
Memetic Programming with Adaptive Local Search Using
Tree Data Structures

Emad Mabrouk
∗

Department of Applied
Mathematics and Physics

Graduate School of
Informatics

Kyoto University, Kyoto
606-8501, JAPAN

hamdy@amp.i.kyoto-
u.ac.jp

Abdel-Rahman Hedar
Department of Computer

Science
Faculty of Computers and

Information
Assiut University, Assiut,

71516, EGYPT
hedar@aun.edu.eg

Masao Fukushima
Department of Applied

Mathematics and Physics
Graduate School of

Informatics
Kyoto University, Kyoto

606-8501, JAPAN
fuku@i.kyoto-u.ac.jp

ABSTRACT
Meta-heuristics are general frameworks of heuristics meth-
ods for solving combinatorial optimization problems, where
exploring the exact solutions for these problems becomes
very hard due to some limitations like extremely large run-
ning time. In this paper, new local searches over tree space
are defined. Using these local searches, various meta-heuristics
can be generalized to deal with tree data structures to in-
troduce a more general framework of meta-heuristics called
Meta-Heuristics Programming (MHP) as general machine
learning tools. As an alternative to Genetic Programming
(GP) algorithm, Memetic Programming (MP) algorithm is
proposed as a new outcome of the MHP framework. The ef-
ficiency of the proposed MP Algorithm is examined through
comparative numerical experiments.

Categories and Subject Descriptors
I.2 [Artificial Intelligent]: Automatic Programming; I.2.6
[Artificial Intelligent]: Learning—parameter learning ; I.2.8
[Artificial Intelligent]: Problem Solving, Control Meth-
ods, and Search—graph and tree search strategies, heuristic
methods

General Terms
Algorithms, Experimentation, Performance

Keywords
Evolutionary Computing, Genetic Programming, Iterated
Local Search, Meta-Heuristics

∗Department of Mathematics, Faculty of Science, Assiut
University, Assiut 71516, EGYPT.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSTST 2008 October 27-31, 2008, Cergy-Pontoise, France
Copyright 2008 ACM 978-1-60558-046-3/08/0003 ...$5.00.

1. INTRODUCTION
“How can computers be made to do what is needed to be

done, without being told exactly how to do it?” -Attributed
to Arthur Samuel (1959).

The main aim of an artificial intelligent (AI) system is to
make intelligent machines, especially intelligent computers.
One of the great tools that attempts to achieve that goal
is Genetic Programming (GP). It has shown promising per-
formance in applications and produced human competitive
results [7, 11, 15].

While many effective settings of the main operations in
GP (crossover and mutation) have been proposed to fit a
wide variety of problems, it has been addressed that crossover
and mutation are highly disruptive with a risk of conver-
gence to a non-optimal structure [12, 13].

There have been many attempts to edit GP operations
to make changes in small scales [11]. Moreover, importance
of the local search and improving the local structures of
individuals have been addressed [6]. This motivates us to
use more local searches with gradual changes of scales within
a general framework.

In the new framework, we introduce some local search
procedures over a tree space as alternative operations to
crossover and mutation. These procedures aim to generate
trial moves from a current tree in its neighborhood. Using
these search procedures, various meta-heuristics can be gen-
eralized to deal with tree data structures in a unified frame-
work which we call Meta-Heuristics Programming (MHP).

The paper is organized as follows. In the next section, a
brief preliminaries needed in this paper are shown. The basic
procedures for stochastic local search over a tree space are
presented in Section 3. Then, we show the main framework
of MHP in Section 4. Memetic Programming algorithm are
introduced in Section 5 as an example of MHP. In Section
6, we report numerical results for two types of benchmark
problems. Finally, conclusions make up Section 7.

2. PRELIMINARIES
In the following two subsections, a brief overview of meta-

heuristics and GP algorithm will be presented.

2.1 Meta-Heuristics
The term “meta-heuristics”, first used by Glover [2], con-

tains all heuristics methods that show evidence of achiev-

- 258 -

ing good quality solutions for a problem of interest within
an acceptable time. In fact, meta-heuristics are often a
highly promising choice for solving combinatorial optimiza-
tion problems, where exploring the exact solutions for these
problems becomes very hard due to some limitations like
extremely large running time. Usually, meta-heuristics offer
no guarantee of obtaining global best solutions [3].

In terms of the process of updating solutions, meta-heuristics
can be classified into two classes; population-based methods,
where the search keeps a set of many solutions at the end of
each iteration, and point-to-point methods, where the search
keeps only one solution at the end of each iteration.

The most commonly used data structure types in the
meta-heuristics are bit-strings and real-valued vectors. More-
over, meta-heuristics are typically applied to problems that
can be modeled or transformed to optimization problems
[14].

2.2 Genetic Programming
Genetic programming is an evolutionary algorithm that

creates a working computer program from a high-level prob-
lem statement of a problem. It is a branch of Genetic Al-
gorithms (GAs). The main difference between GP and GAs
lies in the representation of a solution. In GP, a solution is
represented as a tree consisting of variables (terminals) and
functions that interact those variables. On the other hand,
GAs create a string of numbers that represent a solution.

Indeed, GP can be regarded as a method of machine learn-
ing, while GAs are search paradigms that seek optimal so-
lution candidates. GP was first introduced by Koza [8], and
subsequently, the feasibility of this approach in well-known
application areas has been demonstrated [9, 10, 11].

3. LOCAL SEARCH OVER TREE SPACE
In this section, some local search procedures over a tree

space are introduced. These procedures aim to generate
trial moves from a current tree to another tree in its neigh-
borhood. The proposed local searches have two aspects;
intensive and diverse [5]. Intensive local search aims to ex-
plore the neighborhood of a tree by altering its nodes with-
out changing its structure. Diverse local search changes the
structure of a tree by expanding its terminal nodes or cut-
ting its subtrees1. We introduce Shaking as an intensive lo-
cal search procedure, and Grafting and Pruning as diverse
local search procedures.

Figure 1 shows three examples of tree representation of
individuals and their executable codes.

For a parse tree X, we define its size (the number of all
nodes in X) as s(X) and its depth (the number of links in
the path from the root of X to its farthest node) as d(X).

3.1 Shaking Search
Shaking search is an intensification search procedure that

alters a tree X to a new one X̃. Both X and X̃ have the
same tree structure since the altered nodes are replaced by
alternative values. Procedure 3.1 states the formal descrip-
tion of shaking search.

Procedure 3.1. X̃ = Shaking(X, ν)

Step 1. If ν > s(X), return.

1Throughout the paper, the term “branch” is used to refer
to a subtree.

Figure 1: Example of GP Representation

Step 2. Set X̃ := X.
Step 3. Choose ν nodes of X̃ randomly.
Step 4. Update the chosen nodes by new ran-

domly chosen alternatives.
Step 5. Return.

A neighborhood of a tree X based on shaking search is
defined by

NS(X) = {X̃|X̃ = Shaking(X, ν), ν = 1, . . . , s(X)}. (1)

3.2 Grafting Search
In order to increase the variability of the search process,

grafting search is invoked as a diverse local search procedure.
Grafting search generates an altered tree X̃ from a tree X by
expanding some of its leaf nodes to branches of depth ζ. As
a result, X and X̃ have different tree structures. Procedure
3.2 states the formal description of grafting search where λ
refers to the number of leaf nodes which are updated to be
branches.

Procedure 3.2. X̃ = Grafting(X, λ)

Step 1. If λ > t(X), return.

Step 2. Set X̃ := X.
Step 3. Generate λ branches B1, . . . , Bλ of depth

ζ randomly.
Step 4. Choose terminal nodes t1, . . . , tλ of X̃

randomly.
Step 5. Update X̃ by replacing the nodes t1, . . . , tλ

by the branchs B1, . . . , Bλ.
Step 6. Return.

Here t(X) is the number of terminal nodes in a tree X. A
neighborhood of a tree X based on grafting search is defined
by

NG(X) = {X̃|X̃ = Grafting(X, λ), λ = 1, . . . , t(X)}. (2)

3.3 Pruning Search
Pruning search is another diverse local search procedure.

In contrast to grafting search, pruning search generates an
altered tree X̃ from a tree X by cutting some of its branches.
Therefore, X and X̃ have different tree structures. We intro-
duce Procedure 3.3 to assist pruning search, which expresses
X as a parse tree containing the branches B1, . . . , Bξ of X
that have the same depth ζ. Hence, pruning search can eas-
ily choose one of these branches and replace it by a randomly
generated leaf node.

- 259 -

Figure 2: New Local Search Procedures.

Procedure 3.3. [B1, . . . , Bξ] = Branches(X, ζ)

Step 1. If ζ ≥ d(X), return.
Step 2. Select all branches B1, . . . , Bξ in X with

depth ζ.
Step 3. Return.

The formal description of pruning search is given below in
Procedure 3.4.

Procedure 3.4. X̃ = Pruning(X, η)

Step 1. If η > f(X), return.

Step 2. Set X̃ := X.
Step 3. For j = 1, . . . , η, repeat

3.1 Generate a natural number ζj randomly
such that ζj < d(X).

3.2 Generate a random terminal tj.

3.3 Update X̃ by replacing a randomly cho-
sen branch from Branches(X̃, ζj), by tj.

Step 4. Return.

Here f(X) = s(X) − t(X). A neighborhood of a tree X
based on pruning search is defined by

NP (X) = {X̃|X̃ = Pruning(X, η), η = 1, . . . , f(X)}. (3)

Figure 2 shows an example of our new local searches. It is
worthwhile to note that the random choices of Steps 3 and
4 of Procedures 3.1 and 3.2, and Steps 3.1-3.3 of Procedure
3.4 make these procedures behave as stochastic searches.
Therefore, for a tree X, one may get a different X̃ in each
run for any one of these procedures.

4. META-HEURISTICS PROGRAMMING
Most of the search methodologies in meta-heuristics de-

pend on local search. Therefore, by using the local searches

defined in Section 3, various meta-heuristics can be gen-
eralized to deal with tree data structures, which we call
Meta-Heuristics Programming (MHP). This section shows
the main procedures of MHP and describes how they can be
implemented.

Indeed, the MHP framework tries to cover many of the
well-known meta-heuristics as special cases. In addition,
the MHP framework generalizes the data structures used in
most of the ordinary meta-heuristics, by introducing tree
data structures instead of bit strings or vectors of numbers.
In the MHP framework, initial computer program(s) repre-
sented as parse trees can be adapted through the following
five procedures to obtain acceptable target solution(s) of the
problem.

• TrialProgram: Generate trial programs from the
current one(s).

• UpdateProgram: Choose one program or more from
the generated ones for the next iteration.

• Enhancement: Enhance the search process to be ac-
celerated if a promising solution is detected, or escape
from local information if an improvement cannot be
achieved.

• Diversification: Drive the search to new unexplored
regions in the search space by generating new struc-
tures of program(s).

• Refinement: Improve the best program(s) obtained
so far.

TrialProgram and UpdateProgram procedures are
the essential ones in MHP. The other three procedures are
recommended to achieve better and faster performance of
MHP. Actually, these procedures make MHP behave like an
intelligent hybrid framework. The search procedures defined
in Section 3 are used in TrialProgram procedure, while
UpdateProgram procedure depends on the invoked type
of meta-heuristics.

The main structure of the MHP framework is shown below
in Algorithm 4.1. In its initialization step, MHP algorithm
generates an initial set of trial programs which may be a sin-
gleton set in the case of point-to-point meta-heuristics. The
main loop in MHP algorithm starts by calling TrialPro-
gram procedure to generate a set of trial programs from
the current iterate program or from the current population.
Then, MHP algorithm detects characteristic states in the
recent search process and applies Enhancement procedure
to generate new promising trial programs.

It is worthwhile to mention that the proposed local search
procedures, presented in Section 3 and used in TrialPro-
gram and Enhancement, may be regarded as directed mu-
tation operators. Specifically, if intensification is needed,
then the local search procedures should be applied with a
small scale of change to avoid the disruption of the current
solution. On the other hand, these local search procedures
should be applied with a bigger scale of change if diversifi-
cation is needed.

To proceed to the next iteration, UpdateProgram pro-
cedure is used to invoke the next iterate program or the next
population from the current ones. Consequently, the control
parameters are also updated to fit the next iteration.

- 260 -

If the termination criteria are met, then the Refinement
procedure is applied to improve the elite solutions obtained
so far. Otherwise, the search proceeds to the next iteration
but the need of diversity is checked first.

Algorithm 4.1. Meta-Heuristics Programming

Step 1. Initialization.

Step 2. Apply TrialProgram procedure.

Step 3. Apply Enhancement procedure.

Step 4. Apply UpdateProgram procedure.

Step 5. Update Parameters.

Step 6. If Termination Conditions are satis-

fied, go to Step 8.

Step 7. If diverse solutions are needed, apply

Diversification procedure. Go to Step 2.

Step 8. Apply Refinement procedure.

Algorithm 4.1 can be implemented in different ways de-
pending on the type of the invoked meta-heuristics; point-
to-point or population-based.

As an example of point-to-point MHP, Tabu Program-
ming method was presented in [5] . In addition, here in this
paper we try to introduce Memetic Programming algorithm
(Section 5) in order to give a new example of population-
based MHP.

5. MEMETIC PROGRAMMING
In this section we will introduce Memetic Programming

(MP) as an example of population-based method of MHP.
Indeed, MP represents a modified version of GP by hybridize
it with our new local search strategy in Section 3. In addi-
tion, in the current version of MP, we will use multigenic
chromosomes instead of using individual genes as in the
standard GP algorithm. Adapting a chromosome to contain
more than one genes increases the probability of finding suit-
able solutions and enables the algorithm to deal with more
complex problems [1].

In fact, the idea of MP is similar to the idea of Memetic
Algorithms (MAs) [4], where the local search procedure (e.g.
Simulated Annealing) is added to GAs. In addition, the
individuals in MAs are represented by bit string vectors like
in GAs.

5.1 MP Algorithm
Since MP is a modified version of GP, the MP algorithm

(Algorithm 5.1) will be the GP algorithm with a new step
to perform local search for every new generation.

Algorithm 5.1. MP Algorithm

Step 1. Generate random population of “Pro-

grams”.

Step 2. Apply local search procedure (Procedure

5.2) for some promising programs.

Step 3. Evaluate the fitness.

Step 4. Select some parents depending on their

fitness.

Step 5. Modify the current population using Crossover

and Mutation.

Step 6. Apply local search procedure (Procedure

5.2) for some promising programs.

Step 7. If termination conditions are satisfied,

stop and return the best solution, else go to

Step 2.

The local search procedure that we will use here is shown
in Procedure 5.2. As we can see from Step 3 in this pro-
cedure, our local search will not affect the current program
unless a better program is found. This means, at least we
can keep the efficiency of GP algorithm.

Procedure 5.2. X̃ = LSP(X, m1, m2, maxnf)

Step 1. Set X̃ = X and nf = 0.
Step 2. While nf ≤ maxnf do

2.1 Let Y (i) = Shaking(X̃, i), i = 1, ..., m1.

2.2 Set Ỹ be the best of Y (i), i = 1, ..., m1.

2.3 If Ỹ is better than X̃, then set X̃ = Ỹ
and go to Step 2.1.

2.4 Set nf = nf + 1.

2.4 If nf > maxnf go to Step 3.

2.4 Select Grafting procedure or Pruning pro-
cedure randomly. Let P denote the se-
lected procedure.

2.5 Set U(i) = P(X̃, i), i = 1, ..., m2.

2.6 Let X̃ be the best of U(i), i = 1, ..., m2.

Step 3. Set X̃ to be the better of X and X̃.
Step 4. Return.

Here m1 and m2 are the numbers of trials and maxnf is
the allowed maximum number of failures. We will set m1 =
m2 = nTrials. In MP algorithm, a local search procedure is
applied to a portion of individuals, not all individuals as in
MAs, to reduce the amount of computations if the programs
are not improved by the local search procedure. We select
these individuals carefully from the promising programs in
the population using the same strategy of selection (roulette
wheel selection) in Step 4 in Algorithm 5.1.

5.2 Individuals Representation
The gene in MP is the smallest structure in the repre-

sentation of the “program”, where every gene consists of a
linear symbolic string composed of terminals and functions.
In addition, every gene contains two parts, head (functions
and terminals) and tail (terminals only).

The length of the gene depends on the length h of its head,
and the maximum number n of arguments of the function.
In addition, we compute the length of the tail by the formula
t = h(n− 1) + 1.

In MP, every“program”has a coding representation called
genome or chromosome [1], which is composed of one or more
genes. We link these genes in every chromosome by using a
suitable linking function depending on the problem itself.

5.3 Set of Parameters
From the previous subsections, we can list the set of pa-

rameters in MP algorithm as in the following:

• hLen: Head length for the elementary gene.

- 261 -

x f(x)
2.81 95.2425
6 1554

7.043 2866.5486
8 4680
10 11110

11.38 18386.0341
12 22620
14 41370
15 54240
20 168420

Table 1: The dataset for SR Problem.

• nGenes: Number of genes in every chromosome.

• nPop: Population size.

• rLS: Ratio of individuals that will be updated using
local search procedure.

• nTrials: Number of trials.

• nGnrs: Maximum number of generations.

Suppose that nLS is the number of individuals updated by
the local search procedure, i.e., nLS=rLS*nPop. To control
the amount of computations during the local search proce-
dure, we set nLS*nTrials=nPop which implies nTrials=1/rLS.
Therefore, increasing nLS is equivalent to decreasing nTrials.

6. NUMERICAL EXPERIMENTS
In this section, we discuss the performance of the MP

algorithm through two types of benchmark problems; the
symbolic regression problem and the 6-bit multiplexer prob-
lem. Several preliminary experiments were carried out to
study the parameters behavior. Finally, we make some com-
parisons between the MP algorithm and two versions of GP
algorithm.

6.1 Symbolic Regression Problem (SRP)
The terminology symbolic regression represents the pro-

cess of fitting a measured data set by a suitable mathemati-
cal formula. Suppose that we are given a dataset {(xj , yj)}N

j=1,
thus we want to find a function g that fits those values with
a minimum error.

Consider the polynomial

f(x) = x4 + x3 + x2 + x.

The randomly chosen dataset from the real interval [0, 20]
for the polynomial f(x) is shown in Table 1. In addition, the
set of terminals will be {x}, the set of functions will be {+,
-, *, /} and the fitness function, which has been employed
in the literature [1], is:

F =

N∑
j=1

(100− |g(xj)− yj |). (4)

Clearly, maximizing the fitness function (4) is equivalent to
minimizing the error value, and Fmax = 100N .

Parameter Value
SRP 6BMP

hLen 3 3
nGenes 3 3
nPop 20 250
rLS % 100 50
nGnrs 50 200

Table 2: Standard values of the parameters.

6.2 6-Bit Multiplexer Problem (6BMP)
The input to the Boolean N -bit multiplexer function con-

sists of k “address” bits ai and 2k “data” bits di, and is a
string of length N = k+2k of the form ak−1, ..., a1, a0, d2k−1,
..., d1, d0. In addition, the value of the N -multiplexer func-
tion is the value (0 or 1) of the particular data bit that is
singled out by the k address bits of the multiplexer. There-
fore, the Boolean 6-bit multiplexer is a function of 6 activ-
ities; two activities a1, a0 determine the address, and four
activities d3, d2, d1, d0 determine the answer.

For 6BMP, the set of terminals will be
{a1, a0, d3, d2, d1, d0}, and the set of functions will be {IF},
where IF(x, y, z) returns y if x is true, and it returns z other-
wise. In addition, there are 26 = 64 possible combinations of
the 6 activities a1, a0, d3, d2, d1, d0 along with the associated
correct values of the 6-bit multiplexer function. Therefore,
we will use the entire set of 64 combinations of activities
as the fitness cases for evaluating the fitness [8]. The fit-
ness value in this case will be the number of fitness cases
where the Boolean value returned by the MP solution for a
given combination of arguments is the correct Boolean value.
Thus, the fitness value for this problem ranges between 0
and 64, where the fitness value of 64 means a 100%-correct
solution.

6.3 Parameters Setting
Here, we study the effect of the parameters on the behav-

ior of the MP algorithm and discuss how we can choose their
best values for each problem. For every parameter, we chose
several values, and for each value, we performed 50 runs for
SRP and 20 runs for 6BMP to compute the rate of success
(RoS). The other parameters are fixed at its standard values
given in Table 2.

The computational results are displayed in Table 3. As we
can see from this table, for SRP, the most effective parame-
ters are nGenes and nGnrs and the other parameters values
affect the success rate only slightly. On the other hand, for
6BMP, the results are sensitive to the changes of all param-
eters especially nGnrs and the success rate is significantly
affected by changing their values.

As a result, the most important parameters for the MP
algorithm are the number of genes (nGenes) and the number
of generations (nGnrs).

6.4 MP Algorithm vs GP Algorithm
In this subsection, we will compare the proposed MP al-

gorithm with two versions GP1 and GP2 of GP algorithm.
Here, GP1 represents the standard GP algorithm, where
each chromosome consists of only one gene. On the other
hand, in GP2 we use the multigenic strategy for GP algo-
rithm. In the comparison, the values of parameters are set
as in Table 4, and the results are shown in Figures 3–6.

- 262 -

Par. SRP Par. 6BMP
value RoS % value RoS %

hLen
1 96 1 85
3 95 3 55
5 93 5 70
7 98 7 80
9 90 9 75

nGenes
1 60 1 50
3 94 3 70
5 90 5 55
7 74 7 75
9 68 9 70

nPop
10 90 50 15
30 92 150 45
50 92 250 70
70 96 350 90
90 96 450 100

rLS %
20 96 20 80
40 94 40 70
50 94 50 80
60 94 60 80
80 94 80 75
100 84 100 70

nGnrs
10 63 50 0
30 96 150 50
50 90 250 95
70 98 350 90
90 96 450 95
100 100 500 100

Table 3: RoS for different values of each parameter.

SRP 6BMP
MP GP1 GP2 MP GP1 GP2

hLen 3 1 3 3 1 3
nGenes 3 3 3 3 3 3
nPop 20 20 20 150 150 150
rLS % 50 - - 50 - -
nGnrs 30 30 30 300 300 300

Table 4: Standard values of the parameters.

Figure 3: Best Solution in the Best Run.

Figure 4: Average of all Best Solutions in all Runs.

Figure 5: Amount of the Computations.

Figure 6: Rate of Success.

- 263 -

It is clear from the figures that the MP algorithm outper-
forms the GP algorithm, especially for the more complicated
6-bit multiplexer problem. It is clear from Figure 5 that MP
algorithm can get good and acceptable solutions in an early
stage of computations, compared with the two versions of
GP algorithm. At the same time, its rate of success is the
best one as shown in Figure 6. Of course, this will save a
lot of computations and consequently save a lot of time.

7. CONCLUSIONS
In this paper we have introduced new local searches over

tree spaces. Using these new local searches, various meta-
heuristics can be generalized to deal with tree data struc-
tures, which we call Meta-Heuristics Programming (MHP).

As a special case of MHP, we have proposed the Memetic
Programming (MP) algorithm as a modification to GP al-
gorithm. Finally, we have tested the performance of the MP
algorithm for two types of benchmark problems and made
some experiments to analyze the main components of MP
algorithm. From these numerical experiments, we may con-
clude that MP algorithm performs better than GP algorithm
at least for these test problems.

8. REFERENCES
[1] C. Ferreira. Gene expression programming: A new

adaptive algorithm for solving problems. Complex
Systems, 13:87–129, 2001.

[2] F. Glover. Future paths for integer programming and
links to artificial intelligence. Comput. Oper. Res.,
13(5):533–549, 1986.

[3] F. Glover and G. Kochenberger. Handbook of
MetaHeuristics. Kluwer Academic Publishers, Boston,
MA, 2003.

[4] W. E. Hart, N. Krasnogor, and J. E. Smith. Recent
Advances in Memetic Algorithms. Springer, Berlin,
Heidelberg, New York, 2005.

[5] A. Hedar, E. Mabrouk, and M. Fukushima. Tabu
programming method: A new meta-heuristics
algorithm using tree data structures for problem
solving, November 2008. Technical Report 2008-004.

[6] T. H. Hoang, X. Nguyen, R. B. McKay, and
D. Essam. The importance of local search: A grammar
based approach to enviromental time series modelling.
In Genetic Programming Teory and Practice III, pages
159–175, Berlin-Heidelberg, 2006. Springer-Verlag.

[7] J. K. Kishore, L. M. Patnaik, V. Mani, and V. K.
Agrawal. Application of genetic programming for
multicategory pattern classification. IEEE Trans.
Evol. Comput., 4(3):242–258, 2000.

[8] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, 1992.

[9] J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press,
Cambridge, 1994.

[10] J. R. Koza, F. H. B. III, D. Andre, and M. A. Keane.
Genetic Programming III: Darwinian Invention and
Problem Solving. Morgan Kaufmann, San Francisco,
1999.

[11] J. R. Koza, M. A. Keane, M. J. Streeter,
W. Mydlowec, J. Yu, and G. Lanza. Genetic

Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers,
Boston, 2003.

[12] P. Nordin and W. Banzhaf. Complexity compression
and evolution. In Proceedings of the Sixth
International Conference on Genetic Algorithms,
pages 310–317, Pittsburgh, PA, USA, 1995. Morgan
Kaufmann.

[13] P. Nordin, F. Francone, and W. Banzhaf. Explicitly
defined introns and destructive crossover in genetic
programming. In Advances in Genetic Programming 2,
pages 111–134, Cambridge, 1996. MIT Press.

[14] C. C. Ribeiro and P. Hansen. Essays and Surveys in
Metaheuristics. Kluwer Academic Publishers, Boston,
2002.

[15] R. Riolo, T. Soule, and B. Worzel. Genetic
Programming Theory and Practice V. Springer-Verlag,
Berlin, 2003.

- 264 -

