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a b s t r a c t

The Longest Common Subsequence problem seeks a longest subsequence of every member of a given

set of strings. It has applications, among others, in data compression, FPGA circuit minimization, and

bioinformatics. The problem is NP-hard for more than two input strings, and the existing exact

solutions are impractical for large input sizes. Therefore, several approximation and (meta) heuristic

algorithms have been proposed which aim at finding good, but not necessarily optimal, solutions to the

problem. In this paper, we propose a new algorithm based on the constructive beam search method. We

have devised a novel heuristic, inspired by the probability theory, intended for domains where the

input strings are assumed to be independent. Special data structures and dynamic programming

methods are developed to reduce the time complexity of the algorithm. The proposed algorithm is

compared with the state-of-the-art over several standard benchmarks including random and real

biological sequences. Extensive experimental results show that the proposed algorithm outperforms

the state-of-the-art by giving higher quality solutions with less computation time for most of the

experimental cases.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The Longest Common Subsequence (LCS) problem asks for a
longest string that is a subsequence of every member of a given
set of strings. A subsequence of a given string is a string that
can be obtained by deleting zero or more characters from the
given string. Among various applications of this problem are
file comparison [1], text editing [2], data compression [3], query
optimization in databases [4], clustering Web users [5], and
circuit minimization in field programmable gate arrays (FPGAs)
[6]. In addition, LCS is used in molecular biology to compare DNA
or RNA sequences and to determine homology in macromolecules
[2,7–9].

For two input strings, LCS can be efficiently solved to optim-
ality using dynamic programming in O(l1.l2), where l1 and l2 are
the lengths of the input strings. However, the problem is NP-hard
for an arbitrary number of strings [10,11]. Various optimal (exact)
algorithms have been proposed for this problem. One approach
was to use dynamic programming. In [12,13], dynamic program-
ming algorithms were proposed to solve the problem in O(ln),
where n is the number of the input strings and l is the length of
the longest one. These algorithms were improved in [14,15] to
reduce the complexity to O(ln�1), which is still exponential in the
ll rights reserved.
number of strings. Further algorithms based on dynamic pro-
gramming may be found in the survey by Berghot et al. [16].
Another approach to tackle the LCS problem was based on
traversing a search tree. Hsu and Du proposed in [17] an
enumeration algorithm based on backtracking. The idea was
further enhanced by Easton et al., who adopted a selection
heuristic and two new types of branch and bound pruning [18].
The resulting algorithm, called Specialized Branching (SB), was
compared with the previous state-of-the-art algorithms with
positive results. In contrary to the above-mentioned dynamic
programming algorithms, which are exponential in the number of
strings, SB is exponential in the length of the longest common
subsequence (LLCS). Among other works on LCS is [19] where an
integer programming formulation was proposed whose complex-
ity was still O(ln).

The above-mentioned optimal algorithms for LCS are imprac-
tical for large input sizes, hence the use of non-optimal solutions
are inevitable. Until 1994, no heuristic method was introduced for
the LCS problem [20]. The first non-optimal algorithm was Long

Run (LR) which was an approximation algorithm with an approx-
imation ratio of 9

P
9 [20,21]. This algorithm simply constructs a

string, as its output, using only a single character in
P

, which is
not of interest in practice. Another approximation algorithm
called Expansion was introduced in [22] which provided the same
approximation ratio of 9

P
9, without the single-character restric-

tion of Long Run. The complexity of Expansion was Oðnl4 lg lÞ,
which was further improved in [23] using minimum-spanning-
trees. Huang et al. [24] devised two more approximation
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1 It is also referred to as k-LCS, where k¼9S9, in the literature.

S.R. Mousavi, F. Tabataba / Computers & Operations Research 39 (2012) 512–520 513
algorithms called Enhanced Long Run (ELR) and Best Next for

Maximal Available Symbols (BNMAS), which were of O(9
P

9nl)

and O(9
P

92nlþ9
P

93l) complexities, respectively, still with the
approximation ratio of 9

P
9. They showed that their algorithms

were quite successful in practice. In [25], the authors showed that
BNMAS was considerably faster than Expansion, especially when
9
P

9 is small and/or n is large and that it outperformed Expansion
in most of the test cases.

In addition to the above-mentioned approximation algorithms,
heuristic algorithms, which do not normally guarantee an approx-
imation ratio, were also proposed for the LCS problem. The
Best-Next heuristic was proposed in [26,27] as a simple heuristic
algorithm which is run in O(9

P
9nl), and it was shown to be of

superior results compared to some of the above-mentioned
approximation algorithms, such as LR, for practical datasets.
Guenoche and Vitte [28] proposed a linear-time dynamic

programming heuristic (DPH), which was further modified by
Guenoche [29]. Easton and Singireddy [30] introduced, based on
the large-neighborhood search paradigm, a new algorithm called
time horizon specialized branching heuristic (THSB), which was
shown to be superior to DPH. More recently, Shyu and Tsai [25]
used ant colony optimization (ACO) to solve LCS. They compared
their algorithm with expansion and BNMAS algorithms by imple-
menting and testing them over random and biological datasets
obtained from NCBI [31]. According to the experimental results,
ACO dominates both of the other algorithms in terms of quality
and is faster than Expansion. Finally, Blum et al. proposed a
constructive Beam Search algorithm, called BS, for the LCS
problem [32]. In their algorithm, two different greedy functions
were used to evaluate and compare candidate solutions. Their BS
algorithm is an extension of a predecessor beam search intro-
duced by Blum and Blesa [33]. In order to compare their BS
algorithm with previous leading algorithms in the literature,
Blum et al. used two types of parameter settings; one called low

time aimed at producing quick solutions and the other called high

quality intended for high quality solutions but at extra computa-
tion cost. They compared BS with Expansion, Best-Next, G&V,
THSB and ACO algorithms over three benchmarks previously
introduced in [33,30,25]. Extensive experimental results showed
that Blum et al.’s BS algorithm outperforms, on average, its
predecessors in terms of both quality and computation time,
concluding that it is the current state-of-the-art.

In this paper, we provide an improved beam search algorithm
called IBS-LCS for the LCS problem, which, on average, improves
over the state-of-the-art, with respect to both quality and
computation time. It has been inspired by the Blum et al.’s beam
search algorithm but has the following distinguishing character-
istics. First, a novel probability-based heuristic function is used as
opposed to the heuristic functions used in BS and the other
heuristic algorithms in the literature. We believe that our pro-
posed heuristic function performs better than the existing ones in
domains where the given strings are expected to be independent.
Second, in contrary to the BS algorithm, it does not use upper
bounds for pruning the search tree. Third, BS checks, at each level
of the search tree, whether each new candidate solution is
dominated by an existing candidate solution. To do so, it com-
pares each new candidate solution with every existing one until it
is found to be dominated by some of them or compared by all.
However, we use a pre specified number of ‘best’ solutions, at
each level of the search tree, as potential dominators for the other
candidate solutions. Instead, the time saved by avoiding the extra
comparisons and calculation of upper bounds is invested into
larger values of beam size. As the consequence of the above-
mentioned modifications, IBS-LCS outperforms the state-of-the-
art not only with respect to quality but also with respect to run
time, for most standard benchmarks. More specifically, IBS-LCS
outperforms the state-of-the-art, on average, over 4 out of the
5 benchmark datasets used in [32]. The only benchmark for which
IBS-LCS is not suggested is composed of strings which are highly
similar.

The rest of the paper is organized as follows. Section 2
provides basic notations and definitions used in the rest of
the paper. In Section 3, we present our proposed algorithm. The
new heuristic function is developed in Section 4 followed by a
brief analysis of the time complexity of the algorithm. Section 5
reports the experimental results, and Section 6 concludes the
paper.
2. Basic notations and definitions

Let s be a string of length m. We use sk, where k is an integer
between 1 and m inclusive, to denote the kth character of s. Let s1

and s2 be two strings, A1¼{i9iAN,ir9s19}, and A2¼{i9iAN,ir9s29},
where N is the set of integers greater than zero. We say that s1 is a
subsequence of s2, and write s1!s2, if there is an injective
function g from A1 to A2 such that: (1) 8kAA1, s1

k
¼s2

g(k) and
(2) 8k,k0AA1, kok0 ) g(k)og(k0). We call such a function g a
map of s1 to s2. Note that such a map is not necessarily unique. We
define the cost of a map g of s1 to s2 as the integer g(s1

k), where
k¼9s19. By an optimal map of s1 to s2, we mean a minimum cost
map of s1 to s2, if any. The null string, i.e. the string of zero length,
is considered to be a subsequence of any string.

Let x be a string and S be a nonempty set of strings. We write
x!S if 8siAS, x!si. The Longest Common Subsequence (LCS1)
problem is then defined as to obtain a string x of maximum length
such that x!S. By an input string, we mean a string in S. The
alphabet over which the input strings are defined is denoted byP

; we assume 9
P

941. We use n to denote the number of input
strings; that is, n¼9S9. Since LCS can be efficiently solved for n¼2,
we assume n42. We further assume that S¼{s1,y,sn}; that is, the
input strings are denoted by the small letter s indexed from 1 to n.
We use mi to refer to 9si9 and assume mi40, i¼1,y,n. In the case
all the input strings are of the same length, we use m to denote
their length; otherwise, m denotes max{mi, i¼1,y,n}. We use
(possibly indexed) x to denote a candidate solution. A candidate
solution x is called feasible if x!S; it is otherwise called
infeasible. A feasible candidate solution x is optimal if there exists
no other feasible solution of a length greater than 9x9.

Let x be a feasible candidate solution. We use pi(x) to denote
the cost of the optimal map of x to si. Then qi(x) is defined as
mi�pi(x). By ri(x), we mean the string obtained by deleting the
first pi(x) characters from si (see Fig. 1), and R(x) is defined as the
set {ri(x), i¼1,y,n}. By a random string in this paper, we mean a
string each of whose characters obtained by uniformly-randomly
selecting one of the characters in

P
. Finally, we use Pr(.) to denote

the statistical probability function. Although there are two types
of beam search, namely constructive and perturbative (Local
Beam Search [34]), we use beam search in this paper to refer to
the former.
3. The proposed algorithm

The beam search algorithm, in its standard form, is a determi-
nistic, yet heuristic, tree search. It is similar to the breath-first
search algorithm except that it does not keep all the leaves but
only b of them, where b40 is called the beam size. It turns to a
pure constructive greedy heuristic in the case b¼1; it also turns
to the breath-first search if b is large enough to keep all the



s1 = b c a d c f d c s2 = c a b a a f d c s3 = b a c d d f c d

r1(x) r2(x) r3(x)

x = b a 

p (x) = 3 
q (x) = 5

p (x) = 4 
q (x) = 4

p (x) = 2 
q (x) = 6

Fig. 1. An instance of the LCS problem with S¼{s1,s2,s3}. A candidate solution is

x¼ba, for which pi(x), qi(x), and ri(x), i¼1,2,3, are illustrated.
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leaves. Therefore, the beam size b may be thought of as a
parameter to control a balance between greediness and exhaus-
tiveness and is usually used to avoid excessive running times.
Algorithm 1 presents our basic beam search algorithm for the LCS
problem.

As a (constructive) beam search, the algorithm starts with an
empty candidate solution, here a null string, and incrementally
builds longer (feasible) candidate solutions by appending to
them characters drawn from the alphabet. However, if the
number of feasible candidate solutions exceeds the beam size b,
then at most b of them can be kept and the rest must be
discarded. In order to determine which candidate solutions to
keep, a heuristic function h(.) is used to evaluate the candidate
solutions. The set of candidate solutions in this algorithm is
denoted by B, which initially contains the null string only. There
are three main steps in the while loop. In Step 1, each candidate
solution xi in B is extended by appending at its end a character
drawn from

P
. The result would then be 9

P
9 new candidate

solutions, one per each letter in
P

, for each xi in B. However, only
the feasible ones, determined using the function feasible(.), are
kept in the set C. Therefore, the set C contains at most b.9

P
9

(feasible) candidate solutions. In Step 2, each of the candidate
solutions in C is evaluated using the heuristic function. Based on
this evaluation, in Step 3, a list k-best is constructed which
consists of the k best candidate solutions. Each candidate solution
in C is then checked for being dominated by any member of k-best
and removed if so. A candidate solution xj is dominated by
another candidate solution xk if pi(xj)Zpi(xk), i¼1,2,y,n. After
the removal of the dominated candidate solutions, the best b of
the remaining ones in C are selected to make the new set B

of candidate solutions for the subsequent iteration of the while
loop. Steps 1–3 are repeated within the while loop until C is
empty, in which case the algorithm returns a member of B and
terminates.

Algorithm 1.

The basic beam search algorithm for LCS
//input: S¼{s1,s2,y,sn}, n42, each si a string of at least one
character. The alphabet of characters used in any of the strings
is denoted by

P
//output: a string x such that x!S

//parameter: 1. the beam size b and 2. the number k of
potential dominators
//initialization
B¼{ ’’’’ } //the set of candidate solutions initially contains the
null string
finished¼false
while Not finished
{

//step 1: extension
C¼{}
for each xiAB

for each letter lA
P

x¼ the string obtained by adding l at the end of xi

if feasible(x)
C¼C[{x}
//step 2: calculation of heuristic values
for each xiAC

calculate heuristic value h(xi)//h(.) is the heuristic function
//step 3: selection
if C¼{}

finished¼true
else
k_best¼ a set of k best members of C

for each xiAC

if xi is dominated by any member of k_best
C¼C�{xi}

B¼a set of b best members of C//B¼C if 9 C 9rb
}
return an xAB

Our beam search algorithm is different from the beam search
algorithm presented in [32]. First, pruning the search tree in our
algorithm is simply performed by discarding candidate solutions
dominated by some member of k-best, at each level of the tree (in
addition to the standard beam search restriction of 9B9ob).
However, Blum et al. performs this type of pruning by comparing
each new candidate solution with every other candidate solution,
at each level of the search tree. In other words, a new candidate
solution may be compared with b.9S9�1 other candidate solu-
tions, where it is at most compared with k ones in our algorithm.
Second, Blum et al. adopts a further type of pruning, which is
pruning by upper bounds. This type of pruning is not performed
in our algorithm. Instead, the computational cost saved by
avoiding this type of pruning and by reducing the number of
comparisons for dominance pruning is invested into larger values
of beam size than those of [32]. Another distinction between the
algorithm proposed in this paper and the algorithm in [32] is the
use of a novel heuristic function in our algorithm. We believe that
the heuristic function proposed in this paper performs better than
the existing ones, at least in domains where the given strings are
expected to be independent. Finally, we have devised a dynamic
programming approach to quickly calculate the heuristic values
at some extra, yet affordable, memory cost. As a beam search, our
algorithm is of polynomial-time complexity in the input size
(n, m, and 9

P
9).
4. The probabilistic heuristic

Let x be a candidate solution, we use as the heuristic function
hk(x) the probability for s!R(x), where s is a random string of
length k. This heuristic function is used to evaluate and compare
candidate solutions. However, it is dependent not only on x but
also on k. Therefore, for a fair comparison, k has to be the same for
all candidate solutions which are to be compared. We present at
the end of this section a simple formula to determine a value for k.
However, how to find the best value for k still remains as an open
question.

To determine hk(x), we make the assumption that the strings
in S are ‘independent’. To be precise, we assume that, for a given
random string s, Pr(s!si)¼Pr(s!si9s!sj), for all distinct strings si

and sj in S. Under this assumption, we have:

Prðs!RðxÞÞ ¼
Yn

i ¼ 1

Prðs!riÞ

We now show how to determine Pr(s!ri), i¼1,y,n. The
following theorem establishes a recurrence for the function
Pr(s!r), which can then be efficiently determined via dynamic
programming.



Fig. 2. Recurrence can be obtained to determine whether a string is a subsequence

of another. Two strings s and r such that 9s940 and 9r940 are shown, and s0 and r0

are defined as the strings obtained by deleting the first characters from s and r,

respectively. In the case the first characters of s and r are different, the probability

for s being a subsequence of r is equivalent to the probability for s being a

subsequence of r0; otherwise, it is equivalent to the probability for s0 being a

subsequence of r’.
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Fig. 3. The first few rows and columns of the two-dimensional array P, populated

by dynamic programming (Algorithm 2) to hold the probability values used to

calculate the proposed heuristic function.
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Theorem. Let r be a string of length q and s be a random string of

length k, qZ0, kZ0. Then:

Prðs!rÞ ¼

1 if k¼ 0

0 if k4q
1
Sj jPrðs0!r0Þþ Sj j�1

Sj j Prðs!r0Þ otherwise

8><
>:

where s0 and r0 are the (possibly null) strings obtained by deleting the

first letters from s and r, respectively, when 9s940 and 9r940.

Proof. It is clear by the definition of subsequence that the null
string is a subsequence of every string and that a string cannot be
a subsequence of a shorter one. Therefore, the first two cases of
k¼0 and k4q are trivial. We now concentrate on the remaining
case, i.e. when 0okrq. In this case, each of the strings s and r has
at least one character; hence, s0 and r0 are well-defined. One, and
only one, of the following two cases holds (see Fig. 2):

Case (i): s1ar1. In this case, s!r if and only if s!r0. Therefore

Pr(s!r)¼Pr(s!r0).

Case (ii): s1
¼r1. In this case, we show that s!r if, and only if,

s0!r0. To that end, first assume s0!r0. Since s1
¼r1, this implies

s!r. Now assume that s!r. Then there exists some map g of s to

r. This in turn splits into two possible cases of g(1)¼1 and

g(1)a1. In either case, g(i)41, 8i¼2,y,k. This means that the

injective function g0 defined as g0(i)¼g(iþ1)�1 is a map of s0 to r0,

which implies s0!r0. Therefore, Pr(s!r)¼Pr(s0!r0).

Since the probability for case (ii) is 1/9
P

9, we conclude:

Prðs!rÞ ¼
1

Sj j
Prðs0!r0Þþ

Sj j�1

Sj j
Prðs!r0Þ: &

The probability Pr(s!ri) is only dependent on 9s9 and 9ri9,
given an alphabet

P
, because s is assumed to be random. There-

fore, we simply use P(k,q), where k¼9s9 and q¼9ri9, to refer to
Pr(s!ri). Using Theorem 1, this means:

Pðk,qÞ ¼

1 if k¼ 0

0 if k4q
1
Sj j Pðk�1,q�1Þþ Sj j�1

Sj j Pðk,q�1Þ othewise

8><
>:

Based on dynamic programming, Algorithm 2 calculates P(k,q)
for 0rkrm and 0rqrm (recall that m is the length of the
longest input string). The first few rows and columns of the
resulting array P, for 9

P
9¼4, are shown in Fig. 3.

Algorithm 2.
2 Our current code does not use red-black trees and requires O(kb9
P

9) for

this step.
Populates the two-dimensional array P such that
P[k][q]¼P(k,q)
Let sigSize be 9

P
9

for q¼0 to m

for k¼0 to m

if k¼0
P[k][q]¼1
else

if k4q

P[k][q]¼0
else

P[k][q]¼(1/sigSize)nP[k�1][q�1]þ
((sigSize-1)/sigSize)nP[k][q�1]
In order to determine k, we use the formula k¼min{qi(x),
i¼1,y,n, xAC}/9

P
9, where C is the set of candidate solutions to be

compared; we set k to 1 if the above formula gives 0. Our intuition
for this formula was that the probability for finding a longer
common subsequence of R(x), for a candidate solution x, is
decreased as 9

P
9 is increased and as min{qi(x), i¼1,y,n} is

decreased. However, this is a fairly simple support for the formula
and how to determine the best value for k requires further
investigation. Nevertheless, as will be seen in the subsequent
section, the current formula yields satisfactory results, although
there is still room for further improvement in this regard.

Having all the required information, we now analyze the time
complexity of the algorithm. Before the while loop of Algorithm 1,
two data structures are populated. First, a three-dimensional
(n�m� 9

P
9) array to keep, for each location j, j¼1,y,m, of each

string si, i¼1,y,n, where the next occurrence of each alphabet
letter in the string is. This array is used in the algorithm in order
to run the function feasible(.) in O(n). Using dynamic program-
ming, this array can be populated in O(nm9

P
9). We avoid the

pseudo-codes here for brevity. The second data structure popu-
lated before the main loop of the algorithm is the two-dimen-
sional array P, used to keep all possible values of P(k,q), which is
populated in O(m2) again using dynamic programming.

Inside the while loop, Step 1 requires O(b 9
P

9n), taking the
advantage of the three-dimensional array already populated to
perform each feasibility check in O(n). Step 2 determines the
heuristic values for all the candidate solutions (at most b.9

P
9) in

C, each requiring O(n) (multiplication of n probability values
retrieved from the two-dimensional array P). Therefore, it yields
O(b9

P
9n) as for the complexity of this step too. In Step 3, at first

the dominance pruning is performed, which required the selec-
tion of k best candidate solutions, in O(klg(b9

P
9)) using red-black

trees2 (recall that 9C9rb9
P

9), together with the dominance



Table 1
Comparison of IBS-LCS and BS over the ES benchmark for various values of 9

P
9, n,

and m. The last column shows the quality improvement with respect to BS-high-

quality. As can be seen, IBS-LCS provides superior quality than BS-high-quality in

all the cases, in most of which in even less time than BS-low-time.

n m BS-low-time BS-high-quality IBS-LCS
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checks, in O(kb9
P

9n). Then, still in Step 3, the best (at-most) b
members of C are selected to construct the new set B, which
can be performed in O(blg(b9

P
9)) using red-black trees. Since

the while loop iterates Ln times, where Ln is the length of the
LCS returned by the algorithm, the algorithm is run in
O(m2

þnm9
P

9þLn(b lg bþkb9
P

9n)).
LLCS Time LLCS Time LLCS Time a

9
P

9¼2
10 1000 579.9 0.7 592.6 14.8 610.2 0.9 2.97

50 1000 516.3 3.7 521.9 43.5 535.0 1.5 2.51

100 1000 502.1 7.4 506 78.6 517.3 2.5 2.24

9
P

9¼10
10 1000 185.5 0.5 192.2 9.4 199.7 0.9 3.90

50 1000 127.9 1.5 129.6 18.8 134.6 1.4 3.87

100 1000 116.5 2.7 117.9 30.6 122.0 2.3 3.48

9
P

9¼25
10 2500 214.3 2.7 224.3 51.5 231.6 3.1 3.25

50 2500 131.3 5.5 133 76.6 137.2 4.6 3.14

100 2500 116.3 9.1 118.1 118.6 121.1 7.7 2.51

9
P

9¼100
10 5000 132.5 19.1 139.6 394.6 142.1 9.0 1.79

50 5000 67.9 27.8 69.5 490.2 70.4 13.6 1.24

100 5000 57.6 42.2 59 602 59.6 69.9 1.02

2.66
5. Experimental results

In this section, we report the results of comparing our
proposed algorithm with the BS (Beam Search) algorithm pro-
posed by Blum et al. in [32]. Although there are other recent
algorithms such as those proposed in [25] and [30], we do not
compare our algorithm with those ones, because such algorithms
have already been evaluated and compared with BS [32] and BS is
known as to be the current state-of-the-art. We implemented our
algorithm in Java using eclipse Platform. In order to provide
meaningful comparison of run time, we did not use a recent
machine. Instead, we tried to find in our department a machine
with specifications as close as possible to the machine used in
[32]; that is, we used a Pentium (R) IV desktop machine with
3.40 GHz clock speed, 1 GB of RAM, and 2 MB of L2 cache. The
machine we used, however, should be even slower than the
machine used in [32], based on the CPU performance test bench-
marks in [35]; our machine0s benchmark is ranked 541, whereas
the benchmark’s rank for the machine used in [32] is 805.

We used four of the five datasets used in [32], namely ES,3

ACO-random, ACO-rat, and ACO-virus.4 The ES benchmark was
originally used in [30], and the other three datasets were
previously used in [25]. We do not propose our algorithm for
domains, such as the BB benchmark used in [32], where the input
strings are highly related because of the independence assump-
tion made in developing our heuristic function. However, in order
to observe the experimental outcomes and its consistency with
the theoretical support for the proposed heuristic function, we
have also included the results on the BB benchmark first intro-
duced in [33]. We used the parameters b¼200 and k¼7 in our
algorithm.

Table 1 compares the results of our algorithm with those
reported in [32] for the ES benchmark. The first two columns in
this table show the alphabet size and the number and the length
of the input strings (the strings of an instance are all of the same
length). The next four columns report the results for BS as
specified in [32]. There are two types of runs in their experiments:
low-time and high-quality. In the former, low run time is of the
main concern, whereas high quality of the solutions is the main
goal in the latter. We have included the results of both runs,
calling them BS-low-time and BS-high-quality, respectively. The
third and the fourth columns show the average length of the
returned LCS and the run time for BS-low-time and the fifth and
the sixth columns show these quantities for BS-high-quality. The
next two columns show the respective values for our algorithm.
Finally, the last column calculates the improvement percentage a
defined as (L2�L1)/L1, where L2 and L1 are the average lengths of
the solutions returned by IBS-LCS and BS-high-quality, respec-
tively, for the corresponding datasets. Except for the last column
which has up to two decimal figures, the other columns are
rounded up to one decimal figure.
3 Downloaded from http://www2.imse.ksu.edu/�teaston/publications.php

on 23 September 2009. We noticed inconsistencies with some of the instances

which we ignored.
4 Received from Dr. C. Blum; also available on NCBI using the accession

numbers specified at http://www.csie.mcu.edu.tw/�sjshyu/resource/accno-a

co_lcs.html.
As can be seen in Table 1, in all the 12 cases IBS-LCS provides
solutions of higher quality than those of the BS-high-quality. In
8 out of the 12 cases, it does so in even less time than those of
BS-low-time. In all the remaining four cases, it takes less time
than those of the BS-high-quality. On average, our algorithm
achieves about 2.66% improvement in solution quality compared
to BS-high-quality while it consumes less time than BS-low-time
by about 6.5% (not shown in the table).

The results of our algorithms on the ACO-random, ACO-rat,
and ACO-virus datasets are presented and compared with the
state-of-the-art in Tables 2–4, respectively. The definitions for the
columns of these tables are the same as those of Table 1. As can be
seen in Table 2, in none of the 20 cases, IBS-LCS is of an inferior
solution quality compared to BS-high-quality. In 14 out of 20 (70%
of) cases, it provides solutions of higher quality than those of BS-
high-quality. In 12 out of these 14 cases, it does so in even less
time than BS-low-time. In one of the remaining 2 cases (the
second row of table), it consumes the same amount of time
(0.5 s), and in only one case (the first row) it takes more time than
that of BS-low-time, where it still gives a higher quality in less
time compared to BS-high-quality.

The results of IBS-LCS on the ACO-rat datasets are slightly
worse than those of ES and ACO-random, because it is out-
performed, with respect to solution quality, by BS-high-quality
in 3 out of 20 (15% of) cases. However, in all these cases, it
consumes significantly less time even than BS-low-time. In 6 out
of the remaining 17 cases, it provides the same quality as
BS-high-quality, but again in significantly less time. In 9 out of
the remaining 11 cases, it is of higher quality than BS-high-quality
while faster than BS-low-time. Only in the first two cases of
Table 3, it is not quicker than BS-low-time, though it is of higher
quality than BS-high-quality.

On the ACO-virus benchmark, IBS-LCS always performs better
than (in 17 cases) or the same as (in 3 cases) BS-high-quality, with
respect to solution quality. Except for the first two cases, it is also
always faster than BS-low-time. In all the cases where it is of the
same quality as BS-high-quality, it is faster than BS-low-time.
Similarly, in both the cases where it is not faster than BS-low-
time, it is of higher quality than BS-high-quality.

http://www2.imse.ksu.edu/~teaston/publications.php
http://www2.imse.ksu.edu/~teaston/publications.php
http://www.csie.mcu.edu.tw/~sjshyu/resource/accno-aco_lcs.html
http://www.csie.mcu.edu.tw/~sjshyu/resource/accno-aco_lcs.html
http://www.csie.mcu.edu.tw/~sjshyu/resource/accno-aco_lcs.html


Table 3
Comparison of IBS-LCS and BS over the ACO-rat benchmark for various values

of 9
P

9, n, and m. The last column shows the quality improvement with respect to

BS-high-quality. As can be seen, IBS-LCS provides inferior quality in 3 cases, the

same quality in 6 cases, and superior quality in 11 cases, compared to BS-high-

quality. In most of the cases, it is remarkably faster than BS-low-time.

n m BS-low-time BS-high-quality IBS-LCS

LLCS Time LLCS Time LLCS Time a

9
P

9¼4
10 600 189 0.3 191 9.7 199 0.4 4.19

15 600 163 0.4 173 12.3 182 0.4 5.20

20 600 160 0.6 163 12.6 168 0.4 3.07

25 600 160 0.8 162 15.8 166 0.4 2.47

40 600 142 1.2 146 9.4 146 0.5 0.0

60 600 143 1.9 144 26.7 147 0.7 2.08

80 600 131 2.3 135 31.8 141 0.9 4.44

100 600 129 3 132 38.5 132 1.0 0.0

150 600 120 4.2 121 51.1 124 1.3 2.48

200 600 117 5.6 121 69.1 120 1.6 �0.83

9
P

9¼20
10 600 65 0.7 69 27.4 70 0.5 1.45

15 600 57 1.1 60 36.7 61 0.5 1.67

20 600 50 1.2 51 34.4 53 0.5 3.92

25 600 49 1.4 51 39 50 0.5 �1.96

40 600 46 2 49 47 49 0.6 0.0

60 600 44 3.2 46 60.3 46 0.8 0.0

80 600 42 4 43 64.4 43 1.0 0.0

100 600 37 4.5 38 64.8 39 1.1 2.63

150 600 35 6.7 36 77.8 36 1.3 0.0

200 600 31 8.3 33 101 32 1.7 �3.03

1.39

Table 4
Comparison of IBS-LCS and BS over the ACO-virus benchmark for various values

of 9
P

9, n, and m. The last column shows the quality improvement with respect to

BS-high-quality. As can be seen, IBS-LCS provides the same or better quality

compared to BS-high-quality in all the cases, in most of which in even less time

than BS-low-time.

n m BS-low-time BS-high-quality IBS-LCS

LLCS Time LLCS Time LLCS Time a

9
P

9¼4
10 600 203 0.4 212 11.6 225 0.5 6.13

15 600 192 0.5 193 15.4 203 0.5 5.18

20 600 179 0.7 181 17.2 189 0.5 4.42

25 600 178 0.9 185 17.9 193 0.5 4.32

40 600 158 1.3 162 21.9 168 0.6 3.70

60 600 153 2 158 29.1 165 0.8 4.43

80 600 148 2.6 153 36 158 0.9 3.27

100 600 149 3.4 150 43.9 158 1.2 5.33

150 600 143 5 148 64.5 156 1.7 5.41

200 600 143 6.8 145 84.5 154 2.1 6.21

9
P

9¼20
10 600 67 0.7 75 27.2 75 0.5 0.0

15 600 58 1 63 38.6 63 0.5 0.0

20 600 55 1.2 57 40.3 60 0.5 5.26

25 600 50 1.4 53 38.9 54 0.5 1.89

40 600 47 2.1 49 48.4 49 0.7 0.0

60 600 44 3.1 45 56.1 47 1.0 4.44

80 600 43 4 44 67.4 45 1.1 2.27

100 600 41 5 43 74.2 44 1.5 2.33

150 600 43 7.8 44 108 45 1.8 2.27

200 600 43 11 43 140 44 2.2 2.33

3.46

Table 2
Comparison of IBS-LCS and BS over ACO-random benchmark for various values

of 9
P

9, n, and m. The last column shows the quality improvement with respect to

BS-high-quality. As can be seen, IBS-LCS provides the same or superior quality

compared to BS-high-quality in all the cases, in most of which in even less time

than BS-low-time.

n m BS-low-time BS-high-quality IBS-LCS

LLCS Time LLCS Time LLCS Time a

9
P

9¼4
10 600 200 0.3 211 9.8 218 0.4 3.32

15 600 190 0.5 194 13.2 203 0.5 4.64

20 600 178 0.7 184 14.9 191 0.5 3.80

25 600 174 0.9 179 15.8 185 0.5 3.35

40 600 162 1.4 167 21 172 0.7 2.99

60 600 157 2.1 161 27.6 165 0.8 2.48

80 600 151 2.7 156 33.5 161 1.0 3.21

100 600 150 3.5 154 40.3 158 1.2 2.60

150 600 146 5 148 56.4 151 1.5 2.03

200 600 144 6.9 146 74.3 150 2.1 2.74

9
P

9¼20
10 600 58 0.7 61 33.3 61 0.5 0.0

15 600 49 0.9 51 37.6 51 0.4 0.0

20 600 43 1.1 47 39.5 47 0.5 0.0

25 600 41 1.3 43 39.5 44 0.5 2.33

40 600 37 1.7 37 43.2 38 0.6 2.70

60 600 34 2.6 34 46.5 35 0.8 2.94

80 600 32 3.2 32 53.2 32 1.0 0.0

100 600 30 3.9 31 59.2 31 1.2 0.0

150 600 28 5.7 29 75.6 29 1.5 0.0

200 600 27 7.9 27 98 28 1.9 3.70

2.14

Fig. 4. Comparison of IBS-LCS and BS-high-quality with respect to run-time

growth, for the ACO-virus benchmark with 9
P

9¼4.
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An interesting observation of Tables 1–4 is that the improve-
ment in solution quality usually decreases, while the run-time of
BS grows rapidly, by increasing n or 9

P
9. Fig. 4 compares the

growth of the run time for IBS-LCS and BS, by increasing the
number n of strings, for the ACO-virus instances with 9
P

9¼4. The
corresponding graphs for 9

P
9¼20 are also depicted in Fig. 5. As

can be seen in these graphs, the run-time of BS grows rapidly, as n

increases, whereas the run-time of IBS-LCS grows fairly slowly.
This suggests that although BS can achieve solutions of close
quality to those of IBS-LCS for larger values of n, its computational
cost grows more rapidly compared to that of IBS-LCS. Comparing
the run-time of the algorithms for different 9

P
9, Fig. 6 shows the

average run-time of the algorithms per each value of 9
P

9, for both
BS and IBS-LCS. As can be seen in Fig. 6, by increasing the
cardinality of the alphabet from 4 to 20, the average run-time
of BS rises by about 86% from 34.2 to 63.91. However, as the result
of this, the average run time of IBS-LCS is increased from 0.93 to
1.03, i.e. by about 11%. This also suggests that IBS-LCS should
better suit larger alphabets.



Fig. 5. Comparison of IBS-LCS and BS-high-quality with respect to run-time

growth, for the ACO-virus benchmark with 9
P

9¼20.

Fig. 6. Comparison of average run-time of IBS-LCS and BS-high-quality, for

alphabet sizes of 4 and 20, on the ACO-virus benchmark.

Table 5
Comparison of IBS-LCS and BS over the BB benchmark for various values of 9

P
9,

n, and m. The last column shows the quality improvement with respect to

BS-high-quality. As can be seen, IBS-LCS provides inferior quality compared to

BS-high-quality in half of the cases. It still provides higher quality solutions

compared to BS-low-time in majority of cases.

n m BS-low-time BS-high-quality IBS-LCS

LLCS Time LLCS Time LLCS Time a

9
P

9¼2
10 1000 613.2 0.6 648 13.6 672.1 1.1 3.72

100 1000 531.6 6.3 541 72.5 554.2 2.4 2.44

9
P

9¼4
10 1000 477.3 0.9 534.7 18.1 543.7 1.5 1.68

100 1000 350.7 9.3 369.3 121.6 361.7 2.8 �2.06

9
P

9¼8
10 1000 420 0.7 462.3 21.2 461.9 2.2 �0.09

100 1000 241.5 10.6 258.7 154.7 240.9 3.5 �6.88

9
P

9¼24
10 1000 382.6 1.3 385.6 37.4 385.6 4.4 0.0

100 1000 140.3 13.5 147.7 268.3 130.5 4.9 �11.6

�1.60

Table 6
Average improvement achieved by IBS-LCS with respect to solution quality and

run-time over BS on the various benchmarks. As can be seen, IBS-LCS is of higher

quality and less run-time on majority of the benchmarks.

Benchmark Quality improvement Run-time improvement

vs. BS-low-

time

vs. BS-high-

quality

vs. BS-low-

time

vs. BS-high-

quality

ES 5.04 2.66 6.5 93.9

BB 4.3 �1.6 �42.38 93.99

ACO-random 5.12 2.14 51.89 97.6

ACO-rat 4.74 1.39 55.29 97.69

ACO-virus 7.1 3.46 53.44 97.76

Average 5.43 1.99 36.89 96.75
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We now present the results of running our proposed algorithm
on the BB benchmark. Recall that we do not propose our heuristic
function for such domains where the input strings are highly
related. The reason for this restriction is that we presumed that
the input strings are independent in order to facilitate the
development of a statistical formula for our proposed heuristic.
How to extend the formula to the case where no such indepen-
dence can be assumed is an open question which we leave as a
potential future work. However, in order to see the outcome of
running the proposed algorithm on such datasets as BB, we
present the results.

Table 5 shows the results of running IBS-LCS on the BB
benchmark. The definition of the columns of Table 5 is similar
to those of Tables 1–4. As can been in Table 5, in the first three
cases, IBS-LCS improves over BS_high-quality with respect to the
quality of solutions. In only one case it gives the same quality as
BS-high-quality, and in the rest (i.e. 4 out of 8 cases) it achieves
less quality than BS-high-quality. However, in all the case, its
run-time is remarkably less than that of BS-high-quality. Compar-
ing with BS-low-time, in only 2 out of 8 cases (the sixth and the
last cases), it yields inferior quality. In all the other cases (i.e. 6 out
of 8 cases), it provides solutions of higher quality. In half of the
cases, it takes less time and in the rest it takes more time than
BS-low-time.

Table 6 summarizes the comparison of IBS-LCS with BS-low-
time and BS-high-quality with respect to both quality and run-
time over all the five benchmarks. With respect to quality, the
highest improvement is due to the ACO-virus benchmark
followed by ES and ACO-random. The worst performance, as
expected, is on the BB benchmark. IBS-LCS yields the quality
improvement of -1.6% over BS-high-quality (i.e. outperformed by
BS-high-quality). However, its run-time is reduced by about 94%
compared to BS-high-quality. Compared with BS-low-time, on
average, IBS-LCS achieves the improvement ratio of 4.30% with
respect to solution quality, while its run-time is worse by about
43%. Recall that the BB benchmark is of different characteristics
than the other four benchmarks in [32]. Even in [32], a setting (i.e.
beam size and heuristic function) different from those of the other
benchmarks was chosen when running the proposed algorithm
on the BB benchmark.

It is important to note that the above results were obtained by
our algorithm with only a predetermined beam size of 200. In
contrary to [32], we used a fixed setting for all the datasets.
However, for most instances, the time consumed by IBS-LCS is
significantly less than those of the state-of-the-art, and increasing
the beam size could further improve the solution quality of
IBS-LCS.

Finally, to show how important the setting of k, used in the
proposed heuristic function is, we performed another experiment,
where we changed k by 75% and 710% and observed the
outcome on two of the benchmarks, namely ACO-virus and BB,
which are shown in Tables 7 and 8, respectively. As can be seen in
the first half of Table 7, the quality can change by up to 3 units (but
mostly one unit) as k varies. In the second half of Table 7, however,
the quality remains intact as k varies, except for one out of the ten



Table 7
Changes in solution quality by IBS-LCS as a result of changing the value of k, on the ACO-virus benchmark. There are five columns, from left to right, for 0.9korg, 0.95 korg,

korg, 1.05 korg, and 1.1korg, where korg is the original value for k used in the previous experiments. As can be seen, most of the changes are in the first half of the table, which

are up to 3 units.

n m 0.9 Korg 0.95 Korg Korg 1.05 Korg 1.1 Korg

9
P

9¼4
10 600 226 225 225 225 225

15 600 202 203 203 201 203

20 600 189 188 189 189 189
25 600 192 191 193 193 192

40 600 166 169 168 169 169
60 600 165 164 165 165 166
80 600 159 158 158 157 159

100 600 155 155 158 158 155

150 600 155 155 156 155 156
200 600 153 154 154 154 154

9
P

9¼20
10 600 75 75 75 75 75
15 600 62 62 63 63 62

20 600 60 60 60 60 60
25 600 54 54 54 54 54
40 600 49 49 49 49 49
60 600 47 47 47 47 47
80 600 45 45 45 45 45

100 600 44 44 44 44 44
150 600 45 45 45 45 45
200 600 44 44 44 44 44

Quality improvement with respect to BS-high-quality 3.15 3.16 3.46 3.37 3.35

Quality improvement with respect to BS-low-time 6.78 6.79 7.10 7.01 6.98

Table 8
Changes in solution quality by IBS-LCS as a result of changing the value of k, on the BB benchmark. There are five columns, from left to right, for 0.9korg, 0.95 korg, korg, 1.05

korg, and 1.1 korg, where korg is the original value for k used in the previous experiments. As can be seen, the smallest value of 0.9korg results in improved solutions.

n m 0.9 Korg 0.95 Korg Korg 1.05 Korg 1.1 Korg

9
P

9¼2
10 1000 666.5 670.9 672.1 671.7 670.4

100 1000 561.4 558.2 554.2 548.8 543.8

9
P

9¼4
10 1000 544.4 544.4 543.7 532.4 532.3

100 1000 370.8 365.4 361.7 358.6 354.3

9
P

9¼8
10 1000 462.6 461.9 461.9 461.7 461.7

100 1000 245.1 243.9 240.9 237.6 235.9

9
P

9¼24
10 1000 385.6 385.6 385.6 385.6 385.6

100 1000 136.0 133.9 130.5 131.4 129.0

Quality improvement with respect to BS-high-quality �0.53 �0.96 �1.60 �2.19 �2.77

Quality improvement with respect to BS-low-time 5.43 4.98 4.30 3.67 3.06
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cases. On average (shown at the bottom of the table), the best
performance is due to the original value for k. The results are
slightly different for the BB benchmark: the quality could be
further improved by using a smaller k. As can be seen, in most of
the cases, the quality changes as k varies. The best average quality
is due to the smallest k, where it achieves 5.43% improvement over
BS-low-time and �0.53% over BS-high-quality (i.e. still outper-
formed by BS-high-quality with respect to solution quality). This
suggests that there is still room for further improvement of the
algorithm by appropriately choosing the value of k.
6. Conclusion

In this paper, a deterministic algorithm for the longest
common subsequence problem was developed. The algorithm is
a constructive beam search which uses a new heuristic function
to evaluate and compare candidate solutions. This heuristic
function has been inspired by the probability theory. In devising
the heuristic, it was assumed that the input strings are indepen-
dent in the sense that whether or not a given candidate solution
is a subsequence of one string does not affect the likelihood
of it being a subsequence of another string. Positive results
on several random and real datasets showed that the assumption
is reasonable, although the extension of the heuristic function to
the cases where input strings are highly related is expected
to lead to further improved results. Relying on efficient data
structures and optimized codes, the algorithm is relatively
fast, run within a few seconds in most of the experimental
cases.

The proposed algorithm was compared with the state-of-the-
art, the BS algorithm proposed in [32], over several benchmarks.
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Compared to the high-quality version of BS reported in [32] and
on average over all the benchmarks, the proposed algorithm
achieved about 2% improvement in solution quality while it saved
more than 96% of the time used by BS. Compared to the low-time
version of BS reported in [32] and on average over all the four
benchmarks, it achieved about 5.4% quality improvement while
saving more than 37% of the time consumed by BS.

A possible direction for future work is to relax the indepen-
dence assumption and generalize the heuristic formula to the
case where the input strings are highly related. Another possibi-
lity is to hybridize the proposed heuristic function with other
heuristic functions proposed in the literature to make a so-called
hyper heuristic for the problem.
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