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In this paper we propose a new method to test the superior predictive ability (SPA)
of technical trading rules relative to a benchmark. The proposed test has no potential
data snooping bias. Unlike previous methods, we model the covariance matrix by
factor models and develop a generalized likelihood ratio (GLR) test for the above
testing problem. The GLR test is then extended to a stepwise GLR (Step-GLR) test
in the spirit of the Step-RC test of Romano and Wolf (2005) and Step-SPA test of Hsu
et al. (2010), which can identify predictive models without potential data snooping
bias. Asymptotic null dsitribution is approximated by resampling procedures. Our
results show that the GLR test is much more powerful but less conservative than the
SPA test of Hansen (2005).
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1 Introduction

Testing superior predictive ability (SPA) of some forecasting procedures over a particular

forecasting one is an important problem in economics and finance. In financial markets

technical rules have been exhaustively used since W.P. Hamilton published a series of papers

in The Wall Street Journal in 1902, but a good forecasting model with observed superior

performance may possibly come from pure luck instead of genuinely forecasting ability. As

White (2000) pointed out, “it even when no exploitable forecasting relation exists, looking

long enough and hard enough at a given set of data will often reveal one or more forecasting

models that look good, but are in fact useless.” While the SPA of technical rules are in

controversy, there are numerous empirical results supporting them. See Sweeney (1988),

Blume et al. (1994), Brown et al. (1998), Gencay (1998), Lo et al. (2000), Savin et al.

(2007), and Hsu et al. (2010). These evidences indicate that the problem is not within

the technical rules but the data snooping bias in testing SPA. (see for example, Lo and

MacKinlay (1999), Brock et al. (2000), White (2000), Hus et al. (2010)).

Data snooping widely exists in practice, especially in various applied fields such as finance

and economics, where only a single history of interest is available for analysis, such as stock

price, interest rate, etc. As noted by Sullivan (1999), “data snooping can result from a subtle

survivorship bias operating on the entire universe of technical trading rules that have been

considered historically.”

In general, the testing problem can be addressed by testing the null hypothesis that the

benchmark is not inferior to any alternative forecast. Diebold and Mariano (1995) and West

(1996) proposed the tests for equal predictive ability (EPA), which means the forecasting

ability of a model is the same as the benchmark. White (2000) formulated the test of SPA

as a large-scale simultaneous test for data snooping and proposed the reality check (RC) test

to attck the problem. Romano and Wolf (2005) introduced a RC-based stepwise (Step-RC)

test to identify as many significant models as possible. Commenting on the framework of

White (2000), Hansen (2003) suggested a new testing procedure for composite hypotheses

incorporating additional sample information from nuisance parameter and similarity con-

dition which is necessary for a test to be unbiased. Later, Hansen (2005) provided a test

for SPA (known as SPA test) that invokes a sample-dependent null distribution to avoid

the least favorable configuration. Recently, Hsu et al. (2010) extended the SPA test to a

stepwise SPA test that can identify predictive models in large-scale, multiple testing prob-
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lems without data snooping bias. They found that technical rules have significant predictive

ability prior to the inception of exchange traded funds (ETF) in U.S. growth markets.

We conduct the superior predictive ability test under the null hypothesis proposed by

White (2000) and Hansen (2003, 2005), that is, the benchmark performs no inferior to any

alternative models, which is a large-scale simultaneous test for SPA. Our work contributes

in the following aspects:

(i) First, no matter the RC test or SPA test, both circumvent estimation of a large co-

variance matrix or ignore the dependence within the models, which may result in

inefficient inference. We model the covariance matrix by factor models, where variance

is contributed by common background noise and underlying economical factors. This

approach is applicable to the case where the number of forecasting models exceeds the

sample size, even in a large scale. However, this situation is deemed to be infeasible

by White (2000) and Hansen (2003, 2005).

(ii) Secondly, we incorporate the covariance structure in our estimation and extend the

generalized likelihood ratio (GLR) statistics for testing SPA. Indeed, Hansen (2003,

2005) pointed out that his SPA test may be improved if there is a reliable way to

incorporate information about the off-diagonal elements of the covariance matrix.

(iii) Thirdly, as Hansen (2005) suggested, the testing problem of composite hypotheses

is closely related to the problem of testing hypotheses in the presence of nuisance

parameters. Typically a test will suffer from loss of powers when the number of nuisance

parameters is very large. Our GLR test is a type of likelihood ratio tests independent of

nuisance parameters due to Wilks’ phenomenon (Wilks, 1937). For various situations

it is shown that the GLR test statistic follows asymptotically a scaled χ2-distribution

with the scaling constants and the degrees of freedom independent of the nuisance

parameters. Further, the GLR tests are asymptotically optimal in the sense that they

achieves optimal rate of convergence (see Fan, Zhang and Zhang (2001) and Fan and

Jiang (2005, 2007)). It can be expected that the proposed GLR test is more persuasive

than the SPA test.

(iv) Following the idea of Step-RC test (Romano and Wolf (2005) and Step-SPA test (Hsu

et al. (2010), we extend the GLR test to the Step-GLR test. This allows us to identify

which models are superior to the benchmark.
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(v) We provide a bootstrap method to implement the proposed GLR test.

The rest of this paper is organized as follows. In Section 2, we review the existing tests. In

Section 3, we describe our testing procedure in detail. In Section 4, we conduct simulations

to assess the effectiveness of the proposed method and to compare it with the SPA test. In

Section 5, we give a concluding remark.

2 Review of Existing Tests

2.1 Reality Check Test

Suppose we have m models for some variable. Let dk,t be the performance measure of the k-th

model relative to a benchmark model at time t for t = 1, 2, · · · , n. In the framework of White

(2000), to determine if there is a model with predictive superiority over the benchmark, one

would like to test the null hypothesis:

Hk
0 : µk ≤ 0, k = 1, . . . , m, (2.1)

where µk = E(dk,t). Then data snooping arises when the inference for the null is drawn

from the test of an individual hypothesis Hk
0 . White (2000) circumvented the problem by

invoking the RC test

RCn = max
1≤k≤m

√
nd̄k, (2.2)

where d̄k is the k-th element of d̄ and d̄ =
∑n

t=1 dt/n.

The least favorable configuration (LFC) is that µ = 0 is chosen to obtain the null distri-

bution. Under the null hypothesis, the limiting distribution of RCn can be approximated

via a bootstrap procedure. The null hypothesis is rejected when the bootstrapped p-value

is smaller than a pre-specified significance level. While the LFC is convenient to implement,

the RC test also bears a few drawbacks. As Hansen (2003, 2005) pointed out, the RC suffers

two major drabacks: “The first is that it is sensitive to the inclusion of poor and irrelevant

models in the space of competing forecasting models. Since only binding constraints (µ = 0)

matter for the asymptotic distribution, the inclusion of poor model decreases the power of the

test by increasing RC’s p-value. The other one is that the power of the RC is unnecessarily

low in most situations. In other words, it is relatively conservative whenever the number of

binding constraints are small relative to the number of inequalities being tested.”
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2.2 Superior Predictive Ability Test

Under the same null hypothesis as in RC test, Hansen (2005) proposed a studentized test

SPAn = max
[

max
1≤k≤m

√
nd̄k/σ̂k, 0

]
, (2.3)

where σ̂2
k is a consistent estimator of σ2

k = ωkk. The main argument for the normalization is

that it will improve the power typically. Since it uses a data-dependent choice for µ instead

of µ = 0 implied by the LFC condition, it usually leads to a more powerful test of composite

hypotheses.

While LFC-based RC test takes a supremum over the null hypothesis, the SPA test takes

the supremum over a smaller confidence set chosen such that it contains the true parameter

with a probability that converges to 1. In the SPA test, the mean E(dk) = µk is estimated

by

µ̂k = d̄k · 1{
√

nd̄k/σ̂k ≤ −
√

2 log log n}, k = 1, 2, · · · ,m, (2.4)

where 1{·} denotes the indicator function. Advantages of the estimator µ̂k were clarified in

Hansen (2005). We will use the estimator µ̂k when the null holds.

3 Methodology to Test Superior Predictive Ability

3.1 Estimation Procedure

Suppose we model the dt = (d1,t, . . . , dmt,)
T by

dt = µ + et = µ + Ω1/2εt t = 1, 2, · · · , n, (3.1)

where Ω = [ωij]m×m is a definite positive covariance matrix and {εt}n
t=1 are independent and

identically distributed with mean 0 and covariance matrix Im×m, where Im×m is the m×m

identity matrix. This means that dt is decomposed into two parts. The first part is the

mean value of the trading rules during certain period, and the second one, the error term, is

the systematic noise, which explains the variation of the trading rules. This decomposition

allows us to explicitly model the covariance matrix later.

In many applications, there are a ton of trading rules to be investigated so that m might

be huge. For example, Sullivan et al. (1999) evaluated 7, 846 technical trading rules, and

Hsu, Hsu, Kuan (2010) employed a total of 16, 380 rules. This means a sensible estimate

4



of all elements of Ω is nearly infeasible, especially when competing trading strategies m

exceeds the sample size n. Instead, we approximate the estimation of Ω using its most useful

or important information, which is also in spirit of principle component analysis (PCA).

Specifically, we first make a singular value decomposition (SVD) of Ω,

Ω = QDQT , (3.2)

where Q = (q1, · · · , qm) is an m×m orthogonal matrix with qT
i qj = 1 for i = j, and qT

i qj = 0

for i 6= j, and D is an m×m diagonal matrix with decreasing entries on the diagonal. Then

D is the variance matrix of the transformed data QT dt.

Motivated by the idea of Liu et al. (2008) for clustering high-dimension, low-sample size

data sets in gene expression microarray data, we decomposed the variance matrix D into

two parts: one is caused by d (d < m) real economic factors, and the other is caused by a

common noise with mean zero and variance δ2. Therefore, it can be rewritten as

D = Sm×m + δ2Im×m,

where Sm×m = diag(s1, · · · , sd, 0, . . . , 0) is determined by d real economical factors gathering

the most important information specific to each trading rule, {sd} is arranged in a decreasing

order, and the value of d is decided from data. In summary, the matrix D admits the following

decomposition:

Dm×m = diag{λ1, · · · , λd, δ2, · · · , δ2}, (3.3)

where λj = sj + δ2 and λ1 ≥ λ2 ≥ · · · ≥ λd. The values of sj reflect the strength of effects

of real economic factors, and δ2 reflects the level of background noise shared by all trading

rules.

In general, µk can be estimated by d̄k which is in the form of d̄k = n−1
n∑

t=1

dk,t k =

1, 2, · · · ,m. Hence, the residual from (3.1) is estimated by êt = dt − d̄, t = 1, 2, · · · , n.

Based on {êt}m×1, the residual sample covariance matrix is given by

Ω̂ =
1

n− 1
Σn

t=1êtê
′
t. (3.4)

Note that the dimension m is generally large relative to the sample size n. Ω̂ cannot provide

a good estimate of Ω, but it allows us to utilize the structure in (3.2).

Since δ2 reflects the variance of the common background noise shared by all trading rules, it

can be estimated by δ̂2 = 1
mn−1

∑n
t=1 ‖êt‖2. From covariance matrix Ω̂, we get its eigenvalues
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{λ∗i }m
i=1 and the corresponding normalized eigenvectors {vi}m

i=1, where λ∗1 ≥ λ∗2 ≥ · · · ≥ λ∗m.

Let Q̂ = (v1, v2, · · · , vm). Then by (3.3) the matrix D can be estimated by

D̂ = diag{λ̂1, . . . , λ̂d, δ̂2, . . . , δ̂2},

where λ̂j = (λ∗j − δ̂2) 1(λ∗j ≥ δ̂2) and 1(·) is an indicator function. Therefore, by (3.2), the

covariance matrix Ω is estimated by Ω̂∗ = Q̂D̂Q̂T .

3.2 GLR Test

The testing problem in (2.1) is a high-dimensional nonparametric null hypothesis versus a

high-dimensional nonparametric alternative. Since the distribution of εt is unspecified, we

do not have a known likelihood function. Even though a likelihood is available when the

distribution is given, the number of parameters in Ω is too large so that it is challenging to

make an efficient inference for the parameters. To this end, we extend the GLR test to the

current high-dimensional setting.

For any vector a, let ‖a‖ be L2-norm of a. Define the residual sum of squares under the

null and alternative as follows:

RSS0 =
n∑

t=1

‖Ω̂∗− 1
2 (dt − µ̂)‖2

where µ̂k = d̄k {
√

nd̄k/σ̂k ≤ −√2 log log n}, k = 1, 2, · · · ,m, and

RSS1 =
n∑

t=1

‖Ω̂∗− 1
2 (dt − d̄)‖2,

respectively. Then we define the GLR test statistic as

Tn =
mn

2
(RSS0 − RSS1)/RSS1, (3.5)

which compares the likelihood of the nearly best fitting under the alternative model with

that under the null model. The null hypothesis is rejected when Tn is too large.

For finite-dimensional data in various scenarios, the GLR statistics follow asymptotically

rescaled chi-squared distributions, with the scaling constants and the degrees of freedom

independent of the nuisance parameters, which enables one to use simulations to approximate

the null distribution. The resulting tests are powerful, since they are asymptotically optimal
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in the sense that they can detect alternatives with optimal rates for nonparametric hypothesis

testing according to the formulation of Ingster(1993) and Spokoiny (1996). For details, see

Cai, Fan and Yao (2000), Cai and Tiwari (2000), Fan, Zhang and Zhang (2001) and Fan and

Jiang (2005, 2007).

3.3 Calculating P-Value

We now introduce a bootstrap procedure to calculate the P-value of the GLR test. Given

dk,t, we use the proposed estimation method to compute the GLR test statistic Tn and the

residuals from the alternative

ε̂t = Ω̂∗− 1
2 (dt − µ̂), t = 1, 2, . . . , n. (3.6)

Then draw bootstrap residuals ε̂∗t with size n from the centered empirical distribution of

{ε̂t}n
t=1 and compute

d∗t = µ̂ + Ω̂∗− 1
2 ε̂∗t t = 1, 2, · · · , n.

This forms a bootstrap sample {d∗k,t} (k = 1 . . . , m; t = 1, . . . , n). Then use the bootstrap

sample to obtain the GLR test statistic T ∗
n . Repeat this procedure many times, then we

get a sample of the GLR statistic T ∗
n , which can be used to determine the quantiles of the

test statistic under H0. The P-value is the percentage of observations from the sample of T ∗
n

whose values are bigger than Tn.

3.4 Step-GLR Test

To identify significant models, we extend the GLR test to the Step-GLR test using the ideas

of Step-RC test of Romano and Wolf (2005) and Step-SPA test of Hsu (2010). The Step-GLR

test should be more powerful since it inherits the advantages of the GLR test.

The idea is similar to the backward elimination method for variable selection and the one-

case deleted procedure for regression diagnostics in linear models. First we calculate the GLR

statistic Tn without using the data for i-th model (i = 1, . . . ,m). To stress independence on

the model i. We denote by Tn,−i the resulting GLR statistic. Then we define

Tn,−i =
mn

2
(RSS0,−i − RSS1,−i)/RSS1,−i. (3.7)
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where RSS0,−i =
n∑

t=1

‖Ω̂∗− 1
2

−i (dt − µ̂)‖2, RSS1,−i =
n∑

t=1

‖Ω̂∗− 1
2

−i (dt − d̄)‖2, and Ω̂∗
−i is defined

the same as Ω̂∗ without using the data for the i-th model. The Step-GLR test with the

pre-specified level α0 then proceeds as follows.

1. Let ∆Tni = Tn − Tn,−i for i = 1, . . . , m. Re-arrange ∆Tni in a descending order.

2. Reject the top model k if Tn is greater than the critical value T ∗
α (all) from the full

sample. Otherwise, the procedure stops.

3. Remove {dk,t}n
t=1 of the rejected models from the data. Let ∆Tni (sub) be defined the

same as ∆Tni but with the remaining data as the new full sample. Reject the top model

i in the sub-sample of remaining observations if ∆Tni (sub) is greater than T ∗
α (sub),

the critical value from the sub-sample. If no model can be rejected, the procedure

stops.

4. Repeat the Step 3 until no model can be rejected.

4 Mont Carlo Simulation Studies

4.1 Data Generating Process

In this section, we evaluate finite sample performance of the proposed method using Monte

Carlo simulations. To this end, we consider the same data generating process as Hansen

(2005) due to its genuine property and ease to compare with our test. We will use the

notions in Hansen (2005).

Let performance of the kth trading strategy be measured by loss function relative to that

of benchmark, instead of its absolute value:

dk,t = L(ξt, δ0,t−h)− L(ξt, δk,t−h), k = 1, 2, · · · ,m, (4.1)

where L(·, ·) is a loss function. The loss function is a function of two variables, i.e. L(ξt, δk,t−h),

k = 1, 2, · · · ,m, where ξt is a random variable that represents the aspects of the decision

problem that are unknown at the time that the decision is made, and δk,t−h represents a

possible decision rule which is made h periods in advance. If k = 0, δ0,t−h is the decision

made according to the benchmark trading strategy. For example, in Hansen (2005), δk,t−1 is
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assigned the value of −1 when a trader takes a short position, and the value of 1 if he/she

takes a long position in an asset at time t−1. ξt is the return of asset in period t, i.e., ξt = rt.

The kth trading rule yields the profit πk,t = δk,t−hrt. The loss function can be formulated as

L(ξt, δk,t−h) = −δk,t−1ξt . We evaluate forecasts in terms of their expected loss, such as

E(dk,t) = E[L(ξt, δ0,t−h)]− E[L(ξt, δk,t−h)], k = 1, 2, · · · ,m.

Therefore, we focus on dk,t exclusively rather than the loss function itself.

The benchmark is the target to compare with. It is reflected in dk,t as the performance of

kth trading rule is net of that of a benchmark. For example, for a fund manager who cares

about whether the performance of his portfolio beats the market, the benchmark can be the

market rate of return. For a trader in above example, if δ0,t is set to equal to 1 over time,

then it is a buy and hold strategy. This benchmark was used by Sullivan et al. (1999, 2001)

and will be used in this paper.

Loss function Lk,t = L(ξt, δk,t−h) is generated from the model

Lk,t ∼ iid N(λk/
√

n, σ2
k) k = 1, · · · ,m and t = 1, · · · , n, (4.2)

and the benchmark model has λk = 0 for all k. By the definition of loss function, Lk,t > 0

means that the kth model is worse than benchmark, and Lk,t < 0 means that it is better

than the benchmark model.

The experiment is designed to control the value of λk which is equivalent to choosing the

poor model and superior model. According to Hansen (2005), we have λ1 ≤ 0 and λ1 ≥ 0 for

k = 1, · · · ,m , such that the first alternative (k=1) defines whether the rejection probability

corresponds to a type I error (λ1 = 0 ) or a power ( λ1 < 0). The poor models are those

with mean values being equally spaced between 0 and λm = Λ0 (the worst model). That is,

the values of λk’s are are set as λ0 = 0, λ1 = Λ1, λk = (k − 1)Λ0/(m − 1) for 2 ≤ k ≤ m.

We set Λ0 to be 0, 1, 2, 5, and 10. The alternative models have Λ1 = 0, −0.1, −0.2, −0.3,

−0.4, and −0.5, respectively. Therefore, λ1 = Λ1 defines the local alternative that is being

analyzed. When Λ1 = 0, the null hypothesis is the same as the alternative. As Λ1 deviates

away from 0 on the left, the alternative get more and more away from the null. The variance

reflects the quality of the model. The smaller the variance, the better the model. As Hansen

(2005), we set σ2
k = exp(arctan(λk))/2, which indicates that the specification of variance is

Var(dk,t) = Var(L0,t − Lk,t) = 1/2 + Var(Lk,t).
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4.2 Simulation result

In this section we conduct a small simulation. We set m = 100 and n = 200 and 1000. To

get the null distribution of the GLR test, we run 1000 simulations under the null model. For

each simulation we generate 6 bootstrap samples of the GLR statistic Tn and then pool them

together to get the p-value of Tn using the procedure introduced before. To evaluate the

power of test, we run 1000 simulations which sample under the alternative. The rejection

frequency in 1000 simulations are reported. Then the power of test is calculated as the

relative rejection of frequency.

The results are reported under 5% and 10% level in Tables 1 and 2. In addition, for

comparison SPA test results are also exhibited. When Λ1 = 0 in every panel in Tables 1 and

2, all the alternatives conform to null hypothesis. Consequently, the rejection frequencies

correspond to type I error. In other cases, as Λ1 < 0, the rejection frequencies are the power

of the test. In contrast to SPA test which uses a relative coarse measurement, say Λ1 = 0,

−1, −2, −3, −4, and −5, we change it into Λ1 = 0, −0.1, −0.2, −0.3, −0.4, and −0.5. It

is easy to find that our method approaches 100% power at a much faster speed. No matter

whatever the sizes and model specifications, our method dominates SPA test in terms of

power.

In Table 1, Λ0 = Λ1 = 0 refers to the situation that all the 100 inequalities are binding.

It is the case in White’s LFC-based RC test where all the poor models are discarded. The

rejection probability is close to and less than the nominal levels. For example, when we

set α=5%, the rejection probability is 3%, and if we change α to 10%, it becomes 8.8%,

which are a little bit far away from the levels. This appears to be a small sample problem,

because this problem is alleviated when the sample size increases to 1000. In Table 2, when

Λ0 = Λ1 = 0, the probability of rejection is 4.9% for α=5% and 9% for α = 10%. It is

seen that, with larger sample size, the speed of power to increase is higher. One can observe

from Table 2 that, with larger sample than Table 1, our method gains power faster than

that under small sample. For example, in the case of (Λ0, Λ1) = (0,−0.2), the power goes

to almost 100% while in Table 1 the first time to reach full power happens at the point

(Λ0, Λ1) = (0,−0.5) in the panel of Λ0 = 0. This may be due to the positive correlation

across alternatives, Cov(di,t, dj,t) > 0.

Comparing with SPA test which nearly cannot reject the null hypothesis when Λ1 = 1

except the case of Λ0 = 0, our test reaches 100% power even when Λ1 = −0.5. Similarly,
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we find that no matter how poor the model is (which depends on the level of Λ0), our

method always dominates SPA test. Another important improvement is that our test is less

conservative than SPA. In SPA, the type I error shrinks fast with the increase of Λ0. For

example, it is only 0.007 when (Λ0, Λ1) = (10, 0) which is far away from the nominal level

5%, but for our test it is around 5% with less extreme low values.

5 Concluding Remarks

We have proposed the GLR and Step-GLR tests to analyze superior predictive ability of

multiple models over a benchmark. We explicitly approximate the covariance matrix by

factoring the covariance matrix and by using PCA. Such approximating covariance matrix

is even applicable to the case that competing models exceeds the sample size, which is

considered to be infeasible to estimate by Hansen (2003, 2005). Simulations demonstrate

that the power of the GLR test is much higher than the SPA test. This may be due to

the nature of GLR test and the dependence structure of the alternative models used in

estimation. Our results also indicate that the GLR test is less conservative than the SPA

test. Further work includes deriving the asymptotic null distribution and the theoretical

power of the GLR test, which is under investigation of our research project.
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Table 1: Rejection Frequencies under the Null and Alternative (m=100 and n=200)

Level: α=0.05 Level: α=0.10

Λ1 GLR Λ1 SPA Λ1 GLR Λ1 SPA

Panel A: Λ0=0
0 0.03 0 0.06 0 0.088 0 0.11
-0.1 0.048 -1 0.074 -0.1 0.099 -1 0.129
-0.2 0.172 -2 0.28 -0.2 0.331 -2 0.389
-0.3 0.609 -3 0.764 -0.3 0.761 -3 0.845
-0.4 0.96 -4 0.979 -0.4 0.988 -4 0.99
-0.5 1 -5 1 -0.5 1 -5 1
Panel B: Λ0=1

0 0.052 0 0.022 0 0.153 0 0.044
-0.1 0.123 -1 0.041 -0.1 0.288 -1 0.072
-0.2 0.409 -2 0.252 -0.2 0.613 -2 0.345
-0.3 0.789 -3 0.744 -0.3 0.92 -3 0.829
-0.4 0.977 -4 0.977 -0.4 0.993 -4 0.989
-0.5 0.999 -5 1 -0.5 1 -5 1
Panel C: Λ0=2

0 0.048 0 0.012 0 0.151 0 0.026
-0.1 0.118 -1 0.032 -0.1 0.261 -1 0.058
-0.2 0.421 -2 0.244 -0.2 0.69 -2 0.336
-0.3 0.849 -3 0.745 -0.3 0.933 -3 0.827
-0.4 0.994 -4 0.978 -0.4 1 -4 0.989
-0.5 1 -5 1 -0.5 1 -5 1
Panel D: Λ0=5

0 0.054 0 0.007 0 0.107 0 0.013
-0.1 0.16 -1 0.031 -0.1 0.236 -1 0.054
-0.2 0.516 -2 0.273 -0.2 0.617 -2 0.37
-0.3 0.907 -3 0.787 -0.3 0.944 -3 0.86
-0.4 0.999 -4 0.986 -0.4 0.999 -4 0.995
-0.5 1 -5 1 -0.5 1 -5 1
Panel E: Λ0=10

0 0.02 0 0.007 0 0.081 0 0.015
-0.1 0.112 -1 0.043 -0.1 0.22 -1 0.073
-0.2 0.499 -2 0.34 -0.2 0.64 -2 0.455
-0.3 0.913 -3 0.843 -0.3 0.956 -3 0.907
-0.4 1 -4 0.992 -0.4 1 -4 0.998
-0.5 1 -5 1 -0.5 1 -5 1
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Table 2: Rejection Frequencies under the Null and Alternative (m=100 and n=1,000)

Level: α=0.05 Level: α=0.10

Λ1 GLR Λ1 SPA Λ1 GLR Λ1 SPA

Panel A: Λ0=0
0 0.049 0 0.048 0 0.09 0 0.1
-0.1 0.326 -1 0.064 -0.1 0.495 -1 0.122
-0.2 0.998 -2 0.282 -0.2 0.999 -2 0.39
-0.3 1 -3 0.762 -0.3 1 -3 0.84
-0.4 1 -4 0.98 -0.4 1 -4 0.99
-0.5 1 -5 1 -0.5 1 -5 1
Panel B: Λ0=1

0 0.07 0 0.017 0 0.226 0 0.039
-0.1 0.67 -1 0.036 -0.1 0.822 -1 0.069
-0.2 1 -2 0.252 -0.2 1 -2 0.342
-0.3 1 -3 0.74 -0.3 1 -3 0.814
-0.4 1 -4 0.978 -0.4 1 -4 0.985
-0.5 1 -5 1 -0.5 1 -5 1
Panel C: Λ0=2

0 0.067 0 0.009 0 0.146 0 0.021
-0.1 0.689 -1 0.029 -0.1 0.802 -1 0.054
-0.2 1 -2 0.242 -0.2 1 -2 0.322
-0.3 1 -3 0.737 -0.3 1 -3 0.798
-0.4 1 -4 0.979 -0.4 1 -4 0.983
-0.5 1 -5 1 -0.5 1 -5 1
Panel D: Λ0=5

0 0.045 0 0.005 0 0.085 0 0.008
-0.1 0.666 -1 0.028 -0.1 0.828 -1 0.042
-0.2 1 -2 0.267 -0.2 1 -2 0.306
-0.3 1 -3 0.777 -0.3 1 -3 0.784
-0.4 1 -4 0.987 -0.4 1 -4 0.981
-0.5 1 -5 1 -0.5 1 -5 1
Panel E: Λ0=10

0 0.017 0 0.005 0 0.098 0 0.005
-0.1 0.646 -1 0.042 -0.1 0.74 -1 0.039
-0.2 1 -2 0.335 -0.2 1 -2 0.299
-0.3 1 -3 0.835 -0.3 1 -3 0.778
-0.4 1 -4 0.994 -0.4 1 -4 0.98
-0.5 1 -5 1 -0.5 1 -5 1
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