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Abstract The use of Voronoi diagram has traditionally been
applied to computational geometry and multimedia prob-
lems. In this paper, we will show how Voronoi diagram can
be applied to spatial query processing, and in particular to
Reverse Nearest Neighbor (RNN) queries. Spatial and geo-
graphical query processing, in general, and RNN in partic-
ular, are becoming more important, as online maps are now
widely available. In this paper, using the concept of Voro-
noi diagram, we classify RNN into four types depending on
whether the query point and the interest objects are the gen-
erator points of the Voronoi Polygon or not. Our approach is
based on manipulating Network Voronoi Diagram properties
and applying a progressive incremental network expansion
for finding the polygon inner network distances required to
solve RNN queries. Our experimentation results show that
our approaches have good response times in answering RNN
queries.
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1 Introduction

Voronoi Diagram has been successfully used to solve variety
of application problems, including surface reconstruction,
optimization, planning, image and signal processing, biomet-
ric synthesis, mapping and multimedia problems [10,13,25].
In this paper, we will show how Voronoi Diagram can be used
to solve spatial queries, which has a great potential not only
in Geographical Information Systems (GIS), as online maps
(like Google Maps�) are now widely available to the pub-
lic, but in several other areas such as multimedia databases
indexing.

This paper particularly focuses on one important breed
of spatial and geographical information processing, namely
Reverse Nearest Neighbor (RNN) queries. An RNN query
is that given a set of candidate interest points (or objects),
and a query point (or object), find the interest points/objects
that consider the query object as their nearest neighbors [29].
The efficient implementation of RNN query is of a particular
interest in information systems that support user’s queries,
such as on-line search engines, multimedia search engines,
or GIS. For example, a business owner when deciding to open
a new grocery store may ask an RNN query similar to: “where
is the best location for the grocery store?” This question can
be reworded to as “How many buildings consider this pos-
sible location as the nearest grocery store?” Each candidate
location for the grocery store should start an RNN query and
the results are then compared to choose the best location.
Hence, RNN plays a major role in not only information dis-
semination, but also in decision making.

Figure 1 gives an example of an RNN query. Assume the
query point is pointed by Q (e.g., proposed student accom-
modation). There are two existing student accommodations,
as pointed by objects O and P . The interest objects in the
map are shown by objects A, B, and C (e.g., McDonald).
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Fig. 1 Example of an RNN
query

Fig. 2 Voronoi diagram

The RNN query is to find interest objects (either A, B or C)

that consider query point Q as its nearest neighbor. In this
example, although the distance between interest object B and
query point Q is shorter than the distance between C and Q,
interest object B does not consider Q as its nearest neighbor,
because B is closer to O , instead of to Q. In this case, the
answer of the query is interest object C , since C considers
Q as its nearest neighbor.

Most existing work focuses on the traditional nearest
neighbor (NN) queries [9,12,16,20,21]. These include Near-
est Neighbor (NN), k Nearest Neighbor (kNN), Continuous-
NN and kNN (CNN and CKNN), and RNN. There have been
a lot of existing works in NN, kNN, CNN, and CKNN. RNN
in the context of spatial network databases, whereby there
is an underlying road network, has not been studied in the
past. Existing work in RNN assumes a Euclidean plane. In
this paper, we focus on RNN on spatial road network, as
illustrated in Fig. 2. With Spatial Road Network Databases

(SNDB), objects are restricted to move on predefined paths
(e.g., roads) that are specified by an underlying network.

In this paper, we developed algorithms to answer RNN
queries. Our proposed solutions are based on Network Voro-
noi Diagram (NVD) and utilize pre-computed distances such
as border-to-border and generator-to-border distances to
minimize the network distance computation time [17]. The
solution also utilizes the spatial index of NVD to check the
polygons for interest data points. Leaving the only unknown
network distance from the generator to any interest point
inside the polygon. To overcome this, a progressive incre-
mental network expansion, which is based on Dijkstra’s algo-
rithm [2], is used for finding the inner network distance in the
polygons. The network expansion occurs around the query
point and expands from there to find the nearest neighbor.

2 Related work

Spatial queries are also extensively used in mobile multime-
dia systems and especially in applications related to loca-
tion-based systems in GIS and spatial databases [11,12,24],
and thus were the focus of many researches [4,19]. There
are two groups of algorithms proposed to address common
spatial queries: one is based on Euclidean distance, and the
other based on network distance.

Existing work on the first group considers Cartesian (typ-
ically, Euclidean) spaces, where the distance between two
objects is determined by their relative position in space. The
major disadvantage with those approaches, as highlighted in
[8,16,20], is that the shortest path calculations are
performed based on Euclidean distances. In practice, on the
contrary, objects usually move only on predefined roads.
Therefore, the distance calculation should depend on the con-
nectivity among these objects, and not on Euclidean distance.
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As a result, the first group that considers Euclidean distance
is impractical for spatial network databases, because they
neglect network/road distance.

The second group of research focuses on solving the que-
ries for spatial network databases, and multimedia databases.
In these databases, the objects are indexed as points in nD
space and the distance between two objects is the length
of the shortest path connecting them. The approaches sup-
port the exact spatial queries on spatial network databases
and multimedia databases [9,12,15,17]. And therefore, these
works, which are based on network/road distance, are more
realistic, compared with the works by the first group, which
rely solely on Euclidean distance.

Authors in [15] introduces the Incremental Network
Expansion (INE), which is an architecture that integrates
network and Euclidean information. It is based on creating a
search region for the query point that expands from the query
that is similar to Dijkstra’s algorithm [2]. The advantages of
this approach are: (i) it offers a method for finding the exact
distance in networks, and (b) the architecture can support
other spatial queries (e.g., range search and closest pairs).
However, this approach suffers from poor performance when
the interest objects of the query are not densely distributed in
the network, as this will lead to large portions of the database
to be retrieved. This problem happens for large values of k.

The Voronoi-based Network Nearest Neighbor (VN3)

approach proposed by [9] is based on the properties of the
NVD. It uses localized pre-computations of network dis-
tances for a very small percentage of neighboring nodes in
the network to enhance query response time and reduce disk
accesses. In addition, Network Voronoi Polygons (NVP) of
a NVD can directly be used to find the first nearest neigh-
bor. Subsequently, NVP’s adjacency information provides a
candidate set for other nearest neighbors. Finally the pre-
computed distances are used to refine the set. The filter/refine-
ment process in VN3 is iterative: at each step, firstly a new
set of candidates is generated from the VNPs, and then the
pre-computed distances are used to select “only the next”
nearest neighbor. The advantages of this approach are: (i) it
offers a method that finds the exact distances in networks,
(ii) fast query response time, and (iii) progressively returns
the k nearest neighbors and their distances from the query
point. The main disadvantage of this approach is its need for
pre-computing and maintaining two different sets of data:
(1) query-to-border computation: computing the network
distances from the query point to the border points of its
enclosing network Voronoi polygon, and (2) border-to-bor-
der computation: computing the network distances from the
border points of NVP of the query point to the border points
of any of the other NVPs. Furthermore, this approach suffers
in performance with lower density data sets.

Author in [17] proposes a novel approach, termed Progres-
sive Incremental Network Expansion (PINE) that efficiently

addresses spatial queries in SNDB. The main idea behind this
approach is to first partition a large network into smaller more
manageable regions, then pre-compute distances across the
regions. These two steps can be easily and efficiently imple-
mented using a first order Voronoi diagram, then a compu-
tation similar to the INE can be used for the computation
of intra-distances. The advantages of PINE are that it has
less disk access time and less CPU time than VN3. In addi-
tion, PINE’s performance is independent of the density and
distribution of the points of interest, and the location of the
query object. By performing across-the-network computa-
tion for only the border points of the neighboring regions,
global computations can be avoided.

We need to emphasize that the above-mentioned existing
work mainly focuses on kNN (k Nearest Neighbor) queries,
not RNN. Despite the importance of RNN in SNDB, the
scarce studies in the literature are designed for Euclidean
spaces, which are not applicable to SNDB. In this paper,
however, we propose solutions for RNN queries based on
network distance using SNDB as its underlying network. In
particular, we will expand our previous work on PINE [15]
to cater for RNN.

3 Background: Voronoi-based kNN query processing

Our proposed algorithms for RNN queries are based on (i)
Voronoi diagram, (ii) Dijkstra’s algorithms, and (iii) our pre-
vious kNN method, called PINE.

A Voronoi diagram divides a space into disjoint polygons
where the nearest neighbor of any point inside a polygon
is the generator of the polygon [14]. Dijkstra’s algorithm is
one of the most efficient algorithms that find shortest paths
from the source node to all the other nodes [2]. In this sec-
tion, we review the principles of Voronoi diagrams. We start
with Voronoi diagram for two-dimensional Euclidean space
and present only the properties that are used in our approach.
We then discuss the network Voronoi diagram where the dis-
tance between two objects in space is their shortest path in the
network rather than their Euclidean distance and hence can
be used for spatial networks. Then, we briefly describe the
PINE algorithm. A thorough discussion on Voronoi diagrams
is presented in [14,17].

3.1 Voronoi diagram

Voronoi diagram (VD) has been used to solve spatial anal-
ysis problems [17]. The Voronoi diagram of a point set P ,
VD(P), is a unique diagram that consists of a set of collec-
tively exhaustive and mutually exclusive Voronoi polygons
(Voronoi cells) VPs. Each Voronoi polygon is associated with
a point in P (called generator point) and contains all the
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locations in the Euclidean plane that are closer to the gener-
ator point of the Voronoi cell than any other generator point
in P (refer to Fig. 2). The boundaries of the polygons, called
Voronoi edges, are the set of locations that can be assigned to
more than one generator. The Voronoi polygons that share the
same edges are called adjacent polygons and their generators
are called adjacent generators.

The following property holds for any Voronoi diagram
and is used to answer kNN queries: “The nearest generator
point of pi (e.g., p j ) is among the generator points whose
Voronoi polygons share similar Voronoi edges with VP(pi ).”
(see [9,14] for further details). In general, a Voronoi diagram
of a set of “sites” (points) is a collection of regions that divide
up the plane. Each region corresponds to one of the sites, and
all the points in one region are closer to the corresponding
site than to any other site.

3.2 Network voronoi diagram

In many applications, there is an underlying spatial road net-
work, in which movements of objects are based on. There-
fore, the real distance between two objects in a spatial road
network is the actual network distance, and not the Euclidean
distance. Therefore, the methods using the Euclidean dis-
tance that give rough estimates might even be significantly
wrong.

Several assumptions of the Voronoi diagram are violated
in urban areas; distances between two addresses are not
Euclidean; they have to be measured along the travel net-
work(s). Thus, we use the NVD [14]. “A Network Voronoi
Diagram, termed NVD, is defined as graphs and is a special-
ization of Voronoi diagrams, where the location of objects is
restricted to the links that connect the nodes of the graph and
the distance between objects is defined as their shortest path
in the network rather than their Euclidean distance” [15,16].
Network Voronoi Diagram considers distances only in net-
works, not in the plane. It divides the network, not the space,
into Voronoi cells. A Voronoi cell in a network is the set of
nodes and edges that are closer to one Voronoi generator
(generator point), than to any other.

Figure 3 gives an illustration of NVD. The underlying
spatial road network is superimposed on the Voronoi dia-
gram. The generator point is the object of interest, which is
in this case shown as filled rectangular shape objects. Since
there is an underlying road network in each Voronoi cell, the
distance of all locations or points within a Voronoi cell are
closer based on the real road distance to its generator point.
Because road distance is used, instead of Euclidean distance,
the shape of each Voronoi cell might be irregular, unlike the
Voronoi cell in the Voronoi diagram (as in Fig. 2), which has
a convex polygon shape.

Fig. 3 Network Voronoi diagram

3.3 Progressive incremental network expansion

Our previous work on spatial kNN query processing pro-
posed the Progressive Incremental Network Expansion
(PINE), especially designed for mobile navigation [17,18].
PINE is a novel approach that reduces the problem of dis-
tance computation in a very large network into the problem
of distance computation in a number of much smaller net-
works plus some online “local” network expansion. There-
fore, PINE is very much suitable for mobile devices, which
generally have limited on board memory resources and have
lower computational power.

The main idea behind PINE is to first partition a large net-
work into smaller/more manageable regions. We achieve this
by generating a NVD over the points of interest. Each cell
of this Voronoi diagram is centered by one object of inter-
est, and contains the nodes that are closest to that object in
network distance (and not Euclidian distance).

Next, we pre-compute the inter distances for each cell.
That is, for each cell, we pre-compute the distances across
the border points of the adjacent cells. This will reduce the
pre-computation time and space by localizing the computa-
tion to cells and a handful of neighbor-cell node-pairs.

Now, to find the k nearest-neighbors of a query object q,
we first find the first nearest neighbor by simply locating the
Voronoi cell that contains q. This can be easily achieved by
utilizing a spatial index (e.g., R-tree) that is generated for
the Voronoi cells. Then, starting from the query point q, we
perform network expansion on two different scales simulta-
neously to: (i) compute the distance from q to its first nearest
neighbor (its Voronoi cell centre point), and (ii) explore the
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objects that are close to q (centres of surrounding Voronoi
cells) and compute their distances to q during the expansion.

At the first scale, a network expansion similar to Incre-
mental Network Expansion (INE) [15] is performed inside
the Voronoi cell that contains q [i.e. VC(q)] starting from q.
To this end, we utilize the actual network links (e.g., roads)
and nodes (e.g., restaurants, hospitals) to compute the dis-
tance from the query point q to its first nearest neighbor [i.e.,
the generator point of VC(q)] and the border points of VC(q).

When we reach a border point of VC(q), we start a second
network expansion at the Voronoi polygons scale. Unlike INE
and but similar to Voronoi-based Network Nearest neighbor
(VN3) [9], the second expansion utilizes the inter-cell pre-
computed distances to find the actual network distance from
q to the objects in the other Voronoi cells surrounding VC(q).
Note that both expansions are performed simultaneously. The
first expansion continues until all border points of VC(q) are
explored or all kNN are found.

We need to stress that PINE, which is based on Voronoi
and Dijsktra’s algorithm, is designed for kNN queries, not
RNN. In this paper, we would like to apply PINE to RNN.

4 Reverse nearest neighbor queries

We have identified four different types of RNN queries that
consider interest objects, query point, and other static (or
quasi-static) non-query objects. Before we describe the four
RNN query types, we need to formalize the definitions of
some terminologies.

Definition 1 A generator point (GP) of a Voronoi polygon
(VP) is the centre point of VP.

Definition 2 A query point, or sometime known as query
object (qObj) is the point where the query is invoked. Hence,
a query object is associated with a point, called query point.
And hence the terms query point and query object will be
used interchangeably.

Definition 3 An interest object (iObj) is a candidate object
for the query result of RNN. An interest object is located at
a point called interest point. Hence, the terms interest object
and interest point will be used interchangeably.

Notation 1 RNN query can be written as: RNN q Obj (iObj)

where qObj is the query point, and iObj is the interest object.

Definition 4 An RNN query is a query to retrieve interest
objects that consider the query point as their nearest neigh-
bor.

In RNN queries, the query point (qObj) may be a gen-
erator point (GP) or a non-generator point (∼GP). Note

that we use the ∼ symbol for negation. Likewise, the inter-
est objects (iObj) may also be the generator points or non-
generator points. Based on this, we classify four types of
RNN queries. However, before the four RNN categories are
presented, we need to define non-query objects (or rival
objects rObj)

Definition 5 A non-query object, also known as a rival
object (rObj) is an object of the same type of the query object
(qObj), which is the rivalry of the query object whereby some
interest objects might consider rObj (not qObj) as their near-
est neighbors.

Using the above definitions, the four categories or RNN que-
ries are as follows:

Type 1 RNNGP(G P), where both query point and interest
objects are generator points.

Example Given an NVD whereby the generator points are
restaurants, RNNRestaurant (Restaurant) is to find other res-
taurants that consider the query restaurant as their nearest
neighbor (e.g. their nearest restaurant).

Type 2 RNNGP(∼GP), where the query point is a generator
point, but the interest objects are not.

Example Given an NVD containing restaurants as the gener-
ator points, and schools as the interest objects, RNNRestaurant

(School) is to find schools that consider the query restaurant
as their nearest neighbor restaurant.

Type 3 RNN∼G P (∼GP), where both query objects and
interest objects are non-generator points.

Example Given a school as the query object (in this case,
schools are not generator points), RNNSchool (School) is to
find other schools that consider the query school as their
nearest neighbor (e.g. nearest school).

Type 4 RNN∼G P (G P), where only the interest objects are
generator points; but the query object is not.

Example Given an NVD whereby the generator points are
restaurants, RNNSchool (Restaurant) is to find restaurants that
consider the query school as their nearest school. Note that
there may be many schools in the system, and those schools
which are not the query object are rival objects (rObj).

5 Proposed algorithms for RNN queries

Our developed algorithms to answer RNN queries depend on
the existence of a NVD and a set of pre-computed data (such
as border-to-border, and border-to-generator distances). The
system described in our previous work [17] creates a set of
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NVDs, one for each different interest point (e.g., NVD for
restaurants, schools, etc.). In this paper, we develop new algo-
rithms to answer RNN queries that utilize the previously cre-
ated NVDs, pre-computed distances, and PINE algorithm.

5.1 Type 1: RNNGP(G P)

This query type does not need any inner network distance
calculations, since we already have pre-computed the NVD
for the generator points. All the required information was
computed and stored while generating the NVD. Both query
objects and interest objects are the generator points of the
Voronoi diagram, and thus all distances from the generator
points to borders are known. The candidate interest objects
for RNN belong to the set of the query adjacent polygons
RNN {QueryAdjacentPolygons} (see [9,17] for details).

The query first starts by using NVD to find the distances
from the generator of the polygon (in this case it is also “Q”
which is the generator point of P1) to all border points (i.e.
b1, b2, b3 ..., etc.) and then the distances from those border
points to adjacent generators. For example, in Fig. 4, we need
to find dist(Q, b1) + dist(b1, P2). For simplicity, unlike the
NVD shown previously in Fig. 3, the underlying spatial net-
work in Fig. 4 is not shown, and therefore, the polygons are
shown to be convex. In actual NVD, the polygons are not
convex polygons.

Once the neighboring generator points are reached, the
algorithm starts a heap list with the dist(Q, Adjacent Gener-
ator Points) as the initial distance. The distances between all
candidates are first measured [i.e. dist(P2,b14) + dist(b14,
P3)] using NVD generator-to-border and vice versa, thus
eliminating the repetition of the calculation among them (P2
to P3 = P2 to P3).

To cut down the calculations even further, all distances
between the polygons are compared to the shortest distance
between the query Q and its adjacent 1NN. If a path is found
that is shorter than the Q-to-1NN then both interest objects
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Fig. 4 RNN GP(GP)

are canceled because they might be considered as the nearest
neighbors to each other, or in other words they are closer to
each other than the query object.

The new candidate interest objects are then set as query
points and they start searching for their 1NN. Every newly
found distance from the intersection point, border points and
generator points are tested and compared to the first entry in
the heap. If the distance is larger, then it is heaped as the sec-
ond entry. However, if the distance is shorter, then the search
stops in that direction and we set the polygon as NOT the
RNN to the query point.

Let us take for example Fig. 4. The query point is P1 and
thus the solution to the query belongs to the set of {P2, P3,
P4, P5, P6, P7}.

First, we execute 1NN query using NVD to find the dis-
tance from P1 to b1, b2, b3, b4, b5, b6, b7 and b8, and
the distances from these borders to the adjacent generator
points. However, if there are two paths to one generator point,
for example dist(P1,b7) + dist(b7,P7) and dist(P1,b8) +
dist(P8,P7), then the longer distance should be eliminated.
At this stage let’s assume that P3 was found as the 1NN to
Q and dist(Q,P3:10).

Next, the distances between the candidate neighbors
should be calculated for example dist(P2,P7:18), dist(P2,
P3:14), dist(P3,P4:8), etc. Now, we check the found dis-
tances. If two polygons are closer to each other than the
query to its 1NN, then we say that those two polygons do
not belong to the set of candidates RNN. In this example, we
found that R3 and R4 that are closer to each other than to the
query point. Therefore the RNN candidate set is now {P2,
P5, P6, P7}.

Each candidate interest object starts a heap list with the
distance from the query point as initial value and executes
1NN query using the NVD generator-to-border distances. If
a distance is found that is shorter than the initial value in its
heap then the search stops for that polygon and announces
that this candidate generator point is not the RNN to the query
object. If however, the search ended with the distance from
the query point less than the initial value then the candidate
generator point is an RNN to Q.

RNNGP(G P) algorithm is shown in Fig. 5. The function
contains( ) returns the Voronoi polygon containing the
query point Q. Note that after 1NN of the query polygon is
executed, it becomes the anchor, in which all 1NN of the adja-
cent polygons will be compared with. RNNGP(G P) algo-
rithm relies on 1NN of each of the adjacent polygon of the
query polygon.

5.2 Type 2: RNNGP(∼GP)

This query type can be solved using only the NVD properties.
Since every object in the polygon considers the generator
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Algorithm: RNN-1 
Input: NVD(P1, P2, … Pn) 
Output: RNN GP(GP) 
1. Let Q be the query point 
2. Voronoi Polygon VP(Q) = contains(Q) 
3. Border points VP(Q) = {bi.. bj} 
4. Candidate RNN is all adjacent polygons {Pk .. Pm} 
5. //Compute the distances between all Pin Candidate RNN 
 For any Px andPyin Candidate RNN 
6. If Px andPyare adjacent then 
7. Find the common borders point between them CVP(Px,Py) (i.e. Border 

Points VP(Px) intersection with VP(Py)) 
8. Compute dist(Px, Py) = dist(Px, bz) +dist(bz, Py)  where bz belongs to 

CVP(Px,Py) 
9. End If 
10. End For 
11. //Compute all distances between all Pin Candidate RNN and Q 
 For any Px in Candidate RNN 
12. Compute dist(Px, Q) = dist(Px, bz) +dist(bz, Q)  where bz belongs to VP(Q) 
13. End For 
14. For any Px andPyin Candidate RNN 
15. If dist(Px, Py) <dist(Q, 1NN(Q)) then 
16. Remove Px andPyfrom Candidate RNN 
17. End If 
18. End For 
19. For each candidate polygon Pk

20. Execute 1NN(Pk) 
21. If dist(Q, 1NN(Q)) >dist(Pk, 1NN(Pk)) Then 
22. Remove {Pk, 1NN(Pk)} from Candidate RNN 
23. End If 
24. End For 
25. Return Candidate RNN 

Fig. 5 RNN GP(GP) algorithm

Algorithm: RNN-2 
Input: NVD(P1, P2, … Pn), interest objects in each Voronoi Polygon Pi 

Output: RNN GP(~GP) 
1. Let Q be the query point 
2. Voronoi Polygon VP(Q) = contains(Q) 
3. Candidate RNN = objects(VP(Q)) 
4. Return Candidate RNN 

Fig. 6 RNN GP (∼GP) algorithm

point as the nearest neighbor, then the result of the query
should be a set of interest objects that belong to the polygon.

Proposition 1 If there are interest objects in the query poly-
gon, then these interest objects are considered as the answer
to the RNN query. If however there are no interest objects in
the query polygon, then there is no result for the query (i.e.
empty set solution).

RNNGP(∼ G P) algorithm is shown in Fig. 6. The con-
tains( ) function as like in the first algorithm returns the
Voronoi polygon containing the query point, and the new
objects( ) function returns interest objects in the given
Voronoi polygon. Since all objects in each polygon, the
objects( ) function will simply search through the objects
within the given polygon. Note that the function may return
an empty set of interest objects, indicating that there is no
interest object in that particular polygon.

5.3 Type 3: RNN∼G P (∼GP)

One of the problems in answering this type of RNN query
is that we have no pre-computed NVD that uses the interest

objects. Hence, our algorithm will utilize any of the stored
NVDs to solve the query. Using a pre-computed NVD helps
reducing the network distance calculation time to answer
such a query.

The idea is to use PINE expansion mechanism to explore
all the candidate interest objects that are in the vicinity of
the query object. Once a candidate interest object is reached,
a 1NN query is issued using the original PINE algorithm to
check if the query object is the 1NN of the candidate inter-
est object or not. If yes, then the candidate interest object
becomes a part of the solution. Note that we need to expand
in all directions from the query point and the candidate inter-
est points.

In other cases, polygons may contain an interest point
but are neither adjacent to the polygon containing the query
point, nor to polygons containing interest points. Those can
be reached by crossing over what we call an “empty poly-
gon” (a polygon containing no interest points), and they may
contain a candidate solution. Here, we utilize the border-to-
border distances provided by the NVD for the empty polygon
from the adjacent edge of the generator polygon to the edge
of the polygon that contains any interest objects. We will also
use the results of Lemma 1 in [29].

Lemma 1 “Let Q be a query point, n a graph node, and p a
data point satisfying dist (q, n) > dist (p, n). For any point
p′ �= p whose shortest path to Q passes through n, it holds
that dist (Q, p′)>dist (p, p′), i.e., p′ RNN(Q)” [29].

From Lemma 1 we can conclude that if the expansion
started from Q and reached an intersection point, a border
point of NVD, or an interest point B passing through an inter-
est point A, then point A is closer to Q than point B. Thus,
for the proposed method we say that B is closer to A than it is
to Q. This would limit our expansion in some directions. The
expansion will continue in all directions and stop in a direc-
tion if a candidate interest point that satisfies the properties
in Lemma 1 is reached.

For example, once a query point is initiated, the algorithm
will check the current polygon for interest data points by
utilizing the spatial index (e.g. R-tree). Then, the expansion
mechanism of PINE is used for finding the interest points
close to the query point. During this process, each found
interest point will start a heap list with its distance to the
query point as the initial entry, such as dist(Q, i Obj1). Each
found interest point starts another network expansion to fill
up the rest of its heap list.

If a new interest data point is found then its distance,
for example dist(i Obj1, i Obj3), is compared with dist(Q,

i Obj1). The expansion stops in that direction only if dist
(i Obj1, i Obj3) > dist(Q, i Obj1). However, if dist(i Obj1,

i Obj3) < dist(Q, i Obj1) then the entire expansion “all
directions” from i Obj1 stops, because i Obj3 is considered
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as 1NN of i Obj1. Hence, i Obj1 cannot be the reverse near-
est neighbor of the query.

If however one of the neighboring polygons does not con-
tain any interest data points (empty polygon), then the poly-
gon is skipped to its adjacent polygons, by using the virtual
border-to-border links. This can be illustrated by looking at
P6 in Fig. 7. We notice that P6 is an adjacent polygon to the
polygon of the query point and it contains no interest points,
therefore, the distances from b6 to b19, b20, b21, b22 and
b23 are utilized to pass this empty polygon to its neighboring
polygons. Otherwise, a new network expansion should have
started in P6 using the actual road network in that polygon.

As an example, consider the NVD of Fig. 7. From the
query point we start an expansion and let us assume that we
reach i Obj1, i Obj3, b8, b7, b6, b2, b1. Checking P1, P3,

P4, P6, we find that the polygons contain no interest objects,
so we directly get the border-to-border distance and check
their adjacent polygons for interest objects.

Now, exploring through polygon P6 could lead us to P14,
which contains i Obj6. Once the border of P14 is reached
the network expansion b22 is started to find the network dis-
tance to i Obj6. On the other hand, instantaneously, another
network expansion starts in P2 from b1 finding i Obj3 and
then stops.

Lets say for simplicity that dist(Q, i Obj1 : 12), dist(Q,

i Obj3 : 20) and dist(Q, i Obj6 : 35) are the results of this
candidate interest point locating stage with their distances
from the query point. Although i Obj5 can be reached from
b2–b18 and then expanding in P7, we will not look into it
because it is a similar case to i Obj3.

Now, after all candidates are found, each interest object
starts a heap list with the network distance to the query point
as the initial entry and executes 1NN query. The search for
1NN performs the same steps again, starting with finding all
the interest points and border points, however, this time the
expansion distance is limited by the initial value of the heap.
If the expansion goes a longer distance without finding any

Algorithm: RNN-3 
Input: NVD(P1, P2, … Pn), and interest objects {iObj1 .. iObjn} 
Output: RNN ~GP(~GP) 
1.  Let Q be the query point 
2.  Use PINE algorithm to expand Q 
3.  For each direction in the expansion of Q 

//Interest objects that can be reached by passing through an empty polygon, 
//use NVD border-to-border distance to the destination polygon, and then 
//start expanding from there for finding the inner distance to the interest object 

4. If an interest object iObj is found Then 
5. Stop expanding on the direction to iObj 
6. Store iObj and dist(Q,iObj) into Candidate RNN 
7. End If 
8.  End For 
9.  For each interest object iObj in Candidate RNN 
10. Execute 1NN using PINE (refer to Safar (2005)) 
11. PINE will test every new distance once it reaches an intersection point, 

an interest object, or a polygon border point. 
12. Stop expansion, if this distance is longer than dist(Q,iObj)  
13. When 1NN of iObj is found, calculate dist(iObj,1NN(iObj)) 
14. If dist(iObj,1NN(iObj)) <dist(Q,iObj) Then 
15. Remove iObj from Candidate RNN 
16. End If 
17. End For 
18. Return Candidate RNN 

Fig. 8 RNN ∼GP(∼GP) algorithm

interest points, then it stops in that direction. Therefore, in this
example i Obj5 will never be reached because b13 distance
from i Obj3 is larger than 20. i Obj3 continues the expan-
sion to find i Obj4: 22. Since there was neither an intersection
point nor a border point after a distance of 20 that could be
added to the heap, we were not able to tell earlier that i Obj4
is further away from the query point. The result for i Obj3
now clearly states that the query point is the nearest neighbor
1NN.

For i Obj1, we immediately find that i Obj2 is the nearest
neighbor, thus the expansion stops in that direction and the
result states that the query point is not the 1NN.

i Obj6, however, starts to find the distances to the poly-
gons border points b21, b22, b23, b24... etc. From there,
using the border-to-border distance from NVD it searches
for interest objects. The search in any direction stops when
the distance to any border from i Obj6 exceeds the initial
heap value. For this example the search will stop with no
interest objects found in a shorter distance stating that the
query object is not the 1NN. The search is now finished with
i Obj3 as the reverse nearest neighbor of the query object.

RNN∼G P (∼GP) algorithm is shown in Fig. 8. Note that
the first stage is the expansion from Q to find any interest
object i Obj , and the second stage is expanding each of the
found interest object i Obj using PINE to find its 1NN. If the
distance between interest object i Obj and its 1NN is shorter
than the distance between interest object i Obj and Q, then
obviously that i Obj is not RNN of Q. Note that the expan-
sion technique uses PINE (refer to [17]) which uses NVD
and its stored pre-computed values, especially border-to-
border distances. In this way, expansion through the network
of Voronoi Polygons can be performed efficiently.

123



Voronoi-based reverse nearest neighbor query processing 303

P1

P7

P2

P3

P4

P5

P6

P8

P9

P10

P11

P12

P13

P14

P15

P16

b24 

Q 

rObj4

rObj5

rObj6

rObj8

rObj7

rObj2

rObj3

b25 

b26 
b27 

b20 

b19 

b21 b22 

b28 

b23

b7 b8

b9

b10
b11

b12

b2

b6

b5

b3

b4

b14

b1

b18

b17

b16

b15b13

Fig. 9 RNN ∼GP(GP)

5.4 Type 4: RNN∼G P (G P)

For this query type, the interest points are generator points
which already have NVDs created for them that could be used
to answer the RNN query. The steps for this algorithm are
similar to that used for RNN∼GP(∼GP), with one exception
that will be mentioned next.

The algorithm starts with network expansion to explore the
possible generator points that can be reached by the query
object, including the generator point of the polygon and the
border points to neighboring polygons. However, if any of
the adjacent polygons contains rival objects, then it is elimi-
nated from the candidate list and no expansion is performed
from that polygon. It is unnecessary to go into a polygon
that contains rival objects, because the generator points of
those polygons consider those rival objects as their nearest
neighbors.

As an example, consider the NVD of Fig. 9. The net-
work expansion will start at Q looking for border points, and
interest points (which are generator points of other Voronoi
polygon). In this example, it reaches P1 and stops in that
direction. The expansion will also reach b1, b2, b4, b5, b6,

b7, and b8. The polygons that we can reach from these bor-
der points are now checked for rival objects by utilizing the
spatial index. Note that rival objects are objects that have the
same type as the query object. In this example, only polygon
P6 that does not contain any rival objects and hence can be
considered as a candidate. The distance from Q to P6 can
be found using NVD border-to-generator distance.

Once P6 is reached, a heap list is created with dist(Q, P6)

as the initial entry. P6 will then start 1NN search to find rival
objects, and since there are no rival objects in P6, we use
NVD property to find the generator-to-border distance to all
neighboring polygons. The reached polygons are checked for
rival objects and the result found is that P5 and P15 contain
rival objects.

Algorithm: RNN-4 
Input: NVD(P1, P2, … Pn), and rival objects {rObj1 .. rObjn} 
Output: RNN ~GP(GP) 
1. Let Q be the query point 
2. Use PINE algorithm to expand Q to find generator points of other polygons 
3. The expansion in each path stops once a rival object rObj or a border point b 

of a polygon that contains rival objects is reached 
4. The reached candidate polygons will be checked for any rival objects. If the 

polygon contains rival objects rObj then it is not a candidate RNN. Otherwise 
generator point of the polygon is stored in Candidate RNN 
//use NVD border-to-generator point distance to reach the candidate generator 

5. For each generator points GPi in Candidate RNN 
10. Execute 1NN using PINE to find rival objects rObj 
11. PINE will test every new distance once it reaches an intersection point, 

a rival object, or a polygon border point. 
12. Stop expansion, if this distance is longer than dist(Q,GPi)  
13. When 1NN of GPi is found, calculate dist(GPi,rObj) 
14. If dist(GPi,rObj) <dist(Q,GPi) Then 
15. Remove GPi from Candidate RNN 
16. End If 
17. End For 
18. Return Candidate RNN 

Fig. 10 RNN ∼GP(GP) algorithm

Now, network expansion starts from b19 and b22 to find
the distances to r Obj3 and r Obj6. The expansion finds
that dist (P6, r Obj3) and dist (P6, r Obj6)>dist (Q, P6),
thus the search stops and we can conclude that Q is the near-
est neighbor for P6.

However, since P14 is an empty polygon and can be
reached passing through another empty polygon, then it is
considered as a candidate for RNN, and can be treated
the same way as P6, but this time we need dist(b6, b20),
dist(b20, P14) and to start expansion at P14. However, for
simplicity we assume that dist(P14, r Obj6)< dist(Q,P14),
that makes it not the RNN for Q.

Figure 10 shows the algorithm for RNN∼G P (G P). The
main similarity between this algorithm and the previous algo-
rithm for RNN∼G P (∼G P) is that both algorithms have two
stages: stage one is the expansion from Q to find G P or to
find i Obj , in case of RNN∼G P (G P) and RNN∼G P (∼G P),
respectively. Then stage two is to perform 1NN from each
candidate RNN. Distance comparison is then carried out to
determine whether the G P [in case of RNN∼G P (G P)] or
i Obj (in case of RNN ∼G P (∼G P)) is RNN or not.

On the other hand, the main difference between RNN∼G P

(G P) algorithm (Fig. 10) and RNN∼G P (∼G P) algorithm
(Fig. 8) lies in the first stage. In Fig. 10, the first stage is to
expand Q to find G P , that is a generator point of another
polygon, whereas in Fig. 8, the expansion from Q is to find
interest object i Obj which is not a generator point of another
polygon.

6 Performance evaluation

We conducted several experiments to evaluate the perfor-
mance of our RNN algorithms. We used real-world data
sets obtained from NavTech Inc., used for navigation and
GPS devices installed in cars, and represent a network of
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approximately 110,000 links and 79,800 nodes of the road
system in downtown Los Angeles. The experiments were
using Oracle DBMS as the database server. We used different
sets of points of interest (e.g., restaurants, shopping centers,
etc.). We tested of 100 runs of RNN queries, each of which
has a random query point. For each query, we calculated the
number of RNNs together with their execution time.

6.1 RNNGP(G P) query experimental results

For RNNGP(G P) query, we experimented with a number of
object types, like hospitals, shopping centers, schools, etc. In
Table 1, we present the average query execution time results
of 100 runs of the RNN queries of five different types of
interest objects with various densities.

Density is defined as the ratio between the total numbers
of interest objects over a specified range area. It is natural that
the more dense the object population, the more objects being
retrieved. For example, comparing hospitals (very low den-
sity) and restaurants (very high density), only 46 hospitals
are retrieved compared to almost 3,000 restaurants.

Figure 11 depicts the graph for the average query response
time. Note that there is only a slight increase (even looks

Table 1 Performance of RNN GP(GP) queries

Average over 100 queries Execution time (s)

Interest objects Quantity Density

Hospital 46 0.0004 0.077

Shopping centres 173 0.0016 0.092

Schools 1,230 0.0150 0.095

Auto services 2,093 0.0326 0.113

Restaurants 2,944 0.0580 0.118
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Fig. 11 Average execution time of RNN GP(GP) queries

constant) even in case of objects with high density. Refer to
the various objects with different densities in Table 1. The
slight increase of the query response time in this case is due
to the fact that the query results depend on the number of
neighboring interest points (or Voronoi cells) of the query
point. And in our previous work [17], we have proven that
on average the number of neighbors in the NVD is only six.
Hence, the query execution time is primarily affected by the
number of these small number neighboring Voronoi cells,
and consequently, density is not much a factor in the query
execution time.

6.2 RNNGP(∼G P) query experimental results

In the second set of experiments, we executed the query
RNNGP(∼G P): for a given generator point as a query object,
find all non-generator points from other Voronoi cells that
consider the query object as their nearest neighbor. We exper-
imented with different types of generator points, which are
listed in Table 2 as the query points. The interest objects can
be anything (e.g. other static objects), as long as they are not
generator points.

In Table 2, we present the average results of the execution
time of 100 runs of such queries. The interest objects, as well
as their densities, are identical to those of Table 1. The main
difference is in the execution time.

From the trend shown in Fig. 12, we conclude that on
average the query response time of this RNN increases dra-
matically for objects with high density (e.g. restaurants). This
is totally different from Fig. 11, where the execution time is
rather constant. Note from Fig. 12 that for example, the dou-
ble increase of density from 0.0326 (e.g. auto services) to
0.0580 (e.g. restaurants) results in more than triple jump in
the execution time (from 0.56 to 1.49). The sharp increase of
the query response time for RNNGP(∼ G P) queries is due
to the fact that as the density increases, the R-tree saving the
polygons that represents the Voronoi cells increases in size
as well. Consequently, it takes more time to check whether
an interest point is inside the polygon (Voronoi cells) or not.
In other words, density plays a major role in the execution
time of RNNGP(∼G P).

Table 2 Performance of RNN GP(∼GP) queries

Average over 100 queries Execution time (s)

Interest points Quantity Density

Hospital 46 0.0004 0.18

Shopping centres 173 0.0016 0.19

Schools 1,230 0.0150 0.21

Auto services 2,093 0.0326 0.56

Restaurants 2,944 0.0580 1.49
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6.3 RNN∼G P (∼G P) query experimental results

For the query RNN∼G P (∼ G P), for a non-generator point
as a query object, we would like to find non-generator points
from other Voronoi polygons that consider the query object
as their nearest neighbor.

Since the query uses non-generator points for the query
itself and the interest objects, there must be some reference
point to the generator of the NVD. In this case, we use dif-
ferent generators as listed in Table 3.

In Table 3, we present the average results of 50 runs of the
query. In this experiment, we show the number of RNNs that
were found and the query execution time (in s) for various
values of k (e.g. 4, 12, and 20).

From Fig. 13, we conclude that on average, the total query
response time of RNN∼G P (∼ G P) queries decreases as k
increases for high density data and increases as k increases for
low density data. For example, for the high density data (e.g.
restaurants), the execution time decreases from 54 s (k = 4)
to 32 s (k = 20). But for the low density data (e.g. hospi-
tals), the execution time increases from 17 s (k = 4) to 38 s
(k = 20).
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Fig. 13 Average execution time of RNN ∼GP(∼GP) queries

For high density data, each candidate object have to exp-
lore a smaller area (i.e., Voronoi cell) to find if the query
object is their nearest neighbor or not. Then, as the candidate
object density increases, the probability that they would find
other objects (rather than the query object) as their nearest
neighbors also increases.

However, for low density data, each candidate object
would have to explore a larger area to find if the query object
is their nearest neighbor or not.

From Table 3, we also conclude that the average number
of RNN is independent of the number of objects in the system
and the density of the data. It only depends on the location
of the objects in the system.

6.4 RNN∼G P (G P) query experimental results

In the last set of experiments, we executed the query RNN∼G P

(G P): for a given query point, find interest objects that con-
sider the query point as their nearest neighbor object. In
Table 4, we present the average results of 100 runs of the
query as k (number of query objects) increases for a fixed
radius circular area of search around the query point. For

Table 3 Performance of RNN ∼GP(∼GP) queries

Average over 50 queries;
k =number of query objects

k = 4 k = 12 k = 20

Interest points Qty (Density) #RNN Execution time #RNN Execution time #RNN Execution time

Hospital 46 (0.0004) 0.78 17.25 1.00 36.96 1.10 38.12

Shopping centres 173 (0.0016) 1.20 19.31 0.64 17.56 0.98 22.56

Schools 1,230 (0.0150) 0.98 38.87 1.02 30.73 1.06 24.89

Auto services 2,093 (0.0326) 1.04 51.66 1.06 31.13 0.98 26.09

Restaurants 2,944 (0.05800) 0.88 54.49 0.84 41.83 0.94 32.01
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Table 4 Performance of RNN ∼GP(GP) queries

Average over 100 queries;
k =number of query objects;
maximum distance = 1,000 m

k = 4 k = 12 k = 20

Interest points Qty (Density) #RNN Execution time #RNN Execution time #RNN Execution time

Hospital 46 (0.0004) 1.00 0.17 1.00 0.10 1.00 0.12

Shopping centres 173 (0.0016) 1.13 0.18 1.01 0.09 1.00 0.08

Schools 1,230 (0.0150) 1.56 0.22 1.77 0.17 1.59 0.19

Auto services 2,093 (0.0326) 4.11 0.53 3.41 0.48 3.24 0.42

Restaurants 2,944 (0.05800) 6.62 1.46 5.95 1.25 4.92 0.98

example, in the table, we show the query response time when
the maximum radius of the circular search area from the query
point is restricted to 1,000 m, and the value of k varies from
4, 12, and to 20 query objects.

The first and second columns specify the interest points
and their density ratio (i.e., the number of interest points
over the number of links in the network), respectively. From
the third column and forward, each table entry has two val-
ues (averaged over 100 runs): (i) Number of reverse nearest
neighbors that were found, and (ii) Execution time in sec-
onds.

From Fig. 14a and b, we can see that on average, the total
query response time of the queries decreases as the number
of k increases. This is due to the fact that, as the number
of query objects available in the system increases, the inter-
est points would find other objects as their nearest neighbor
rather than the query point and they would stop searching.
Hence, the query would be executed faster.

In addition, as the density increases, the performance
degrades. This is due to the fact that, as the density increases,
more interest points would be available in the system. As a
consequence, more interest points would issue nearest neigh-
bor queries. Hence, the query execution time would increase.

In the next set of experiments, we executed the RNN query
as the radius of the circular search area around the query point
increases for a fixed k (number of objects) of a value equal to
five. In Table 5, we present the average results of 100 runs,
that represent: (i) Number of reverse nearest neighbors that
were found, and (ii) Execution time in seconds.

From Fig. 15a and b, we can see that on average, the total
query response time (or average number of RNNs) increases
as the radius of the circular search area increases. This is
simply because as the size of the search area increases, the
number of objects and interest points available also increase.
As a result, more time is required to process the query.

In addition, as the density increases, the performance also
degrades. This is due to the fact that, as the density increases,
more interest points would be available, and as a conse-
quence, more interest points would issue nearest neighbor
queries. Hence, the query execution time would increase.
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Fig. 14 a Average execution time of RNN ∼GP(GP) queries. b Aver-
age number of reverse nearest neighbors for RNN ∼GP(∼GP) queries

7 Conclusion and future work

In this paper, we have demonstrated an emerging application
of Voronoi network in spatial query processing, particularly
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Table 5 Performance of RNN ∼GP(GP) queries as the radius of the circular search area increases

Average over 100 queries; k = 5 Maximum distance = 1,000 m Maximum distance = 1,500 m Maximum distance = 2,000 m

Interest points Qty (Density) #RNN Execution time #RNN Execution time #RNN Execution time

Hospital 46 (0.0004) 1.00 0.19 1.00 0.12 1.00 0.17

Shopping Centres 173 (0.0016) 1.09 0.17 1.04 0.06 1.12 0.17

Schools 1,230 (0.0150) 1.58 0.22 3.25 0.70 4.81 2.04

Auto Services 2,093 (0.0326) 4.28 0.74 7.96 2.45 12.27 6.34

Restaurants 2,944 (0.05800) 6.54 1.21 12.00 4.43 18.18 12.03
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Fig. 15 a Average execution time of RNN ∼GP(GP) queries. b Aver-
age number of reverse nearest neighbors for RNN ∼GP(∼GP) queries

in RNN query processing. The approach presented in this
paper is applied to road networks using real distances,

whereas most of existing work focused on Euclidean
distance.

This paper presented four different RNN query types, and
proposed algorithms to efficiently process them. The pro-
posed algorithms are novel and are not based on Euclidean
distance. The proposed approaches that used network expan-
sion mechanism like PINE together with NVD, offer many
benefits, including reducing the number of computations
required to answer an RNN query.

We performed several experiments to measure the perfor-
mance of the four RNN queries. In general, our algorithms
gave a good query response time. However, as expected, as
the density of the data used increased, the performance of
RNN queries slightly degraded. In addition, on average, the
total query response time of RNN queries decreased (i.e.
good performance) as the number of interest objects (k) used
in the system increased.

This paper shows an interesting application of Voronoi
network and opens up interesting and practical directions for
future work on spatial and geographical query processing,
which have direct impact to real commercial applications in
a number of fields, like mobile multimedia, telecommuni-
cation and location-based services. Since online maps are
now available on mobile devices, combined with the widely
available of portable GPS receiver systems, investigating how
moving objects are incorporated into RNN and other spatial
and mobile queries (e.g. incremental KNN, continuous KNN,
etc.) [26–28,30] would be beneficial to mobile users. Some
of these applications should also be context sensitive [1,7].

Other important factors about mobile users and mobile
navigation include traffic conditions, which play an impor-
tant part [3]. In addition, it is also interesting to see how intel-
ligence techniques may be in mobile navigation and mobile
users [5,6], coupled with NVD to track moving users on the
road network. It is expected that the efficient data broadcast-
ing systems must be employed [22,23].
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