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Abstract 

This paper presents efficient algorithms that improve the time complexity of the K-Overlapping Maximum Convex Sum Problem (K-OMCSP). 
Previous research has solved this problem by using the K-tuples approach in a time complexity of O(Kn3). In this paper, efficient algorithms 
based on dynamic programming are derived to improve the time complexity for the overlapping case. The algorithms find the first, second and 
third maximum convex sum, and up to the Kth maximum convex sum in the time complexity of O(n3+Kn2) applying a new method which we 
call Active Trace Overlapping-Shape (ATOS). In addition, efficient techniques have been developed for designing and implementing the 
derived algorithms. Moreover, experiments performed to compare the running time for the two methods. The experiments showed that the 
running time of ATOS was faster than the K-tuples.   

Keywords: Maximum Subarry Problem; Maximum Convex Sum Problem; K-Overlapping Maximum Convex Sum Problem; K-tuples  

1. Introduction 

Historically, the problem of finding the maximum sums was initially introduced by J. Bentley [1,2]. This problem has two 
types: one-dimensional (1D) and two-dimensional (2D) versions [1]. The 1D version is called the maximum subsequence 
problem, and the 2D version is named the Maximum Subarray Problem (MSP). The MSP involves a selection of segments of 
consecutive array elements that has the largest possible sum compared with all other segments in presented data using the 
rectangular shape [1,2]. The MSP can also be a method that gives an accurate trend with respect to associated parameters in vast 
data.  

Since the emergence of MSP, subsequent algorithms tackling the problem have been developed to improve the time 
complexity for 1D and 2D [2, 3, 4, 6]. In 2010, MSP took a new turn by using the convex shape; the new problem is called the 
Maximum Convex Sum Problem (MCSP), which returns more precise results by increasing the gain compared to that of MSP. 
After developing MCSP, the problem was generalized to find K maximum convex sums for the disjoint case [7].  

Following this, in 2011, an algorithm to find the K maximum convex sums by using the Overlapping case was developed. The 
present time complexity to find the K-OMCSP is O(Kn3)[8]. Even though this algorithm has been considered an efficient 
algorithm for the K-OMCSP, improved algorithms with better time complexity will be presented in this paper.  

MSP and MCSP have many potential applications, which include biological sequence analyses [3, 9-16], health sciences [17, 
18] and medical applications [7]. An illustrative example is given to facilitate an understanding of MSP/MCSP. The example 

revenue can be increased by finding correlations between existing parameters extracted from the records, such as considering the 
 

MSP and MCSP can be utilized in this example through the use of matrices, where the input parameters are age and annual 
balance (Figure 1). A matrix element at (i, j) is the number of customers with age i and annual income j. A normalisation of 
matrices is required to aid in computation. For example, negative and positive numbers can be obtained as a result from the 
normalisation. A normalisation value can be the overall mean subtracted from each array element. MSP and MCSP involve 
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designing and implementing an algorithm to extract values that represent the potential maximum portions, which in the 
is the group of customers who can be potentially offered credit cards.  

 
Customers Records [Age Group] [Annual Balance] =   

 

     

  

  Maximum Sum by using MCSP Algorithm = 103  
 
   Maximum Sum by using MSP Algorithm = 78 

Fig. 1. This matrix has m×n positive and negative numbers generated randomly. The enclosed portions can be useful for bank marketing purposes.  
 
The designed algorithms that are used to compute the maximum sums in Figure 1, utilised dynamic programming to extract 

the information portion. 
 
The main contributions of this paper are: 

(1) to improve the current time complexity for K-OMCSP .  
(2) to speed up the running time of new algorithms by using  efficient data structures.   

 
The current paper covers the following sections: background; problem definition; implementation of the convex shape; 

improved algorithms to find the K-OMCSP for the convex shapes O(n3+Kn2); results and analysis; conclusions. 

2. Background  

In 1977, UIf Grenander from Brown University encountered a problem in pattern recognition [19]. This was answering a 
research question of finding the maximum sum over all the rectangular regions in n×n array of real numbers using dynamic 
programming [1, 2]. The rectangular regions of the maximum subarray were to be used as the maximum likelihood estimator of 
a certain kind of pattern in a digitised picture, such as the brightest spot. Grenander developed an O(n6) time algorithm for an 
array of size n×n and found his algorithm was extremely slow [19]. A series of algorithms in engineering design and methods 
was used to reduce the time complexity in the 1D and 2D versions of the problem [2, 3, 4, 5, 6].    

In the field of sequential algorithms, up to 1984, the best solution for MSP in 1D array was of O(n) time, whereas the time 
complexity for finding MSP in 2D was O(n3). time complexity was best-known as the upper bound, Tamaki 
and Tokuyama devised a better time complexity that achieved a sub-cubic time of O (n3 (log log n/ log n)1/2). They used a divide-
and-conquer technique. In addition, they applied the fastest known Distance Matrix Multiplication (DMM) algorithm by Takaoka 
[20].  Takaoka designed a simplified version of the algorithm and applied faster DMM algorithms to the MSP [21]. 

In 2007, Sung Eun Bae generalized the problem to find the ranking of the maximum sums. He classified the K Maximum 
Subarray Problem (K-MSP) into the K-Overlapping Maximum Subarray Problem (K-OMSP) and the K-Disjoint Maximum 
Subarray Problem (K-DMSP) [22-26]. Moreover, he presented methodologies and techniques to speed up computation time for 
these two categories. For example, he designed an algorithm of O(Kn3) for the 2D array and demonstrated a technique to improve 
the time complexity achieving O(n3+Klogn). In addition, he developed two mesh algorithms for the 2D MSP with O(n) running 
time that required a network of size O(n2). However, the algorithms failed to increase the gain or sums because of the 
rectangular shape  

Fukuda and his colleagues discussed data mining based on association rules for two numeric attributes and one Boolean [27]. 
They proposed an efficient algorithm for computing the regions that give optimal association rules for gain, support, and 
confidence. The main aim of their algorithm was to generate 2D association rules that represent the dependence on a pair of 
numeric attributes. This algorithm was simplified later by Thaher and Takaoka by using the bi-directional approach [7]. In 

28] investigated extracting optimal association rules over numerical attributes by using the 
anchored convex shape.  

Following [27], in 2010, Thaher and Takaoka [7] used concepts of the MCSP to optimise 
results obtained from conventional MSP. Thaher and Takaoka departed from the method of using the rectangular region in the 
MSP by using the convex shape. Using the convex shape to find the maximum sums gave an accurate result by increasing the 
sum. Furthermore, their work was extended to compute the maximum sums using the disjoint technique for finding the K 
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maximum convex sums in O(Kn3) time.  In the most recent research, in 2011, they designed and implemented an algorithm to 
compute the K-OMCSP in O(Kn3) time by using the K-tuples approach[8].  

3. Problem definition   

3.1 Overview  

The problem of the K-OMSP was first presented in 2004 [22]. Around the same time, Bengttson and Chen also studied the 
problem independently [29]. 

A rich collection of publications addressing the problem has been accumulated [22-26, 28-31] and the time complexity of the 
problem has been increasingly improved using the rectangular shape region. However, the rectangular shape region is not 
flexible enough to cover various data distributions.  

3.2 Problem definition   

We have started from the basic case of 1D array to provide background information in relation to the topic. Our approach is 
based on a 2D array. For a given array a[1..n] containing positive and negative real numbers and 0, the maximum subarray is the 
consecutive array elements of the greatest sum. Let MAX(K, L) be the operation that selects the K largest elements in a list L in 
non-increasing order. The definition of K overlapping maximum subarrays is given as follows: 

                 R = MAX(K, L), where L=    a]     i j n                           (1)  
 
Here, the K maximum sums are stored in R[1..K]. Note that the solution set R is in a sorted order. This sorting was not 

required, but all other literature on this problem unanimously assumed the order. 
 

Example (1): 
Let a = {3, 51, -41, -57, 52, 59, -11, 93, -55, -71, 21, 21}. For this array of size 12, a total of 78(= 12(12+1)/2) subarrays exist. 

Among them, the first maximum subarray is 193, a[5]+a[6]+a[7]+a
193(5, 8). When overlapping is allowed, the second and third maximum subarrays are 149(1, 8) and 146(2, 8).The 78-th 
maximum subarray, (or the minimum subarray) is 126(9, 10). 

In 2D, previous studies used the rectangular shape [1-6, 17-26,  28-31]. Latest research presents the problem from different 
perspective by using the convex shape which maximised the sum in [7,8]. The convex shape that is currently used is called the 
WN-shape. The best time complexity to find the K-OMCSP is O(Kn3). This is achieved by using the K-tuples method (Figure 2) 
[8].  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. K overlapping convex maximum sums in two dimensions.  represents one of the maxima before finding the Kth overlapping maximum sums 

 
4. Implementation for the convex shape       

Finding the maximum convex sums in a 2D array involves using a WN-shape. In the present paper, this is called the convex 
shape for simplicity. In [27] called rectilinear convex. The convex shape combines two shapes. These are the W-shape and the N-
shape - Figure 3 [7].  

   

j 

x=i 



757 Mohammed Thaher and Tadao Takaoka  /  Procedia Computer Science   9  ( 2012 )  754 – 763 

 
 
 
 
 
 

 

 

 

Fig.3. WN- shape (Convex shape). 

Algorithm (1) finding W-shapes by using dynamic programming  
Algorithm (1) demonstrates finding the W-shapes. The iterative formula in line 4 of this algorithm uses dynamic programming 

to find the solution.   
 

Algorithm (1): finding W- shape using dynamic programming 
1:  fW (0, [i,j]) 0 for all i < j 
2: for c 1 to n do 
3: for all intervals of [i, j] in increasing order of j-i where i < j do  
 
                    fW (c-1, [i,j]) + sum[c,i,j]          (case 1) 
4:fW (c, [i,j]) max      fW (c, [i+1,j]) + a[i,c],               (case 2) 
                                      fW (c, [i, j-1]) + a[j,c]                (case 3) 
 
 
5:  end for 
6: end for 
// where fW  is a function to find W-shape such that  fW (c,[i,j]) = the maximum value of the sum of W-shape ending from 
position i to position j in column c. 
//sum[c,i,j] = the sum of the cth column from position i to position j used in the first case, and, a[i,c] and a[j,c] = the values 
added in the second and third cases respectively. 

 
The process of finding the W- shapes (Figure 4), which is the left portion of the convex shape, involves three cases.  This 

process is conducted in order to select the maximum value from the three cases. The first case is that if column c is being 
processed, the algorithm needs to check the previous solution up to c-1 to observe if the extension is appropriate for maximising 
the sum. The second case involves adding the value at (i, c) to the best solution at column c with a narrower interval to obtain 
more gain to the sum. The third case includes adding the value at (j, c) to the best solution in the cth column with a narrower 
interval to maximise the sum. The value of fN is similarly computed from right to left.  

 
 
 

 
 
 
 

 
 
 
 
 
 
Fig.4. Three cases of W- shape; (b) three cases of N-shape 
 

Algorithm (2) finding the Convex Shape  
   Based on the results obtained from Algorithm (1), and assuming that sum [c, i, j] is the column sum from i to j of the cth 

column, we implemented the following algorithm: 
  Let sum[c, i, j] be the column sum from i to j of the cth column. 
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Algorithm (2): finding the Convex Shape 

1: Compute W-shape from left to right for each c, i and j in fw, using Algorithm (1). 
2: Compute N-shape from right to left for each c, i and j, resulting in  fN, using Algorithm 1; 

       /** Finalisation by combination **/ 
For c 1 to n do 
  For i 1 to n do 
    For j i to n do 
                    fWN (c,[i,j]) = fW (c,[i,j]+ fN (c,[i,j]  sum[c,i, j] 

3: Take the maximum of   fWN  (c,[i,j]) for all c, i, j  
 
The anchor column of fWN (c,[i,j]) represents the array portion from index i to j in the cth column. The involved time 

complexity for computing the finalisation part, line 3 Algorithm (2), is O(n3), due to the presence of a triply nested structure. 
 

Algorithm (3): computing the K-Overlapping Maximum Convex Sum Problem (K-OMCSP) by using the K-tuples in O(Kn3)  
The MCSP has been extended to find the first, second and the third maximum convex sum, and up to the Kth maximum 

convex sum [8]. This extension is to compute the overlapping maximum convex sums up to Kth. The overlapping case can be 
computed by an Algorithm (3) that has a time complexity of O(Kn3) [8]. 

The previous work extended Algorithm (2) to include K-tuples [8]. In Algorithm (3), instead of returning single values for fW 
and fN  the K-tuples were used and it was expressed by Fw and FN. Algorithm (1) was implemented as follows: suppose L is a K-
tuple (a1, a2 aK), for a single value x, L+x is defined by L+x = (a1+x,a2+x aK+x). For the sorted K-tuples L1, L2 Lm, 
max{L1, L2 Lm} are the largest K numbers in the merged list of L1, L2 Lm  that are in sorted order. In the case of  two K-
tuples L1 and L2,  L1+L2 is the set of the largest K numbers in sorted order from  the Cartesian sum for the sums {x+y | x is in L1 
and y is in L2}[32]. 

 
The anchor column of FWN (c,[i,j]) represents the array portion from index i to j in the cth column. i is the top index , j is the 

bottom index, and c is the column number. FW and FN  is computed in O(Kn3) time complexity; this is because the max operation 
is placed inside a triply nested structure, and the max operation takes O(K) time. Furthermore, in Algorithm (3), finalisation 
process takes O(Kn3) time. This is because finding FWN (c,[i,j])= (FW (c,[i,j]) +FN (c,[i,j])  sum[c,i,j])  is also placed in a triply 

K-tuples can be calculated in O(K) time [8].  

5. Improved algorithms to find the K-OMCSP in O(n3+Kn2)       

    The previous work to find the K-OMCSP achieved a time complexity of O(Kn3). This approach used the K-tuples method, 
which was previously Active Trace 
Overlapping-Shape (ATOS).  

ATOS is an active search algorithm which searches for up to K possible overlapping convex shapes sharing the same anchor 
column. This algorithm uses data that was collected during the pre-processing of the maximum convex shape. The algorithm 
traces back all the possible overlapping convex shapes and sorts them using the tournament tree method, which is based on the 
rank of the overlapping sums of the convex shapes.   

 

Algorithm (3): computing the K-Overlapping Maximum Convex Sum Problem (K-OMCSP) by using the K-tuples in O(Kn3)  
1: FW (0, [i,j])  (0, - - )  for all i < j  // 0 followed by (K-1) -  
2: for c 1 to n do 
3: for all intervals of [i, j] in increasing order of j-i where i < j do  
 
                                   FW (c-1, [i,j]) + sum[c,i,j] (extended case 1) 
FW (c, [i,j])  max     FW (c, [i+1,j]) + a[i, c],     (extended case 2) 
                                   FW (c, [i, j-1]) + a[j, c]      (extended case 3) 
        
FN is similarly computed from right to left. 
/** Finalisation **/ 
4:  For c 1 to n do 
5:  For i 1 to n do 
6:     For j i to n do  
           FWN (c,[i,j])= (FW (c,[i,j]) +FN (c,[i,j])  sum[c,i,j])  
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The main idea of our preliminary paper was to find the overlapping maximum sum using the K-tuples approach to find the K-

OMCSP. In the K-tuples, we repeated the calculation of K-tuples every time we needed to find K-OMCSP. In Algorithm (3)  [8], 
the finalisation takes O(Kn3) time. This is because finding FWN (c,[i,j])= (FW (c,[i,j]) +FN (c,[i,j])  sum[c,i,j])  is placed in a triply 

K-tuples can be calculated in O(K) time. The disadvantage of using the 
K-tuples in K-OMCSP is that the K-tuples method repeats the calculation of K-tuples every time we need to find K-OMCSP. This 
results in an increased running time. 

In our new approach, computing K-OMCSP has been decomposed into the following steps: firstly, finding the first convex 
shape costs O(n3). A tournament for the three cases that contribute to finding the final solution is used to select the winner 
convex shape in the anchor column (i,j,c) . In the tournament tree, anchor columns are set up as nodes. Secondly, from the 
winning path amongst the three cases in the tree, we assume there is a branch from anchor column [c,i,j] to anchor column 
[c ,i ,j ], where [c ,i ,j ] is determined by the winning case in Algorithm (1). If case (1) is the winning case, for example, c =c-1, 
i =i and =j (Figure 5), we start by tracing back the winning path of the solution until we reach the source that the solution came 
from. Thirdly, we set  the bottom of the winning path solution and updated both the children and parents of the tournament 
by pushing the winner upwards along the path (Figure 6). In this approach, we keep tracing the previous winning path to find the 
next winner. Fourthly, we repeated the same process to find the second, third, fourth, and up to the Kth sums. Finally, we run a 
top tournament between different anchor columns and ranking them. The advantage of this approach is that it omits unnecessary 
repetition, which was used in the previous research, in the process of computing K sums. This approach improves the time 
complexity for the overlapping case to O (n3+Kn2). 

5.1. The process of tracing-down and tracing-up  

When the first maximum convex shape is found, it returns the coordinates i, j, and c of the anchor column in the input matrix. 
Here i is the top index, j is the bottom index, and c is the column coordinate of the anchor column with the best combination for 
the W-shapes and N-shapes. This process takes O(n3). Once the coordinates for the first maximum convex sums are found in an 
anchor column (i,j,c), a node is created which contains four attributes: the position of this node i, j, and c; the summation up to 
this node sum; the children  node of this node (child_1, child_2, child_3); and the contributed value by the link of this node to 
its child (value_1, value_2, value_3). The first node is called the root. 
                                    

 Node Structure  
1: i, j, c // the coordinates of this node (i,j,c). i is the top index, j is the bottom index, and c is the column index of the anchor 
column with the best combination for the W-shapes and N-shapes. 
 2: sum // sums up to this node, aw[i][j][c] 
 3: child_1 // children node based on case 1 from Algorithm (1) which have the same structure 
 4: child_2 // children node based on case 2 form Algorithm (1) which have the same structure 
 5: child_3 // children node based on case 3 from Algorithm (1) which have the same structure 
 6: value_1 // value_1 is aw[i][j][c-1] for W-shape , aw[i][j][c+1] for N-shape 
 7: value_2 // value_2 is aw[i+1][j][c] 
 8: value_3 // value_3 is aw[i][j-1][c] 
 
The process of trace-down can be described in Algorithm (4). For the W-shape, trace-up goes left. For the N -shape, it goes 
right. 

       Algorithm (4):  trace-down (node) 
 1: c is not at the boundary 
 2:     createChild(node) // create child  
 3:     (node) 
 4:     // return the child which has the greatest summation 
 5:     // path =  child_1 if case 1,  
 6:     // path =  child_2 if case 2,  
 7:     // path =  child_3 if case 3, 
 8:     -1 if  i = j 
 9:     if path != -  path) 
10:    else (child_2  sum) -  
11:           (child_3 sum) -  
12:            
13:    end if 
14: else  ( ) -  
15:           
16: end if 
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Trace-down is a recursive function for any anchor column (i,j,c) which iterates until it traces down to the boundary of the matrix 
or the source from where the solution at (i,j,c)  was generated (Figure 5). 
 

 

 

Fig. 5. An example for the trace-down process. It shows how we obtained the solution at an anchor column (i,j,c) for the W-shape.  

 
The initial state of trace-down, which starts from the found anchor column at i, j, and c in Figure 5 is 20. This function traces 

down its the winning path to find all the choices of cases. The path length is O(n). Thus, the time for trace-down is O(n2) as 
shape-check (described later) takes O(n) time.  

 
 
 

 

 
 
 
 
 

Once the function traces down and reaches its end, the last node is assigned as negative infinity because the function does not 
need to use it again. After that, the function calls the trace-up function, which is a recursive function that iterates itself until it 
traces up to its initial state (i,j,c) Figure 6.  
 

       Algorithm (5):  trace-up(node) 
1:   // (a) return the child which has the greatest sum; (b) (path  value) =  value_1 if  case 1; 
(c) ( value) =  value_2 if case 2; (d) ( value) =  value_3 if case 3, 
2:  -1 if (case2 or  case 3) and i= j 
3: if path != -1 then 

             ( ) ( )+(path value) 
4: else ( ) ( ) + value_1 
5:  
6: end if 

20 

5 17 12 

13 13 9 

16 8 5 

8 6 10 

-1 8 0 

1 0 0 

10 0 0 

1 0 0 

3 0 0 

4 3 2 

1 4 2 

-3 -5 2 

8 10 -2 

7 -1 8 

-1 -1 -1 

-9 -9 -9 

9 9 9 

-2 -2 -2 

Rank 1: Step 1 
Initial found W shape 
with sum 20 

Rank 1: Step 2 
Path:  
2 

Rank 1: Step 3 
Path:  
2, 2 

Rank 1: Step 4 
Path:  
2, 2, 1 

Rank 1: Step 5 
Path:  
2, 2, 1, 1 

Rank 1: Step 6 
Path:  
2, 2, 1, 1, 3 

Rank 1: Step 7 
Path:  
2, 2, 1, 1, 3, 1 

Rank 1: Step 8 
Path:  
2, 2, 1, 1, 3, 1, 1 

Rank 1: Step 9  
Path:  
2, 2, 1, 1, 3, 1, 1, 1 

Rank 1: Step 10  
Path:  
2, 2, 1, 1, 3, 1, 1, 1, 1 

-1 2 -3 5 -4 -8 3 -3 
2 -4 -6 -8 2 -5 4 1 
3 -2 9 -9 -1 10 -5 2 
1 -3 5 -7 8 -2 2 -6 
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Fig. 6. An example for the trace-up process where the child with the greatest sum is pushed up; it updates the sum of the node during the iteration process 
 
During the trace-up, the child with the greatest sum is pushed up; it updates the sum of the node during the iteration process. 

The final sum value is the next greatest sum of the overlapping shapes. After the second sum for the W-shape and that for the N-
shape are obtained for the same anchor column (i,j,c), the second sum for that particular anchor column is obtained. This process 
is repeated up to the Kth sum.   

 
5.2. Operation    
 
All shapes have a unique path and sum. The trace-down function finds the path of the elements which contribute to the sum. 

The sum of the root, or first created node, is the anchor column of the shape which gives the largest sum. The trace-down 
function will find how the path of this sum was formed. In the second line of Algorithm (4), the created child node is retrieved. It 
creates the children of the node; that is if it does not already have children. The children nodes are the three cases which build-up 
the shape, and the values are the elements that are added along with the three cases to form the final shape. The trace-down 
process then finds which child node has the largest sum. The child that has the largest sum is the next visited node. This is the 
path selection where the child with the greatest sum contributes to the final shape. 
     The trace-down process is iterated until it reaches the boundary of the matrix or it finds itself at the sharp corner of the shape 
where the solution was originated (i.e. when i is equal to j). When the final node is reached, the sum at that node is replaced with 
negative infinity. The reason for such an action is to avoid the Algorithm visiting this node again in the future. 

Subsequently, the algorithm needs to update the sum of the node for each level. It starts from the last found node and traces 
itself up to the root. The sum of the node is replaced by the sum of the child which is the greatest among the other children.  The 
updated sum of the root is the next greatest sum of the overlapping W-shape based on that anchor column. 

ATOS can search for N-overlapping shapes, where N is the mirror of the W-shape. When all the overlapping W and N-shapes 
are found, it is necessary to discard repeated shapes and shapes with redundant tails. Repeated shapes are found because the path 
selection of the trace-down function follows the logical decision making as follows:  

 
 

 
 
 
 
 
 
 

If all children have the same summation and child_2 is identical to child_3, the algorithm will first process child_1 and then 
child_2 and then child_3. The program needs to follow the above logic for every greatest sum checking, because different shapes 

Algorithm (6):  logical decision making 
If child_1 is greater or equal to child_2 and child_3 
then child_1 is the greatest 
If child_2 is greater or equal to child_1 and child_3 
then child_2 is the greatest 
If child_3 is greater or equal to child_1 and child_3 
then child_3 is the greatest 

10 

20 

5 17 12 

13 13 9 

16 8 5 

7 6 10 

-1 8 -1 

0 0 0 

9 0 0 

-2 0 0 

0 0 

4 3 2 

1 4 2 

-3 -5 2 

8 -2 

7 -1 8 

-1 -1 -1 

-9 -9 -9 

9 9 9 

-2 -2 -2 

Step 4: 
Replace this node with 0, 0 = -9 
+ 9 

Step 5: 
Replace this node with -1, -1 = -1 + 0 

Step 6: 
Replace this node with 7, 7 = -1 + 8 

Step 7: 
Replace this node with 16, 16 = 10 + 6 

Step 8: 
Replace this node with 13, 13 = -3 + 16 

Step 9: 
Replace this node with 17, 17 = 4 + 13 

Step 10: 
Replace this node with 20, 20 = 3 + 17 

Step 3: 
Replace this node with 9, 9 = 9 + 0 

Step 2: 
Replace this node with -2, -2 = -2 + 0 

Step 1: 
Replace this node with 
negative infinity 

-  
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can make the sum of the final solution. In addition, we can obtain the same sum from different paths. These similar shapes with 
the same sum need to be removed during the process.      
    The shape checking process is as follows: only the shapes with the same sum will be checked. The advantage of this technique 
is to avoid unnecessary checking with the solutions that have different sums. Furthermore, it is apparent that the element of a 
unique convex shape cannot be summed to have different summations. These shapes are sorted into similar categories. 

All overlapping shapes are based on the anchor column which is located at i, j, and c of the matrix. Therefore, it is clear that 
the overlapping convex shape only exists between the i and j boundaries. Only the indices within the boundaries are checked. 
This starts from the column that is adjacent to the anchor column, and then checks if both shapes have the same element. If one 
element exists in one of the shapes, but not in the other, then those shapes are different. The check is done on boundary 
coordinates in O(n) time. In the worst case scenario, where all overlapping shapes of the same category are unique, the shape 
needs to be compared with all the unique shapes in the same category to ensure its uniqueness. This process discards the repeated 
shapes. 
 
5.3. Combining the convex shape (W-shape and N-shape) 
 
     The combinations of the W-shapes and N-shapes are formed when the ranking for both shapes are computed. To obtain Kth 
rank of the convex shape, we process the Kth rank of the W-shapes and the Kth rank of the N-shapes. For example, to achieve the 
best five overlapping shapes, we need to find the best five shapes from the W-shapes and the best five from the N-shapes. Then, 
we combine both the W and N-shapes. This returns 25 combinations; that is, the best W- shape is connected with all of the five 
N-shapes.  

We do not actually compute K2 shapes. Each time the next maximum sum is computed, we can finalize the next maximum 
sum in conjunction with the upper tournament. The upper tournament between the different anchor columns is formed after the 
O(n3) maximum sums for all WN-shapes are computed. Using this efficient structure, we can compute the next maximum WN-
shape in O(n2) time, with O(log n) for tournament absorbed. 

 
6. Results and analysis  

 
 Previous research used K-tuples to solve the K-OMCSP. The best time complexity was O(Kn3) [8]. In this paper we showed 

new techniques to improve the time complexity, achieving O(n3+Kn2).   
finding the K-OMSCP by using the tracing-down and tracing-up techniques with efficient data structures.  

We conducted experiments to compare results obtained from K-tuple in algorithm (3) [8] and tracing-up and tracing-down - 
algorithms (1), (2), (4), (5) and (6) outcomes for the maximum gain and the running time, the same 
input matrices were used. The matrix elements were generated by using a random number generator that provides positive and 
negative numbers. The matrices  sizes range between 25x25 to 200x200. Outcomes from the obtained output show that the new 
algorithms present the same sum with a better time complexity. These results are depicted in Figure 8. 

 

 

 

Fig. 8. This figure shows the total of the maximum sums in the first five overlapping by using the K-tuples method - Algorithm (3). The time complexity of this is 
O(Kn3).  Whilst the same outcomes result from using the Active Trace Overlapping-Shape method - Algorithms (1, 2, 4, 5 and 6), the time complexity of this is 
less, O(n3+Kn2). 

 
The running time for the two methods was measured during the process of finding the first five overlapping convex maximum 

sums (Figure 9). The graph shows that the Active Trace Overlapping-Shape is faster than K-tuples when subjected to the same 
conditions.  

1st OMCSP 2nd OMCSP 3rd OMCSP 4th OMCSP 5th OMCSP 

25x25 4828 4828 4824 4824 4823 

50x50 7000 6998 6998 6996 6996 

75x75 17870 17865 17860 17859 17855 

100x100 17958 17957 17957 17956 17956 

150x150 36247 36246 36246 36245 36245 

200x200 45551 45550 45549 45549 45548 
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Fig. 9.  illustrates the running time for first five overlapping by using the Active Trace Overlapping-Shape and K-tuples. The ATOS method demonstrates faster 
algorithms compared with the K-tuples algorithm. 

7. Conclusions   

Recently, the maximum sum problem was extended to the MCSP to find the K-OMCSP by using the K-tuples approach in 
O(Kn3)
finding the K-OMCSP. The present paper achieved O(n3+kn2) time by using ATOS. In addition, experiments were performed to 
compare the two approaches. Our experiments showed that the previous approach of the K-tuples and the new method ATOS 
gave the same sum with a better time complexity for ATOS. In addition, ATOS found the solution with a faster running time.    
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