
Information Processing Letters 112 (2012) 423–426
Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Quadratic-time algorithm for a string constrained LCS problem

Sebastian Deorowicz

Silesian University of Technology, Institute of Informatics, Akademicka 16, Gliwice, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 July 2011
Received in revised form 9 January 2012
Accepted 13 February 2012
Available online 15 February 2012
Communicated by Ł. Kowalik

Keywords:
Algorithms
Sequence similarity
Longest common subsequence
Constrained longest common subsequence

The problem of finding a longest common subsequence of two main sequences with
some constraint that must be a substring of the result (STR-IC-LCS) was formulated
recently. It is a variant of the constrained longest common subsequence problem. As the
known algorithms for the STR-IC-LCS problem are cubic-time, the presented quadratic-time
algorithm is significantly faster.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

One of the most popular ways of measuring sequence
similarity is computation of their longest common sub-
sequence (LCS) [7], in which we are interested in a sub-
sequence that is common to all sequences and has the
maximal possible length. It is well known that for two se-
quences of length m and n an LCS can be found in O (mn)

time, which is a lower bound of time complexity in the
comparison-based computing model for this problem [1].
In the more practical, RAM model of computations, the
asymptotically fastest algorithm is the one by Masek and
Paterson which runs in O (mn/ log n) time for bounded and
O (mn log logn/ log n) time for unbounded alphabet [8].

One family of LCS-related problems considers one or
more constraining sequences, such that (in some variants)
must be included, or (in other variants) are forbidden as
part of the resulting sequence [3,9]. The motivation for
these generalizations came from bioinformatics in which
some prior knowledge is often available and one can spec-
ify some restrictions on the result [9,5].

In this work, we consider the problem called STR-IC-
LCS, introduced in [3], in which a constraining sequence
of length r must be included as a substring of a com-

E-mail address: sebastian.deorowicz@polsl.pl.
0020-0190/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2012.02.007
mon subsequence of two main sequences and the length
of the result must be maximal. In [3] an O (nmr)-time al-
gorithm was given for it. Farhana et al. [6] proposed finite-
automata-based algorithms for the STR-IC-LCS, constrained
longest common subsequence (CLCS), and two other prob-
lems defined by Chen and Chao [3]. The authors claim that
the algorithms work in O (r(m + n) + (m + n) log(m + n))

time in the worst case. It seems to be a breakthrough as
it means also that the LCS problem could be solved in
O (n log n) time. Unfortunately, the time complexity anal-
ysis are based on the claim from [2] that a directed acyclic
subsequence graph (DASG) for two sequences of lengths
m and n contains O (m + n) states and can be built in
O ((m + n) log(m + n)) time. As was shown by Crochemore
et al. [4] this result was wrong and such a DASG contains
Ω(mn) states in the worst case, so its construction time
cannot be lower. Thus, the algorithms by Farhana et al. [6]
work in Ω(mnr) time for the considered variants of the
CLCS problem and Ω(mn) for the LCS problem. Moreover,
these complexities are under assumption that the alphabet
size is constant, otherwise they should be multiplied by its
size.

In this paper, we propose the first quadratic-time algo-
rithm for the STR-IC-LCS problem and show also further
possible improvements of the time complexity. We also
present how this algorithm can be extended to many main
input sequences.

http://dx.doi.org/10.1016/j.ipl.2012.02.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:sebastian.deorowicz@polsl.pl
http://dx.doi.org/10.1016/j.ipl.2012.02.007

424 S. Deorowicz / Information Processing Letters 112 (2012) 423–426
The paper is organized as follows. In Section 2, some
definitions are given and the problem is formally stated.
Section 3 describes our algorithm. Extension to the case of
many main sequences and some improvements of the al-
gorithm are given in Section 4. The last section concludes.

2. Definitions

Let us have two main sequences A = a1a2 . . .an and B =
b1b2 . . .bm and one constraining sequence P = p1 p2 . . . pr .
W.l.o.g. we can assume that r � m � n. Each sequence
is composed of symbols from alphabet � of size σ . The
length (or size) of any sequence X is the number of el-
ements it is composed of and is denoted as |X |. A se-
quence X� is a subsequence of X if it can be obtained from
X by removing zero or more symbols. The LCS problem for
A and B is to find a subsequence C of both A and B of
the maximal possible length. The LCS length for A and B
is denoted by LLCS(A, B). A sequence β is a substring of
X if X = αβγ for some, possibly empty, sequences α, β ,
γ . An appearance of sequence X = x1x2 . . . x|X | in sequence
Y = y1 y2 . . . y|Y | , for any X and Y , starting at position j is
a sequence of strictly increasing indexes i1, i2, . . . , i|X | such
that i1 = j, and X = yi1 . . . yi|X| . A compact appearance of X
in Y starting at position j is the appearance of the small-
est last index, i|X | . A match for sequences A and B is a pair
(i, j) such that ai = b j . The total number of matches for A
and B is denoted by d. It is obvious that d � mn.

The STR-IC-LCS problem for the main sequences A, B ,
and the constraining sequence P is to find a subsequence
C of both A and B of the maximal possible length contain-
ing P as its substring. (In the CLCS problem, P must be a
subsequence of C .)

3. The algorithm

The algorithm we propose is based on dynamic pro-
gramming with some preprocessing. To show its correct-
ness it is necessary to prove some lemmas.

Let C = c1c2 . . . c	 be a longest common subsequence
with substring constraint (STR-IC-LCS) for A, B , and P . Let
also I = (i1, j1), (i2, j2), . . . , (i	, j) be a sequence of in-
dexes of C symbols in A and B , i.e., C = ai1ai2 . . .ai	 and
C = b j1 b j2 . . .b j	 . From the problem statement, there must
exist such q ∈ [1, 	 − r + 1] that P = aiq aiq+1 . . .aiq+r−1 and
P = b jq b jq+1 . . .b jq+r−1 .

Lemma 1. Let i′q = iq and for all t ∈ [1, r −1], i′q+t be the small-
est possible, but larger than i′q+t−1 , index in A such that aiq+t =
ai′q+t

The sequence of indexes I ′ = (i1, j1), . . . , (iq−1, jq−1),

(i′q, jq), (i′q+1, jq+1), . . . , (i′q+r−1, jq+r−1), (iq+r, jq+r), . . . ,

(i	, j) defines a longest common subsequence of A and B with
string constraint P equal C .

Proof. From the definition of indexes i′q+t it is obvious
that they form an increasing sequence, since i′q = iq , and
i′q+r−1 � iq+r−1. The sequence i′q, . . . , i′q+r−1 is of course
a compact appearance of P in A starting at iq . Therefore,
both components of I ′ pairs form increasing sequences and
for any (i′u, ju), ai′u = b ju , so sequence I ′ defines an STR-IC-
LCS C ′ equal to C . �

A similar lemma can be formulated for the j-th compo-
nents of sequence I . Thus, it is easy to conclude that when
looking for an STR-IC-LCS, instead of checking any common
subsequences of A and B it suffices to check only such
common subsequences that contain compact appearances
of P both in A and B . (This is a direct consequence of the
fact that LLCS(X, Y) � LLCS(X,αY) for any sequence α.)

The number of different compact appearances of P in
A and B will be denoted by dA and dB, respectively. It
is easy to notice that dAdB � d, since a pair (i, j) defines
a compact appearance of P in A starting at i-th position
and compact appearance of P in B starting at j-th posi-
tion only for some matches.

The algorithm computing an STR-IC-LCS (Fig. 1) consists
of three main stages. In the first stage both main sequences
are preprocessed to determine, for each occurrence of the
first symbol of P , the index of the last symbol of a com-
pact appearance of P . In the second stage two DP matrices
are computed: the forward one and the reverse one. The
recurrence is exactly as for the LCS computation.

In the last stage the result is determined. To this end
for each match (i, j) for A and B the ends (i′, j′) of com-
pact appearances of P in A starting at i-th position and
in B starting at j-th position are read. The length of an
STR-IC-LCS containing these appearances of P is deter-
mined as a sum of the LCS length of prefixes of A and
B ending at i-th and j-th positions, respectively, the LCS
length of suffixes of A and B starting at i′-th and j′-
th positions, respectively, and the constraint length. Since
the first and last constraint symbol was summed twice,
the final result is decreased by 2. According to the F
and R matrices (containing the results of the classical dy-
namic programming recurrence computations for A and B
and reversed A and B sequences, respectively), backtrack-
ing can be used to obtain the subsequence, not only its
length.

Lemma 2. The STR-IC-LCS algorithm (Fig. 1) correctly computes
an STR-IC-LCS.

Proof. The algorithm considers all pairs of compact ap-
pearances of P in A and B . Each such a pair divides the
problem into two independent LCS length-computing sub-
problems. According to the precomputed F and R matrices
it is easy to solve these subproblems (lines 18–20) in con-
stant time. The length of an STR-IC-LCS must be a sum of
the found lengths of LCSs and the constraint length sub-
tracted by 2. �
Lemma 3. The worst-case time complexity of the proposed al-
gorithm is O (mn).

Proof. The preprocessing stage can be done in O ((m+n)r)
worst-case time. The main stage consists of computation
of two DP matrices which needs O (mn) time. In the final
stage, the DP matrix is traversed and for each match a con-
stant number of operations is performed, so these stages

S. Deorowicz / Information Processing Letters 112 (2012) 423–426 425
STR-IC-LCS(A, B, P)

{Preprocessing}
1 for i ← 1 to n do
2 if ai = p1 then MA[i] ← smallest q such that p1 . . . pr is a subsequence of ai . . .aq

3 for j ← 1 to m do
4 if bi = p1 then MB[j] ← smallest q such that p1 . . . pr is a subsequence of b j . . .bq

{Computation of forward and reverse DP matrices}
5 for i ← 0 to n + 1 do F [i,0] ← 0; R[i,m + 1] ← 0
6 for j ← 0 to m + 1 do F [0, j] ← 0; R[n + 1, j] ← 0
7 for i ← 1 to n do
8 for j ← 1 to m do
9 if ai = b j then F [i, j] = F [i − 1, j − 1] + 1

10 else F [i, j] = max(F [i − 1, j], F [i, j − 1])
11 for i ← n downto 1 do
12 for j ← m downto 1 do
13 if ai = b j then R[i, j] = R[i + 1, j + 1] + 1
14 else F [i, j] = max(R[i + 1, j], R[i, j + 1])

{Determination of the result}
15 	 ← 0; i� ← 0; j� ← 0
16 for i ← 1 to n do
17 for j ← 1 to m do
18 if ai = b j and F [i, j] + R[MA[i], MB[j]] + r − 2 > 	 then
19 	 ← F [i, j] + R[MA[i], MB[j]] + r − 2
20 i� ← i; j� ← j
21 Backtrack from (i�, j�) according to F and obtain S1

22 Backtrack from (MA[i�], Mb[j�]) according to R and obtain S2

23 return 	 and S1 p2 p3 . . . pr−1 S2

Fig. 1. A pseudocode of the STR-IC-LCS computing algorithm for two main sequences and one constraining sequence.
consume O (mn) time. Summing these up gives O (mn)

time. �
Lemma 4. The space consumption of the algorithm is O (mn).

4. Improvements and extensions

If one is interested only in the STR-IC-LCS length, it is
easy to notice that F and R matrices can be computed
row-by-row which means that only O (m) words are nec-
essary for them. The values of F and R for matches of
symbols equal to p1 in F and pr in R must be, however,
stored explicitly, so the space for them is O (d�) (where
d� = O (mn) is the number of such matches). This gives the
total space O (n + d�). If also the subsequence is requested,
the cells for all matches must be stored to allow backtrack-
ing, so the space is O (n+d) (in the worst case d = O (mn)).

As the only cells that are necessary to be stored explic-
itly are those for matches, the Hunt–Szymanski method [7]
can be used to speed up the computation of F and R
matrices if the number of matches is small. Therefore,
the second stage can be completed in O (d log log m + n)

time if σ = O (n) and O (d log log n + n log n) otherwise.
The time complexity of the final stage is O (d). Adding
the time for the preprocessing we obtain the worst-case
time complexities: O (d log logm + nr) for σ = O (n) and
O (d log log n + n(r + logn)) time otherwise.

The generalization of the LCS problem for many se-
quences is direct, but the time complexity of the ex-
act algorithm computing the multidimensional DP ma-
trix is O (2znz), where z is the number of sequences of
length O (n) each [7]. It is easy to notice that accord-
ing to Lemma 1 the STR-IC-LCS problem generalizes in
the same way and the worst-case time complexity is also
O (2znz).
5. Conclusions

We investigated the STR-IC-LCS problem introduced re-
cently. The fastest algorithms solving this problem known
to date needed cubic time in case of two main and one
constraining sequences. Our algorithm is faster, as its time
complexity is only quadratic. Moreover, the algorithm uses
an LCS-computation procedure as a component and any
progresses in the LCS computation can improve the time
complexities of the proposed method.

We also pointed out an irrecoverable flaw in [6], in
which the algorithm of better than cubic time complex-
ity was recently proposed, i.e., we show this algorithm is
supercubic in the worst case.

Acknowledgements

The author thanks Szymon Grabowski for reading pre-
liminary versions of the paper and suggesting improve-
ments.

References

[1] A.V. Aho, D.S. Hirschberg, J.D. Ullman, Bounds on the complexity of
the longest common subsequence problem, Journal of the ACM 23 (1)
(1976) 1–12.

[2] R.A. Baeza-Yates, Searching subsequences, Theoretical Computer Sci-
ence 78 (1991) 363–376.

[3] Y.-C. Chen, K.-M. Chao, On the generalized constrained longest com-
mon subsequence problems, Journal of Combinatorial Optimization 21
(2011) 383–392.

[4] M. Crochemore, B. Melichar, Z. Troníček, Directed acyclic subsequence
graph—overview, Journal of Discrete Algorithms 1 (2003) 255–280.

[5] S. Deorowicz, Bit-parallel algorithm for the constrained longest com-
mon subsequence problem, Fundamenta Informaticae 99 (4) (2010)
409–433.

[6] E. Farhana, J. Ferdous, T. Moosa, M.S. Rahman, Finite automata based
algorithm for the generalized constrained longest common subse-
quence problems, in: Proceedings of the 17th International Conference

426 S. Deorowicz / Information Processing Letters 112 (2012) 423–426
on String Processing and Information Retrieval, SPIRE’10, in: LNCS,
vol. 6393, Springer, 2010, pp. 243–249.

[7] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology, Cambridge University Press, 1997.
[8] W.J. Masek, M.S. Paterson, A faster algorithm computing string edit
distances, Journal of Computer System Science 20 (1) (1980) 18–31.

[9] Y.-T. Tsai, The constrained common subsequence problem, Information
Processing Letters 88 (2003) 173–176.

	Quadratic-time algorithm for a string constrained LCS problem
	1 Introduction
	2 Deﬁnitions
	3 The algorithm
	4 Improvements and extensions
	5 Conclusions
	Acknowledgements
	References

