Ivanov, I.B., Chernov, B.K., Lysov, Y.P., Vasilenko, S., Floreny’ev, V., and Mirzabekov.
1991. Hybridization of DNA with oligonucleotides immobilized in gel: A convenient method for detecting single
base substitutions. Molecular Biology 25(3), 581–591.

Kozal, M., Shah, N., Shen, N., Fucini, R., Yang, R., Merigan, T., Richman, D.D., Morris, M.S., Hubbell, E., Chee, M.,
and Gingeras, T.R. 1996. Extensive polymorphisms observed in HIV-1 clade B protease gene using high density
oligonucleotide arrays: implications for therapy. Nature Medicine 7, 753–759.

Lin, C.Y., Hahnenberger,K.H., Cronin, M.T., Lee, D., Sampas, N.M., and Kanemoto, R. 1996. A method for genotyping
cyp2d6 and cyp2c19 using genechip probe array hybridization. In ISSX Meeting.

Morris, M.S., Shoemaker, D.D., Davis, R.W., and Mittmann, M.P. 1999. Methods and compositions for selecting tag
nucleic acids and probe arrays, European Patent Application 97302313.

Peyret, N., Seneviratne, P.A., Allawi, H.T., and Santalucia, J. Jr. 1999. Nearest-neighbor thermodynamics and NMR
of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry 38(12), 3468–3477.

Santa Lucia, J. 1998. A uni� ed view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynam-
ics. Proc. Natl. Acad. Sci. 95(4), 1460–1465.

Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittmann, M., and Davis, R.W. 1996. Quantitative phenotypic analysis
of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nature Genetics 4(14), 450–456.

Solas, D., Pease, A.C., Sullivan, E.J., Cronin, M.T., Holmes, C.P., and Fodor, S.P.A. 1994. Oligonucleotide arrays for
rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022–5026.

Southern, E., Mir, K., and Shchepinov, M. 1999. Molecular interactions on microarrays. Nature Genetics 21(1), 5–9.
Strachan, T., and Read, A.P. 1997. Human Molecular Genetics. John Wiley & Sons, New York.
Wang, D.G. et al. 1998. Large-scale identi� cation, mapping and genotyping of single nucleotide polymorphisms in

the human genome. Science 280, 1077–1082.
Watson, J.D., Gilman, M., Witkowski, J., and Zoller, M. 1996. Recombinant DNA. Scienti� c American Books, New

York.

Address correspondence to:
Amir Ben-Dor

Chemical and Biological Systems Department
Agilent Laboratories

3500 Deer Creek Road
Palo Alto, CA 94304

E-mail: amirbd@cs.washington.edu



This article has been cited by:

1. Nina Svensen, Juan José Díaz-Mochón, Mark Bradley. 2011. Decoding a PNA Encoded Peptide
Library by PCR: The Discovery of New Cell Surface Receptor Ligands. Chemistry & Biology
18:10, 1284-1289. [CrossRef]

2. Anthony A. Philippakis , Aaron M. Qureshi , Michael F. Berger , Martha L. Bulyk . 2008. Design
of Compact, Universal DNA Microarrays for Protein Binding Microarray Experiments. Journal
of Computational Biology 15:7, 655-665. [Abstract] [PDF] [PDF Plus]

3. Ion I. Mandoiu, Claudia Prajescu. 2007. High-Throughput SNP Genotyping by SBE/SBH. IEEE
Transactions on Nanobioscience 6:1, 28-35. [CrossRef]

4. Ion I. M#ndoiu , Drago# Trinc# . 2006. Exact and Approximation Algorithms for DNA Tag Set
Design. Journal of Computational Biology 13:3, 732-744. [Abstract] [PDF] [PDF Plus]

5. Jing-Guang Li, Ulrika Liljedahl, Chew-Kiat Heng. 2006. Tag/anti-tag liquid-phase primer
extension array: A flexible and versatile genotyping platform. Genomics 87:1, 151-157.
[CrossRef]

6. B. DasGupta, K. M. Konwar, I. I. Mandoiu, A. A. Shvartsman. 2005. DNA-BAR: distinguisher
selection for DNA barcoding. Bioinformatics 21:16, 3424-3426. [CrossRef]

7. John A. Rose, Akira Suyama. 2004. Physical modeling of biomolecular computers: Models,
limitations, and experimental validation. Natural Computing 3:4, 411-426. [CrossRef]

8. John A. Rose, Russell J. Deaton, Akira Suyama. 2004. Statistical thermodynamic analysis and
designof DNA-based computers. Natural Computing 3:4, 443-459. [CrossRef]

9. Kaleigh Smith , Mike Hallett . 2004. Towards Quality Control for DNA Microarrays. Journal
of Computational Biology 11:5, 945-970. [Abstract] [PDF] [PDF Plus]

10. Amir Ben-Dor , Tzvika Hartman , Richard M. Karp , Benno Schwikowski , Roded Sharan , Zohar
Yakhini . 2004. Towards Optimally Multiplexed Applications of Universal Arrays. Journal of
Computational Biology 11:2-3, 476-492. [Abstract] [PDF] [PDF Plus]

11. Suzanne Jenkins, Neil Gibson. 2002. High-Throughput SNP Genotyping. Comparative and
Functional Genomics 3:1, 57-66. [CrossRef]

http://dx.doi.org/10.1016/j.chembiol.2011.07.017
http://dx.doi.org/10.1089/cmb.2007.0114
http://www.liebertonline.com/doi/pdf/10.1089/cmb.2007.0114
http://www.liebertonline.com/doi/pdfplus/10.1089/cmb.2007.0114
http://dx.doi.org/10.1109/TNB.2007.891898
http://dx.doi.org/10.1089/cmb.2006.13.732
http://www.liebertonline.com/doi/pdf/10.1089/cmb.2006.13.732
http://www.liebertonline.com/doi/pdfplus/10.1089/cmb.2006.13.732
http://dx.doi.org/10.1016/j.ygeno.2005.09.009
http://dx.doi.org/10.1093/bioinformatics/bti547
http://dx.doi.org/10.1007/s11047-004-2643-x
http://dx.doi.org/10.1007/s11047-004-2641-z
http://dx.doi.org/10.1089/cmb.2004.11.945
http://www.liebertonline.com/doi/pdf/10.1089/cmb.2004.11.945
http://www.liebertonline.com/doi/pdfplus/10.1089/cmb.2004.11.945
http://dx.doi.org/10.1089/1066527041410373
http://www.liebertonline.com/doi/pdf/10.1089/1066527041410373
http://www.liebertonline.com/doi/pdfplus/10.1089/1066527041410373
http://dx.doi.org/10.1002/cfg.130

