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ABSTRACT 

Given strings Si,S2, and P, the constrained longest common subsequence problem for 
Si and 52 with respect to P is to find a longest common subsequence Ics of Si and 
52 which contains P as a subsequence. We present an algorithm which improves the 
time complexity of the problem from the previously known 0{rn2m2) to 0(rnm) where 
r, n, and m are the lengths of P, S\, and S2, respectively. As a generalization of this, 
we extend the definition of the problem so that the Ics sought contains a subsequence 
whose edit distance from P is less than a given parameter d. For the latter problem, we 
propose an algorithm whose time complexity is 0(drnm). 

Keywords: Longest common subsequence, constrained subsequence, edit distance, dy
namic programming. 

1. Introduction 

A subsequence of a string S is obtained by deleting zero or more symbols of 
S. The longest common subsequence (Ics) problem for two strings is to find a 
common subsequence having maximum possible length. The Ics problem has many 
applications, and it has been studied extensively, see for example [1, 5, 2, 4, 6, 8]. 

*A preliminary version of this work was presented at Prague Stringology Conference (PSC'04), 
Prague, August 2004. 

t\York done in part while on sabbatical at Sabanci University, Istanbul, Turkey during 2003-
2004. 
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The problem has a simple dynamic programming formulation. To compute an Ics 
between two strings of lengths n, and m, we use the edit graph. The edit graph is a 
directed acyclic graph having (n + l)(m + 1) lattice points (i,j) for 0 < i < n, and 
0 < j < m as vertices. Vertex (0,0) appears at the top-left corner, and the vertex 
(n, rn) is at the bottom-right corner of this rectangular grid. For alH, j , 0 < i < n, 
and 0 < j < m, to vertex (0,,;) there is an arc from its neighbor at (0, j — 1), to 
vertex (i,0) there is an arc from its neighbor at (i — 1,0), and to vertex (i, j) when 
i > 0 and j > 0 there are incoming arcs from its neighbors at (i — 1, j), (i,j — 1), 
and (i — 1, j — 1). Each vertex (i,j) corresponds to a pair of prefixes 5i[l..i], 
and S^l - j ] - Horizontal, vertical, and diagonal arcs represent, respectively, insert, 
delete, and either substitute or match operations on Si. The Ics length calculation 
counts the number of matches on the paths from vertex (0,0) to (n,m), and the 
problem aims to maximize this number. When n = m the time complexity lower 
bound for the problem is Q(n2) if the elementary operations are "equal/unequal", 
and the alphabet size is unrestricted [1]. If the alphabet is fixed the best known 
time complexity is 0(n . max{l,m/logn}) [6]. A survey of practical Ics algorithms 
can be found in [2]. 

Given strings S\,S2, and P, the constrained longest common subsequence prob
lem for S\ and 52 with respect to P is to find a longest common subsequence Ics 
of Si and 5 2 such that P is a subsequence of this Ics [7]. For example, for 5i = 
bbaba, and 52 = abbaa, bbaa is an (unrestricted) Ics for Si and 5 2 , and aba is an 
Ics for Si and 52 with respect to P = ab, as shown in Figure 1. 

S. = b b a b a S, = b b a b a 

\\\ I / /! 
S 2 = a b b a a S 2 = a b b a a P = a b 

Figure 1: For Si = bbaba, and 5 2 = abbaa, the length of an Ics is 4 (left). When 
constrained to contain P = ab as a subsequence, the length of an Ics drops to 3 
(right). 

The problem is motivated by practical applications: for example in the com
putation of the homology of two biological sequences it is important to take into 
account a common specific or putative structure [7]. 

Let n,m,r denote the lengths of the strings 5i ,52, and P, respectively. For 
the constrained longest common subsequence problem Tsai [7] gave a dynamic pro
gramming formulation that yields an algorithm whose time complexity is 0{rn2m2). 
The solution requires Ics computations with respect to P[l..fc] for all k between all 
substrings of Si and all substrings of 52 • In this paper we present a different dy
namic programming formulation with which we improve the time complexity of the 
problem down to 0(rnrn). In our solution Ics computations are only required be
tween the prefixes of Si and 52. We also extend the definition of the problem so 
that the Ics sought is forced to contain a subsequence whose edit distance from P 
is less than a given positive integer parameter d. For this latter problem we pro-
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pose an algorithm whose time complexity is 0(drnm). Taking d — 1 specializes to 
the original constrained les problem, as this choice of d forces the subsequence to 
contain P itself. We describe these results in section 2. 

2. Algorithms 

Let |Si | = n, 1521 = m with n> m, and \P\ = r. Let S[i] denote the ith symbol 
of string S. Let S[i..j] = 5[i]5[i + 1] • • • S[j] be the substring of consecutive letters 
in 5 from position i to position j inclusive for i < j , and the empty string otherwise. 

We denote by £»,;,* the length of an les of 5i[l..i] and S2[l..j] such that the 
les contains P[l..fc] as a subsequence. That is, Lijtk is the optimum value of the 
constrained les problem for 5i[l..i], 52[l..j], and P[l..k]. We calculate all Lij^ by 
a dynamic programming formulation. Then Ln,m^ is the length of an les of Si and 
S2 containing P as a subsequence. 
Theorem 1 For all i,j,k, 1 < i < n, 1 < j < m, 0 < k < r, Lijtk satisfies 

Li,j,k = max{I^j jfc, Lij-itk, ij-ij,*;} (1) 

where 

Li,j,k = m a x {-^ i , j , f c ! ^i,j,k} (2) 

and 

( 1 + L j - i j - i ^ - i if (k= 1 or (k > 1 and Li-ij-iik-i > 0)) 
L",j,k=\ and 5i[i] = 52[j] = P[k] 

\ 0 otherwise 

I '". = / 1 +- î-ij-i,* */ ̂  = ° o r i»-i,j-i,fc > 0^ and5i[i] = S2[j] 
l,J' 10 otherwise 

with boundary conditions LJ,O,A = 0, Loj,k — 0, for all i,j,k,0<i<n,0<j< m, 
0<k<r. 

Proof. We claim that for all Lij^ defined in (1), Ljj.jt is the length of an les 
of 5i[l..i] and S2[l..j] with respect to P[l..fc]. We prove this by induction. The 
induction is based on an ordering of (i,j,k). The calculation of Lij^ uses values 
Lij-itk, Li-itjtk, Li-ij-itk-i, and L^ij-i^- Therefore (i,j,k) must come after 
(i,j — l,k), (i-l,j,k), (i — l,j — l,k — l) and (i — l,j — l,k) in the ordering. This 
ordering can be generated by three nested loops where k is the loop counter of the 
outermost loop, and i, and j are loop counters of the inner loops. 

We will consider all possible ways of obtaining an les with respect to P[l..fc] at 
any node i,j. Essentially there are three cases to consider: 

1. An les ending at the node (i, j — 1) is extended with the horizontal arc ((i, j — 
l),(z, j)) ending at node (i,j), 

2. An les ending at (i — l,j) is extended with the vertical arc ((i — l,j), (i,j)) 
ending at node (i,j), 
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3. An les ending at node (i — 1, j —1) is extended with the diagonal arc ((i — l,j — 
l),(i,j)) ending at node (i,j). In this case we distinguish between subcases 
depending on whether the diagonal arc is a matching for the given strings 
along with the pattern, or is a matching for the given strings only at the 
current indices. 

The possible les extensions referred to in items 1 and 2 above are accounted for 
by Lij-i^ and Li-ijtk respectively in the statement of the theorem. The lengths 
L'l' -k and L"j k in the statement of the theorem keep track of the two further pos
sibilities for les lengths described in item 3. 

In the base case: when k = 0 for all i, j (i.e. when P is the empty string) L" • k 

is identically 0. Therefore L\ .>fc = L"jk in (2). Since k = 0, the conjunction in the 
definition of L"'- k is always satisfied. We see that putting Lij = Li,j,o, (1) becomes 

Lij = max{L^, Lij-i, Li^ijj 

where 
L, f l + L i - i j - i if5i[t] = S2[j] 

%'3 10 otherwise 

which is the classical dynamic programming formulation for the ordinary les be
tween Si and 52 [8]. Therefore the base case holds. 

Assume by way of induction that Lij-itk, L J - I J , * , Li-ij-itk-i> a n d -ki-ij-i,A: 
defined by (1) are the optimum lengths obtained at the neighboring nodes of (i, j , k) 
for the corresponding constrained les problems. Next we consider the calculation 
of Lizjtk. 

For every node (i,j) in the edit graph, we define a path at node (i,j) as a 
simple path which starts at node (0,0), ends at node (i,j), and which includes 
at least one matching arc. A path with respect to P[l..fc] includes a sequence of 
matching diagonal arcs ending at k > 1 distinct nodes (ai, &i), (02,62)) • • • > (afc, &*) 
such that for a lU, 1 < I < k, 5i[o<] = S2[be] = P[C\. We define #match on a 
path as the number of matches between the symbols of S\, and S2, not necessarily 
involving symbols in P. An les path with respect to P[l../c] ending at node (i,j) is 
a path with respect to P[l..fc] ending at node (i,j) with maximum #match. Thus 
Lijtk is fimatch on an les path at node (i,j) with respect to P[l..fc]. Evidently 
#match = #maic/i(i, j , k) is a function of the indices i,j,k. We will omit these 
parameters when they are clear from the context. 

We can extend any les path with respect to P[l..fc] ending at node (i,j — 1) 
with the horizontal arc ((i,j — l),(i,j)) to obtain a path with respect to P[l..fc] 
ending at node (i,j). Such an extension does not change #match on the path, 
and Lij^k > Lj,j_i,fc. Similarly we can extend any les path with respect to P[l..fc] 
ending at node (i — 1, j) with the vertical arc ((i — 1, j ) , (i,j)) to obtain a path with 
respect to P[1..A;] ending at node (i, j). This extension does not change #match on 
the path either, and Lij^ > £i-i,j,&- Therefore Lijtk > rnax{Li)j_i>fc, Li-ij^}-
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Algorithms for the Constrained Longest Common Subsequence Problems 1103 

By using a matching arc ((i — l,j — 1), (i,j)), we can obtain paths with respect 
to P[l..&] at node (i, j) by extending Ics paths either with respect to P[l..k — 1], 
or with respect to P[l..fc] ending at node (i — 1, j - 1). These two possibilities 
are accounted for by L"jk and L'"jk in the dynamic programming formulation, 
respectively. 

First consider Ics paths with respect to P[\..k — 1] ending at node (i — l,j— 1). 
We will show that £"J>fc stores the maximum #matc/i on paths obtained at node 
(hj) by extending these paths. 

If Si[i] = $2[j] = P[k] then: if k — 1 then this is the first time the letter 
P[l] appears as a matching arc on a path ending at node (i,j) since we are con
sidering Ics paths with respect to P[l..k - 1] ending at node (i - 1, j — 1) and 
Si[i] = S2[j] = P[l]- Therefore, the Ics length with respect to P[l] at (i,j) is 
L'i',j,i = 1 + i t - i , j - i ,0) which is one more than the length of an ordinary Ics be
tween Si[l..i — 1] and S2[i—j — 1]. If k > 1 and if there is an Ics path with respect 
to P[l..k - 1] ending at node (i — 1, j — 1) (i.e. if Li-ij-1^-1 > 0) then we can 
extend this path with a new match, and #matc/i on the resulting path ending at 
node (i,j) becomes L"jk = 1 + Li-ij-i^-i-

Next we consider Ics paths with respect to P[l..fc] ending at node (i — 1, j — 1). 
We will show that L"'j>k stores the maximum #maic/i on paths obtained at node 
(i,j) by extending these paths. 

If Si[i] = S2U] then: since the k = 0 case is considered earlier in the base case 
of the induction, we only consider the case when k > 1. If there is an Ics path 
with respect to P[l..fc] ending at node (i — 1, j — 1) (i.e. if Li-ij-itk > 0) then 
we can extend this path by adding a new match (which does not involve P) , and 
#match on the resulting path with respect to P[1..A;] ending at node (i,j) becomes 
Lij,k - 1 + -t'i-i.j-i.fc-

Since L\- k = m&x{L"jk, L'"jk} in (2), the value L\ik is equal to the maximum 
#match on paths with respect to P[l..fc] ending at node (i,j) ending with the 
arc ((i - l , j - l),(i,j)). If there is no such path then L'i:jk = 0. Therefore 
Li,j,k > max-{L'i,j,k> Lij-i^, £ i - i , j , k } . 

From all possible Ics paths ending at neighboring nodes of (i,j) we can find 
their extensions ending at node (i,j), and we can obtain an Ics path ending at 
node (i,j) with respect to P[l..k]. We calculate, and store in Lij^ the maximum 
#match on such paths. Now consider the structure of an Ics path with respect 
to P[l..fc] ending at node (i,j). As typical in dynamic programming formulations, 
we consider the possible cases of the last arc on such a path to obtain Lijtk < 
max{L'i:j<k, Lij~i,k, ^j-ij ,*:}- Therefore Lij^ is the length of an Ics of 5i[l..i] 
and 52[l..j] that contains P[l..fc] as a subsequence, and this concludes the proof of 
the theorem. • 

Example: Figure 2 shows the contents of the dynamic programming tables for 
Si = bbaba, and 52 = abbaa, and P = ab for k = 0,1,2. For k = 0, the calculated 
values are simply the ordinary dynamic programming Ics table for Si and 52-
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a 
b 
b 
a 
a 

b b 
0 0 
1 1 
1 2 
1 2 
1 2 

a b a 
1 1 1 
1 2 2 
2 2 2 
3 3 3 
3 3 4 

a 
b 
b 
a 
a 

b b 
0 0 
0 0 
0 0 
0 0 
0 0 

a b a 
1 1 1 
1 2 2 
1 2 2 
3 3 3 
3 3 4 

a 
b 
b 
a 
a 

b b 
0 0 
0 0 
0 0 
0 0 
0 0 

a b a 
0 0 0 
0 2 2 
0 2 2 
0 2 3 
0 2 3 

k = 0 fc=l k = 2 

Figure 2: For Si = abbaa, S2 = bbaba, and P = ab, the tables of values Lijtk 
the length of an Ics of Si[l..i] and 52[l..j] with respect to P[l..k]. 

All Lijzk can be computed in 0(rnm) time, using 0{rm) space using the for
mulation in Theorem 1 by noting that we only need rows i — 1, and i during the 
calculations at row i. If an actual constrained Ics (i.e. an Ics of Si and 52 that 
contains P as a subsequence) is desired then we can carry the Ics information for 
each k along with the calculations. The resulting space complexity is 0(rm2) since 
each Ics of Si and 52 is of length 0(m). On any constrained Ics for each k, if we 
keep track of only the match points (i',j') where Si[i'] = S2L7'] = P[u}> I < u < k, 
then the space complexity can be reduced to 0(r2m). In this case, a constrained Ics 
for k — r needs to be recovered using an additional step at the end that performs 
ordinary Ics computations for Si and 52 to connect the consecutive match points. 
This step requires 0(m) space. 

Remark: Space complexity can further be improved by applying a technique used 
in a linear space unconstrained Ics algorithm [4]. We can compute, instead of an 
entire Ics for each k, a middle vertex (n/2,j) (assume for simplicity that n is even) 
at which an Ics path with respect to P[l../c] passes. This can be done in 0(rm) 
space, and we can compute for all k the constrained Ics length Ln/2j,k from vertex 
(0,0) to vertex (n/2, j), and the constrained Ics length from (n/2,j) to (n,m). The 
latter is done in the reverse edit graph by calculating the constrained Ics length 
from (n,m) to (n/2,j), hence we denote it by L™,^]6 for 0 < t < k. Then for 
every k, 

«-..-,,, T 1 r reverse 
jfilkk L"/2>J'.'+ Ln/2,j,k-l 

is the constrained Ics length for k, and its calculation identifies a middle vertex 
which we store as part of the constrained Ics if it is located at a position where a 
symbol of Si and a symbol of 52 match. After the middle vertex (n/2, j) for every k 
is found, the problem of finding a constrained Ics from (0,0) to (n,m) can be solved 
in two parts: find a constrained Ics from (0,0) to (n/2, j), and find a constrained Ics 
from (n/2,j) to (n,m) for all k. These two subproblems can be solved recursively 
by finding the middle points. This way an Ics of Si and 52 with respect to P can 
be obtained using 0{rrn) space. The time complexity remains 0(rnm) because n 
is halved each time, and the computations involve in total 0(nm) vertices in the 
edit graph, and at each vertex the total time spent is 0(r). 
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Next we propose a generalization of the constrained longest common subse
quence problem. Given strings Si,S2, and P, and a positive integer d the edit 
distance constrained longest common subsequence problem for Si and 52 with re
spect to string P, and distance d is to find a longest common subsequence Ics of Si 
and 52 such that this Ics has a subsequence whose edit distance from P is smaller 
than d. The edit distance between two strings is the minimum number of edit oper
ations required to transform one string to the other. The edit operations are insert, 
delete, and substitute. 

Let Litjtk,t denote the length of an Ics of 5i[l..i] and 52[l..j] such that the 
common subsequence contains a subsequence whose edit distance from P[1..A;] is 
exactly t. 

Example: Suppose Si — bbaba, 52 = abbaa and P = ab. We have calculated 
before that the length of an Ics of Si and 52 with respect to P is 3. Thus £5,5,2,0 = 3. 
On the other hand the Ics bbaa of 5j and 52 contains the subsequence a whose edit 
distance from P is one. Therefore £5,5,2,1 = 4. 

We calculate all £i,j,M by a dynamic programming formulation. The optimum 
value of the edit distance constrained Ics problem is max Lnmrt. 

0<t<d ' ' ' 

Theorem 2 For all i,j,k,t, 1 < i < n, 1 < j < m, 0 < k < r, 0 < t < d, Lijtk,t 
satisfies 

where 

where 

T" 

Li,j,k,t — maX{£i,j,/S;,(! £ i J - l , M ' Li-lJ:k,tj 

Li,j,k,t — m a x{^i,j,fc,ti ^t.j.k.t' ^i,j,k,t} 

' 1 + Li-ij-itk-i,t if ((k — 1 and t — 0) or 
(.k > 1 and £i_i,.,_i,fc_i,t > 0)) 

and 5i[i] = S2[j] = P[k] 

1 otherwise 

(3) 

(4) 

Ji,3,k,t 

' 1 + £;_i,j_i,o,o if (k = 0 and t = 1) and Si[i] = S2[j] 
1 + Li-ij-i^t else if (k = 0 or Li-ij-i^.t > 0) 

and Si[i] = S2[j] 
{0 otherwise 

where 

Xi,j,k,t 

Lij,k,t — max{£\j , fc, t , Xijtk,t, Ii,j,k,t} (5) 

£). — J £*,j,*-l,t-l ( f * > l 
1,1' ' 10 otherwise 

f Lij.fc-i,*-! ift>l and Si\i] = S2[j] and Si[i\ £ P[k] 
10 otherwise 

j . . _ / £i,j,M-i */* > 1 an(i Si[i] = S2[j] 
l'h ' 10 otherwise 
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1106 A. N. Arslan & O. Egecioglu 

with boundary conditions Li,o,fc,o = 0, £o,j,fc,o = 0, for all i,j,k, 0 <i <n, 0 < j < 
m, 0 < k < r. 

Proof. We claim that for all £j,j,fc,t defined in (3), ii,j,fc,t is the optimum 
length for any common subsequence of Si[l..i] and S2[l..j] such that the common 
subsequence contains a subsequence whose edit distance is t from P[l..fc]. We prove 
this by induction. The induction is based on an ordering of (i,j,k,t). The calcu
lation of Lijtk,t uses Lij-i^j, Li-ij:k,ti £i-i,j-i,fc-i,t, -£i-i,j-i,k,t, £i,j,fc-i,t-i> 
and Li,j,fc,t-i- Therefore (i,j,k,t) must come after (i,j — l,k,t), (i - l,j,k,t), 
(i - l,j - \,k- l,t), (i - l,j - l,k,t), (i,j,k - l,t- 1), and (i,j,k,t- 1) in the 
ordering. This ordering can be generated by four nested loops where t,k,i,j are 
the loop counters, respectively, of the loops from outer to inner. 

In the base case: when t = 0 for all i,j, k the formulation becomes the same 
formulation as in Theorem 1, since now les's are required to contain P itself as a 
subsequence. Therefore, the correctness of this case follows from Theorem 1. 

Assume by way of induction that Lj,j_ l i fe) t, Li-ijtk,t, Li_i,j-i,fc_i,t, ii_i,.,-_i,fc,t, 
L>i,j,k-i,t-i and Lijtk,t-i defined by (3) are the les lengths for the corresponding 
edit distance constrained les (sub)problems at the neighboring nodes of (i,j,k,t). 
Next we consider the calculation of Lijtk,t-

Our solution uses the following observation: let cs be a subsequence of a common 
subsequence of Si and 52. The minimum simple edit distance between cs and P 
can be calculated using insert, delete, and substitute operations in P, and using no 
operations in cs. This is because transforming cs to P, and transforming P to cs 
require the same number of edit operations by symmetry. To see this consider the 
edit operations between the symbols in cs, and in P. If an edit distance calculation 
deletes a symbol s in cs, we can instead insert the symbol s in P; if a minimum edit 
distance calculation inserts a symbol s in cs, we can instead delete the symbol s in 
P; and if a minimum edit distance calculation substitutes a symbol s' for s in cs, 
we can instead substitute a symbol s for s1 in P to obtain the same edit distance. 

For all node (i, j) in the edit graph, we define an edit path at node (i, j) at 
distance t from P[l..fc] as a simple path from node (0,0) to node (i,j), which 
includes a sequence of / > 1 distinct nodes (ai,bi),(a,2,b2),--- ,(ai,bi) such that 
the edit distance between the string Si[ai]Si[02].. -Si[a;] (= S2[&i]S2[&2] • • ^ [ fy ] ) , 
and P[1..A;] is exactly t. We define #match on a given edit path to node (i, j) as the 
number of matching diagonal arcs on the path between the symbols in Si[l..i], and 
the symbols in S2[l..j], not necessarily involving matches in P . An optimal edit path 
at node (i, j) at distance t from P[l..fc] is an edit path at node (i, j) at distance t from 
P[l..fc] with maximum #match. Thus Lijtk,t is #match on an optimal edit path 
at node (i,j) at distance t from P[l..fc]. In this case, #match = #match(i,j,k,t) 
is a function of the indices i,j,k,t, but we omit these parameters when they are 
clear from the context. 

We can extend any optimal edit path at node (i, j — 1) at distance t from P[l..fc] 
with the horizontal arc ((i,j — l),(i,j)) to obtain an edit path at node (i,j) at 
distance t from P[l..fc]. Such an extension does not change #match on the resulting 
edit path, and Lijtk,t > Li,j-i,k,t-
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Similarly we can extend any optimal edit path at node (i — l,j) at distance t from 
P[l..k] with the vertical arc ((i - l,j), (i,j)) to obtain an edit path at node (i,j) at 
distance t from P[l..k]. This extension does not change #match on the resulting 
edit path, and Liij<k,t > L»-i,j,fc,t. Therefore, Lij^.t > max{ij J_ l j f c i t , Li-itjtktt}. 

By using a matching arc ((i — l,j — 1), (i, j)), we can obtain edit paths at node 
(i, j) at distance t from P[l..fc] by extending optimal edit paths at node (i - 1 , j — 1) 
at distance t - 1, or t from P[l..k - 1], or P[l..k]. 

First consider optimal edit paths at node (i -1, j - 1 ) at distance t from P[l..k -
1]. We will show that L"-kt stores the maximum #match obtained at node (i,j) 
by extending these edit paths. 

If S\[i] = 52[j] = P[k] then: we do not need to consider the case when k = 1 
and t = 0 since t = 0 case is considered in the base case of the induction. If k > 1 
and if there is an optimal edit path at node (i, j) at distance t from P[1..A:] (i.e. 
if Li-ij-itk-i,t > 0) then we can extend this edit path with a new match, and 
#match on the resulting edit path at node (i,j) at distance t from P[l..k] becomes 
L'lj,k,t = 1 + Li-i,j-i,k-i,t-

Next we consider optimal edit paths at node (i — l,j — 1) at distance t from 
P[l..k]. We will show that L"'- j. ( stores the maximum #match obtained at node 
(i, j) by extending these edit paths. 

If Si[i] = S2U] then: if k = 0 and t = 1 then: we can extend an /cs path ending 
at node (i — l,j — 1) with respect to P[l..&] with a match. In this case, #mote/i 
on the resulting edit path is one more than L J _ I J _ I I 0 , O - Therefore, LfjQl = 1 + 
£i-i,j-i,o,o- Otherwise if fc = 0 then we can extend an optimal edit path at node 
(i — l,j — 1) at distance t from P[l../c] with a match, and #match on the resulting 
edit path is L'!'^kt = 1 + Li-x,j-i,k,t-

Any edit path at node (i,j) at distance t — 1 from P[l..k — 1], or P[l..fc] can 
be extended by applying an edit operation in P. We can extend an edit path 
at node (i, j) at distance £ — 1 from P[l..fc - 1] by deleting P[k]. Then on the 
resulting edit path #mofc/i remains the same, and the distance increases by one. 
Therefore, we use A,j,/fc,i = -kjj./t-i.t-i, and take it into account in L'l''-kt. We can 
extend an edit path at node (i, j) at distance t — 1 from P[l..fc — 1] by substituting 
Si[i] for P[k] if Si[i] = S2[j] and Si[i] ^ P[k]. Then on the resulting edit path 
#match remains the same, and the distance increases by one. Therefore, we use 
Xitj,k,t = Litjtk-i,t-i if Si[i] = S2U] and Si[i] ^ P[k], and take it into account in 
L'!"j k t. We can also extend an edit path at node (i, j) at distance t — 1 from P[l..k] 
by inserting S\[i] in P after position k if Si[i] — S2[j]- Then on the resulting edit 
path fimatch remains the same, and the distance increases by one. Therefore, we 
use Iij,k,t = Lijtk,t-i if Si[i] = S2L7], and take it into account in L"'jkt. Combining 
all these L'^kt = max{A,i,it,(, xi,i,k,t, h,j,k,t}-

Since L'ijkt = max{L'!>jtkit, I ^ i M , £"",*,*} i n (4)> L'i,j,k,t s t o r e s t h e maximum 
#mafc/i on edit paths at node (i, j) at distance t from P[1..A;] whose last arc is 
({i - l>i — 1); (*> j))- If there is no such edit pa th then i j • fcjt = 0. 

From all possible optimal edit paths at neighboring nodes of (i, j) we can obtain 
their extensions ending at node (i,j), and we can find an optimal edit path at 

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
05

.1
6:

10
99

-1
10

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 S
U

N
 Y

A
T

-S
E

N
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 -

 D
A

T
A

B
A

SE
 M

A
N

A
G

E
M

E
N

T
 &

 R
E

FE
R

E
N

C
E

 o
n 

10
/2

5/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



1108 A. N. Arslan & O. Egecioglu 

node (i,j) at distance t from P[l..k]. We calculate, and store in Z/ij,fc,t maximum 
#match on such edit paths. Considering the possible cases of the last arc on an 
optimal edit path at node (i,j) at distance t from P[1..A;] we also have Lijtk,t < 
max{L^ . fc t, Lij-itk,t, Li-i,j,k,t}- Hence Lijtk,t is the length of an Ics of 5i[l..i] 
and S2[l-.j] that contains a subsequence whose edit distance is t from P[l..fc]. This 
concludes the proof of the theorem. • 

All Lijtk,t can be computed in O(drnm) time, and using 0{drm) space using 
the formulation in Theorem 2 by noting that we only need rows i — 1, and i during 
the calculations at row i. If an actual edit distance constrained Ics (i.e. an Ics of Si 
and 52 that contains a subsequence whose edit distance from P is t) is desired then 
we can carry the Ics information for every k and t along with the calculations. This 
requires 0{drm2) space. On any edit distance constrained Ics for each k and t, if we 
keep track of only the match points (i',j') where Si[i'] = S^b'] = P[u], 1 < u < k, 
then the space complexity can be reduced to 0(dr2m). In this case, an edit distance 
constrained Ics for k = r needs to be recovered using an additional step at the end 
that performs ordinary Ics computations for Si and 52 to connect the consecutive 
match points using in total 0(m) space. The Ics obtained this way is optimal for 
the edit distance constrained Ics problem because the problem definition uses the 
simple edit distance. 

Remark: Space complexity can further be improved by applying the technique we 
used in our first algorithm. We can compute, instead of the entire edit distance 
constrained Ics for each k, and t, a middle vertex (n/2, j) (assume for simplicity 
that n is even) at which an optimal edit path at distance t from P[1..A;] passes. 
This can be done in 0(drm) space, and we can compute for all k, and t, #match 
Ln/i,j,i,u

 o n a n optimal edit path from vertex (0,0) to vertex (n/2,j), and #match 
on an optimal edit path from (n/2, j) to (n,m) where 0 < £ < k, and 0 < u < t. 
The latter, denoted by I^J^Yk-i t-w c a n ^ e calculated in the reverse edit graph. 
Then for all k, t, 

„ „ v T _i_ rreverse 
m a x J^n/2,i,l,u "I" -kn/2 i k—l i — u 

is the optimum #match for k, t, and its calculation identifies a middle vertex which 
we store as part of the edit distance constrained Ics if it is at the position where 
a symbol of S\ and a symbol of 52 match. After the middle vertex (n/2, j) on an 
optimal edit path for every k,t is found, the problem of finding an edit distance 
constrained Ics can be solved in two parts: find an edit distanced constrained Ics 
from (0,0) to (n/2,j), and find an edit distance constrained Ics from (n/2,j) to 
(n,m) for all k,t. These two subproblems can be solved recursively. As a result 
an edit distance constrained Ics can be obtained using 0(drm) space. The time 
complexity remains 0{rnm) because n is halved each time, and the area (in terms 
of number of vertices) covered in the edit graph is 0(nm), and at each vertex the 
total time spent is O(dr). 
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3. Conclusion 

We have improved the time complexity of the constrained les problem from 
0(rn2m2) to 0{rnm) where n, and rn are the lengths of the given strings, and r 
is the pattern length. This improvement is achieved by a dynamic programming 
formulation which is different from what was proposed in [7]. We also extended the 
problem definition to use edit distances, and presented an 0(drnm) time algorithm 
for the resulting edit distance constrained les problem. This algorithm reduces to 
the ordinary constrained les problem for d = 1. 
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