
Computers & Operations Research 39 (2012) 283–290
Contents lists available at ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

� Corr

E-m

hao@inf
journal homepage: www.elsevier.com/locate/caor
Coloring large graphs based on independent set extraction
Qinghua Wu, Jin-Kao Hao �

LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
a r t i c l e i n f o

Available online 12 April 2011

Keywords:

Graph coloring

Independent set

Preprocessing

Tabu search

Memetic search
48/$ - see front matter & 2011 Elsevier Ltd. A

016/j.cor.2011.04.002

esponding author.

ail addresses: wu@info.univ-angers.fr (Q. Wu)

o.univ-angers.fr (J.-K. Hao).
a b s t r a c t

This paper presents an effective approach (EXTRACOL) to coloring large graphs. The proposed approach

uses a preprocessing method to extract large independent sets from the graph and a memetic algorithm

to color the residual graph. Each preprocessing application identifies, with a dedicated tabu search

algorithm, a number of pairwise disjoint independent sets of a given size in order to maximize the

vertices removed from the graph. We evaluate EXTRACOL on the 11 largest graphs (with 1000 to 4000

vertices) of the DIMACS challenge benchmarks and show improved results for four very difficult graphs

(DSJC1000.9, C2000.5, C2000.9, C4000.5). The behavior of the proposed algorithm is also analyzed.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Let G¼(V,E) be an undirected graph with vertex set V and edge
set E. An independent set is a subset of vertices, SDV , such that no
two vertices in S are adjacent. A legal k-coloring of G corresponds
to a partition of V into k independent sets (color classes). Graph
coloring aims at finding the smallest k for a given graph G (its
chromatic number wðGÞÞ such that G has a legal k-coloring.

The graph coloring problem is a well-known NP-hard combina-
torial optimization problem [16,21]. Prominent applications of graph
coloring include crew scheduling [14], computer register allocation
[7], timetabling and scheduling [3], radio frequency assignment [30],
printed circuit board testing [15] and satellite range scheduling [31].
Exact solution methods can solve problems of relatively small size,
whereas heuristics are able to handle larger graphs. A comprehen-
sive survey of the most significant heuristic methods can be found in
[12]. We detail some of them in the following.

Local search has been repeatedly applied to graph coloring.
Well-known examples include the seminal TabuCOL algorithm
[18], simulated annealing [20], GRASP [22], iterated local search
[5], neighborhood search [1], reactive partial tabu search [2],
variable space search [19] and clustering-guided tabu search [27].
Local search coloring algorithms are usually simple and have
achieved satisfactory performance on the standard DIMACS
graphs. They are also often used as a key component of more
sophisticated hybrid algorithms.

Indeed, it was observed that some graphs, especially large
random graphs, cannot be colored efficiently by using pure local
search algorithms. Several hybrid approaches have been proposed
as a very interesting alternative. Examples of classical hybrid
ll rights reserved.

,

algorithms are presented in [6,8,9,11,17,25]. More recent and
powerful algorithms can be found in [13,23,24,28,32].

Another approach for dealing with large graphs is based on a
general principle of ‘‘reduce-and-solve’’. This approach consists in
applying, prior to the phase of graph coloring, a preprocessing
procedure to extract large independent sets from the graph until
the remaining graph (called residual graph) becomes sufficiently
small and then coloring the residual graph with any coloring
algorithm. Typically, large independent sets are extracted and
removed from G in an iterative manner by identifying one largest
possible independent set each time. This approach was used with
success by some prominent classical algorithms [4,9,18,20,25].
Yet surprisingly we observe that it is rarely employed nowadays.

In this paper, we revisit the graph coloring approach using
independent set extraction and develop an improved preproces-
sing procedure. Basically, instead of extracting independent sets
one by one, we try to identify, at each preprocessing step, a
maximal set of pairwise disjoint independent sets. The rationale
behind this approach is that by extracting many pairwise disjoint
independent sets each time, more vertices are removed from
the initial graph, making, hopefully, the residual graph easier to
color. For both tasks of identifying an individual independent set
and pairwise disjoint independent sets, we employ a dedicated
adaptive tabu search algorithm.

Our large graph coloring algorithm (denoted by EXTRACOL)
combines this improved independent set extraction preproces-
sing with a recent memetic coloring algorithm (MACOL [23]). We
evaluate the performance of EXTRACOL on the 11 largest DIMACS
benchmark graphs (with 1000, 2000 and 4000 vertices) and
present new results for four very hard instances (DSJC1000.9,
C2000.5, C2000.9, C4000.5), with respectively 1, 2, 4 and 11 colors
below the currently best colorings.

The rest of this paper is organized as follows. In Section 2, we
review the coloring approach based on extraction of large inde-
pendent sets. In Section 3, we provide a detailed presentation of

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.04.002
mailto:wu@info.univ-angers.fr
mailto:hao@info.univ-angers.fr
dx.doi.org/10.1016/j.cor.2011.04.002
dx.doi.org/10.1016/j.cor.2011.04.002

Q. Wu, J.-K. Hao / Computers & Operations Research 39 (2012) 283–290284
the proposed algorithm. In Section 4, we show extensive experi-
mental results and comparisons. Section 5 is dedicated to an
investigation of the behavior of the proposed algorithm. Conclu-
sions are given in the last section.
2. Review of graph coloring based on maximum independent set

As observed in [18,9,20], it is difficult, if not impossible, to find
a k-coloring of a large graph G (e.g. jV jZ1000Þwith k close to wðGÞ
by applying directly a given algorithm a on G. To color large and
very large graphs, a possible approach is to apply a preprocessing
to extract i large independent sets from the graph to obtain a
much smaller residual graph which is expected to be easier than
the initial graph. A coloring algorithm a is then invoked to color
the residual graph. Since each of the i independent sets forms a
color class, i plus the number of colors needed for the residual
graph gives an upper bound on wðGÞ.

The conventional methods for the preprocessing phase operate
greedily by extracting one independent set each time from the graph
G. For instance, in [4,18], the authors use a tabu search algorithm to
identify a large independent set and then remove the vertices of the
independent set as well as their incident edges from G. In [9], the
authors refine the choice of the independent set to be removed and
prefer an independent set that is connected to as many vertices as
possible in the remaining graph. The selected independent set can
then remove as many edges as possible with the vertices of the inde-
pendent set, hence, tends to make the residual graph easier to color.

Notice that finding maximum independent sets in a graph is
itself an NP-hard problem [16] and several heuristics have been
used in the context of graph coloring in the literature. For
instance, in [4], the authors apply a simple greedy algorithm. In
[9,18], the authors propose a dedicated tabu search algorithm. In
[20], the authors introduce the XRLF method that combines a
randomized greedy search with an exhaustive search.

The performance of this coloring approach depends on the
method to find large independent sets and the method to color
the residual graph. It also depends significantly on how indepen-
dent sets are selected by the preprocessing phase.

In the next section, we present our preprocessing method
which tries to extract a large number of pairwise disjoint
independent sets from the graph at each preprocessing iteration.
3. EXTRACOL: an algorithm for large graph coloring

The proposed EXTRACOL algorithm follows the general schema
presented in the previous section and is composed of two sequen-
tial phases: a preprocessing phase and a coloring phase. What
distinguishes our work from the existing methods is the way in
which the preprocessing phase is carried out. In this section, we
explain the basic rationale and illustrate the main techniques
implemented. The coloring algorithm applied to the residual graph
(MACOL [23]) is also briefly reviewed at the end of the section.

3.1. General procedure

As stated previously, a legal k-coloring of a given graph G¼(V,E)
corresponds to a partition of V into k independent sets. Suppose that
we want to color G with k colors. Assume now that we extract tok

independent sets I1, . . . ,It from G. It is clear that if we could maximize
the number of vertices covered by the t independent sets (i.e. jI1 [

� � � [Itj is as large as possible), we would obtain a residual graph with
fewer vertices when I1 [� � � [It are removed from G. This could in
turn help to ease the coloring of the residual graph using k�t colors
because there are fewer vertices left in the residual graph.
For this reason, for a given graph G, each time a maximum (or
large) independent set is identified we try to maximize the number of
pairwise disjoint independent sets of that size and then remove all of
them from the graph. Our preprocessing phase repeats this process
until there are no more than q vertices left in the residual graph, q

being a parameter fixed by the user. The value of q depends clearly on
the coloring algorithm applied to the residual graph. In our case, q is
set to be equal to 800 for all the tested graphs in this paper.

Our preprocessing phase is then described in Algorithm 1.
Basically, our preprocessing phase iterates the following four steps
and stops when the residual graph contains no more than q vertices.

Algorithm 1. Preprocessing phase: extraction of pairwise disjoint
independent sets
Require: Graph G¼(V,E), the size of the residual graph q

Ensure: Residual graph of G
1:
 Begin

2:
 while ðjV j4qÞ do

3:
 IM ¼ ATS(G,_,IterÞ {Use ATS to find a maximal

independent set in G, see Section 3.2}

4:
 zmax ¼ jIMj
5:
 M¼ fIMg
6:
 reapt ¼ 0

7:
 while (reaptrpmax AND jMjrMmaxÞ do

8:
 I¼ ATSðG,zmax,IterÞ f Use ATS to find an independent

set of size zmaxg
9:
 if IAM then

10:
 reapt ¼ reaptþ1

11:
 else S

12:
 M¼M fIg
13:
 reapt ¼ 0

14:
 end if

15:
 end while

16:
 Find a maximal number of pairwise disjoint

independent sets in M: fI1, . . . ,Itg ¼ arg maxfjSj :

SDM,8Ix,IyAS,Ix
T

Iy ¼ |g {see Section 3.3}
17:
 if jV j�jI1 [� � � [Itj4q then

18:
 Remove I1, . . . ,It from G
19:
 else l m

20:
 p¼ jV j�q

zmax
21:
 Remove I01, . . . ,I0p randomly selected from fI1, . . . ,Itg

from G
22:
 end if

23:
 end while

24:
 End
1.
 Apply the adaptive tabu search (ATS) algorithm (see Section 3.2)
to identify a maximal independent set IM in G and set zmax ¼ jIMj.
Then use IM to initialize set M which will collect other indepen-
dent sets of the same size (lines 3–5 in Algorithm 1).
2.
 Apply repeatedly ATS to generate as many independent sets of
size zmax as possible and put them in set M (lines 7–15).
3.
 Find as many pairwise disjoint independent sets I1, . . . ,It as
possible from M (line 16, see Section 3.3).
4.
 Remove all the vertices of I1 [� � � [It from G if the removal
leads to a residual graph with at least q vertices. Otherwise,
remove randomly independent sets from fI1, . . . ,Itg such that
the residual graph contains at most q vertices (lines 17–23).

Notice first that this preprocessing procedure is different from
conventional methods since steps (2) and (3) are missing from
these conventional methods. In our case, after a maximal indepen-
dent set is identified, we continue to identify as many independent
sets of that size as possible with the purpose of extracting a maximal
number of pairwise disjoint independent sets.

Q. Wu, J.-K. Hao / Computers & Operations Research 39 (2012) 283–290 285
In Algorithm 1, step (1) identifies a first maximal independent
set IM whose size zmax is used at step (2) to build the pool M of
independent sets of that size. The search for a new independent
set I of size zmax stops when the number of independent sets
contained in M reaches a desired threshold (Mmax) or when no
new independent set of that size is found after pmax consecutive
tries. Obviously, both a larger value for Mmax or pmax could include
more independent sets in M, thus giving more chance of finding
more pairwise disjoint independent sets of size zmax in M in step
(3). On the other hand, a larger value for Mmax (or pmax) also
implies longer computing time for the preprocessing phase.
According to our experiments we fix pmax equal to 100 and Mmax

equal to jV j � r, where r is the density of the graph. For the tested
DIMACS graphs, Mmax varies from 100 to 2000.

Step (3) aims at finding a maximum number of pairwise

disjoint independent sets from the set of collected independent
sets of size zmax. As we explain in Section 3.3, this problem is in
fact equivalent to the maximum set packing problem which itself
can be approximated by our adaptive tabu search for the max-
imum independent set problem.

In the next section, we present the ATS algorithm which is the
key element of our preprocessing phase.

3.2. Adaptive tabu search for maximum independent set

The adaptive tabu search algorithm is designed to find an
independent set of given size k within a graph G¼(V,E) (see
Algorithm 2). If k is not specified, the ATS algorithm just returns
the largest possible independent set that can be identified.

ATS explores a search space composed of subsets of V of size k

(k-subsets) which is formally identified by: O¼ fS� V : jSj ¼ kg.
For any candidate solution SAO, the evaluation function f(S)
counts the number of edges in the subgraph of G induced by S.
In other words, let GS¼(S,ES) such that ES ¼ ffu,vgAE : u,vASg,
than f ðSÞ ¼ jESj. Obviously, if f(S)¼0, any two vertices of S are not
adjacent and S is an independent set. Otherwise, S is not an
independent set of G. The objective of our ATS algorithm is to find
a solution S� such that f ðS�Þ reaches its minimum value f ðS�Þ ¼ 0.

Algorithm 2. Pseudo-code of ATS for maximal independent set
1:
 Input: Graph G, Integer z, Integer L
2:
 Output: independent set of size z if found

3:
 Begin

4:
 NI ¼ 0; fNI is the consecutive iterations during which f(S)

is not improved g

5:
 S ¼ Random_Initialize ()

6:
 S� ¼ S
7:
 while (NI oL and f ðSÞ40Þ do

8:
 Find the best allowed move ðu,vÞAA� B See comments

in the text

9:
 S¼ S [fvg\fug,uAS,vAV\S
10:
 Mark u and v tabu for the next Tu and Tv iterations,
respectively,
11:
 NI¼NIþ1;

12:
 if f ðSÞo f ðS�Þ then

13:
 S� ¼ S
14:
 NI ¼ 0

15:
 end if

16:
 end while

17:
 Return (independent set S� of size z or report failure)

18:
 End
A neighbor of a given solution S could be obtained by simply
swapping a vertex of S with another vertex of V\S. However, such
a move is not focused and cannot guide the search process to
efficiently explore the search space. In what follows, we introduce
a constrained neighborhood which is both more focused and
smaller-sized.

Let SAO be a candidate solution (k-subset). For each vertex
vAV , let d(v) denotes the degree of v relative to the subset S:

dðvÞ ¼ jfiAS : fi,vgAEgj

Let tabu_list be the tabu list containing the vertices that are
currently forbidden for migration. Let MaxInS¼maxfdðuÞ : uAS,
u=2tabu_listg and MinOutS¼minfdðvÞ : vAV\S, v=2tabu_listg.

Define:

A¼ fuAS : u=2tabu_list, dðuÞ ¼MaxInSg:

B¼ fvAV\S : v=2tabu_list, dðvÞ ¼MinOutSg:

T ¼ fðu,vÞ : uAA,vAB,fu,vgAEg:

In other words, set A identifies the vertices of the current
solution S that have the highest number of adjacent vertices in S.
Set B identifies the vertices of V2S that have the smallest number
of adjacent vertices in S. To obtain a neighboring solution S0 from
S, one swaps one vertex uAA and another vertex vAB. This
transition (from S to S0) can be conveniently characterized by a
move denoted by swap(u,v) and written formally as: S0 ¼ S�

swapðu,vÞ or equivalently S0 ¼ S\fug [fvg. For a given swap(u,v),
the move gain Duv can be conveniently computed by: Duv ¼

f ðS0Þ�f ðSÞ ¼ dðvÞ�dðuÞ�euv where euv is equal to 1 if fu,vgAE,
0 otherwise.

Now, to obtain the best neighbor solution, we use the follow-
ing strategy. If T is not empty, then one pair (u,v) from T is
randomly selected for swap. Otherwise, vertex u is randomly
selected from A and v is randomly selected from B. We prefer
ðu,vÞAT since it can produce a smaller move gain value
(MinOutS�MaxInS�1).

For the tabu list, once a swap(u,v) move is performed, u and v

are marked tabu for the next Tu and Tv iterations, respectively. To
be effective, the tabu tenures Tu and Tv are dynamically and
adaptively adjusted: Tu¼ f(S)þRandom(4) and Tv ¼ 0:6 � Tu, where
Random(4) returns randomly a number in {1,y,4}.

3.3. Finding maximal pairwise disjoint independent sets

As mentioned before, given the set of independent sets
M¼ fI1, . . . ,Ing of G which are found by ATS, we want to determine
from M as many pairwise disjoint sets as possible. In fact, this is a
typical maximum set packing problem (MSPP), which itself is
equivalent to the maximum clique (thus independent set) pro-
blem [16].

Our approach exploits the strict relation between the MSPP
and the maximum independent set problem. More precisely, we
transform the MSPP into the maximum independent set problem
and then determine a maximum independent set in the trans-
formed graph. Given n independent sets fI1, . . . ,Ing, we define a
new maximum independent set instance G0 ¼ ðV 0,E0Þ as follows.
Define V’ by {1,y,n} and define the edge matrix by

eij ¼
0 if Ii \ Ij ¼ |, i,jAf1, . . . ,ng

1 otherwise:

(

Note that the order n of graph G0 is bounded by Mmax ¼ jV j � r
(see Section 3.1). For the graphs used in this paper, n varies from
several to 2000.

Now it is straightforward to see that if fi1, . . . ,irg is an
independent set in G0, fIi1 , . . . ,Iir g is a pairwise disjoint set in
fI1, . . . ,Ing. Consequently, to obtain a maximum pairwise disjoint

Q. Wu, J.-K. Hao / Computers & Operations Research 39 (2012) 283–290286
set in fI1, . . . ,Ing, we can determine a maximum independent set
in G0.

For this purpose, we can approximate the problem by applying
directly our ATS algorithm described in Section 3.2 or use an exact
algorithm. To make the decision, we implement the exact algo-
rithm described in [26]. Experiments with this algorithm and
comparisons with ATS lead to two clear observations. First, if G0 is
solved optimally by the exact algorithm, then ATS is able to find a
solution (independent set) of the same size (thus an optimal
solution). Second, many G0 graphs cannot be solved by the exact
algorithm. In fact, for most of the 11 tested graphs, there is always
at least one G0 that cannot be solved by the exact algorithm. For
these graphs, ATS still provides approximate solutions. Based on
this experiment, we decide to use our ATS to handle the
underlying MSPP.

3.4. Coloring the residual graph

To color the residual graph, one can apply any graph coloring
algorithm. For instance, the authors of [18] use a tabu search
algorithm (TabuCOL). In [9], the residual graph is colored by a
genetic local search procedure. In [20], independent sets are
removed until the residual graph can be colored by a branch-
and-bound algorithm. In this work, we employ MACOL which is a
recent and effective memetic algorithm for graph coloring [23].

As a population-based hybrid algorithm, MACOL uses a tabu
search procedure to ensure local optimization and an adaptive
multi-parent crossover operator (AMPaX) to generate new solu-
tions. AMPaX is an extension of the greedy partition crossover
(GPX) presented in [11] and employs m ðmZ2Þ parents for
solution recombinations. The AMPaX operator builds one by one
the color classes of an offspring solution by taking each time the
largest class among the parents. To maintain population diversity,
MACOL implements a distance-and-quality-based replacement
strategy for pool updating. The performance of MACOL on the
DIMACS graphs is quite competitive compared to other state-of-
art coloring algorithms. More details about MACOL can be found
in [23].
4. Experimental results

In this section, we assess the performance of the proposed
EXTRACOL algorithm. For this purpose, we present computati-
onal results on the 11 largest benchmark graphs from the well-
known DIMACS graph coloring challenge [21]. Comparisons are
also reported with respect to the underlying MACOL algorithm
and seven other top-performing coloring algorithms from the
literature.

4.1. Experimental settings

Test instances. As EXTRACOL is designed to color large graphs,
we only consider graph instances with at least 1000 vertices.
These graphs are known to be difficult and represent a real
challenge for coloring algorithms. These graphs belong to four
families.1
�
 Three large random graphs (DSJC1000.1, DSJC1000.5,
DSJC1000.9). The first and second number in the name of each
graph represent, respectively, the number of vertices and the
edge density in the graph. The chromatic numbers of these
graphs are unknown.
1 http://www.info.univ-angers.fr/pub/porumbel/graphs/index.html.
�
 Three large flat graphs (flat1000_50_0, flat1000_60_0,
flat1000_76_0). They are structured graphs with known chro-
matic number (respectively, 50, 60 and 76).

�
 Two large random geometric graphs (R1000.1c, R1000.5).

These graphs are generated by picking random points (ver-
tices) in a plane and by linking two points situated within a
certain geometrical distance. The chromatic number is
unknown for R1000.1c and is equal to 234 for R1000.5.

�
 Three very large random graphs (C2000.5, C2000.9, C4000.5).

The chromatic numbers of these graphs are unknown. Given
the size and difficulty of these graphs, they are not always
used in computational experiments in the literature.

Parameter. Our EXTRACOL algorithm is programmed in C and
compiled using GNU GCC on a PC with 2.8 GHz CPU and 2 G RAM.
To obtain our computational results, each instance is solved 20
times independently with different random seeds (the very large
instances are solved five times). For each run, the time limit is set
to 5 CPU hours except for the three very large graphs C2000.5,
C2000.9 and C4000.5, for which a time limit of 120 h (5 days) is
allowed. Notice that these time conditions are comparable with
those used in the most recent works like [13,24,28,23].

To run EXTRACOL, we need to fix q, the number of vertices left
in the residual graph. We tested different values and choose the
value 800 for all of our experiments. Let us notice that the choice
of the value of q mainly depends on the performance of the
coloring algorithm applied to the residual graph. In addition to q,
MACOL requires also several parameters. In our case, we adopt
those used in the original paper [23].

4.2. Computational results

4.2.1. Comparison with the current best results

Our first experiment aims to evaluate EXTRACOL with the
current best results on our benchmark graphs. Table 1 sum-
marizes the computational statistics. Columns 2–3 give the
features of the graphs: the number of vertices (n) and the density
of each graph (dense). Column 4 shows the current best known
result k� reported in the literature. In columns 5–9, the computa-
tional statistics of our EXTRACOL algorithm are given, including
the number of colors obtained (kbest), the success rate (Succ), the
average computation time in minutes required by the preproces-
sing procedure (Textr), the average number of iterations required
by MACOL for coloring the residual graph (iter) and the total time
required in minutes (T). The results of MACOL are also reproduced
in Table 1 (columns 10–12) and we discuss these results in the
next section.

From Table 1, we observe that, except for the two R1000
graphs, the results obtained by EXTRACOL are very competitive
when compared to the current best known results reported in the
literature.

For two of the three large random graphs (DSJC1000.1 and
DSJC1000.5) and the three flat graphs (flat1000_x_0,x¼50,60,76),
EXTRACOL can easily reach the previous best known result within
no more than 2.5 h and with a success rate of 100%. More
importantly, for DSJC1000.9, our EXTRACOL algorithm obtains
for the first time a new 222-coloring, improving thus the previous
best known 223-coloring solution that has been obtained very
recently in [24,32,28,23].

For the three very large random graphs with 2000 and 4000
vertices, EXTRACOL shows even better performance. Indeed, the
previous best known coloring requires, respectively, k� ¼ 148,413
and 271 for these graphs, which have been found very recently in
[28,23]. It is interesting to observe that EXTRACOL is able to color
these graphs with k¼146, 409 and 260, leading to a gain of 2,
4 and 11 colors, respectively. In Section 5.1, we show some

http://www.info.univ-angers.fr/pub/porumbel/graphs/index.html

Table 1
Computational results of EXTRACOL (and MACOL) on the set of 11 largest DIMACS benchmark graphs. The four improved results are indicated in bold.

Instance n dense k� EXTRACOLa MACOL [23]

kbest Succ Textr (m) iter T (m) kmacol Succ iter

DSJC1000.1 1000 0.10 20 20 20/20 11 3.1�107 93 20 20/20 3.5�107

DSJC1000.5 1000 0.50 83 83 20/20 3 2.0�108 132 83 20/20 2.2�108

DSJC1000.9 1000 0.90 223 222 3/20 8 5.4�108 258 223 18/20 4.5�108

R1000.1c 1000 0.97 98 101 18/20 10 6.4�105 18 98 20/20 7.5�105

R1000.5 1000 0.48 234 250 11/20 12 8.8�108 183 245 13/20 1.2�109

flat1000_50_0 1000 0.49 50 50 20/20 8 2.9�105 12 50 20/20 3.2�105

flat1000_60_0 1000 0.49 60 60 20/20 7 5.1�105 15 60 20/20 6.3�105

flat1000_76_0 1000 0.49 82 82 20/20 3 6.7�107 79 82 20/20 7.2�107

C2000.5 2000 0.50 148 146 5/5 145 1.7�108 253 148 1/5 8.2�108

C2000.9 2000 0.90 413b 409 2/5 118 4.5�108 329 413b 2/5 7.5�108

C4000.5 4000 0.50 271 260 4/5 5186 1.8�108 5298 272 3/5 1.2�109

a See http://www.info.univ-angers.fr/pub/hao/extracol.html for the coloring result of each graph.
b This result, which is not reported in the original paper [23], is obtained by running MACOL ourself.

Table 2
Detailed information of EXTRACOL and MACOL on C4000.5 and C2000.5 regarding

the number of independent sets (color classes) of different sizes.

Size of indepen-

dent set

C2000.5 C4000.5

EXTRACOL MACOL EXTRACOL MACOL

Q. Wu, J.-K. Hao / Computers & Operations Research 39 (2012) 283–290 287
elements to explain why EXTRACOL performs so well on these
graphs.

However, for the two random geometric graphs (R1000.1c and
R1000.5), our algorithm performs poorly. In Section 5.2, we show
an analysis of EXTRACOL on these two graphs to try to understand
why this happens.
18 0 0 63 1

17 0 0 57 29

16 53 11 42 79

15 18 43 21 67

14 14 36 15 42

13 14 26 22 20

12 16 10 12 16

11 10 8 10 9

10 15 8 6 3

9 4 3 5 4

8 2 1 6 1

7 0 2 1 1

Total 146 148 260 272
4.2.2. Comparison between EXTRACOL and MACOL

Since EXTRACOL uses MACOL in its coloring phase to color the
residual graphs, it is interesting to compare the results of
EXTRACOL against those of MACOL. The results of MACOL without
the preprocessing phase are listed in Table 1 (columns 10–12).
Note that for both algorithms, the time limit is set to be 5 CPU
hours for graphs of 1000 vertices and 5 days for graphs of 2000
and 4000 vertices.

As one can observe in Table 1, for the three very large graphs
(C2000.5, C2000.9, C4000.5), EXTRACOL is able to find much
better solutions than MACOL with, respectively, 2, 4 and 12 fewer
colors. In order to get some insight about this difference, we show
in Table 2 more detailed information about the computational
results on C2000.5 and C4000.5. For each graph, columns 2 and 3
and columns 4 and 5 show the number of independent sets of size
jSj for the results obtained by EXTRACOL and MACOL, respec-
tively, on these graphs. Now recall that to generate a new
offspring solution, MACOL operates by transmitting large color
classes (independent sets in legal k-colorings) from parents to
offspring. However, from Table 2, we observe that for these two
graphs, it is very difficult for MACOL to generate very large color
classes when it is directly applied to the initial graphs. For
instance, if we consider C4000.5, we see that EXTRACOL obtains
63 color classes of size 18 while MACOL obtains only one class of
this size. We can make the same remark on C2000.5 for which
EXTRACOL and MACOL obtain respectively 53 and 11 color classes
of size 16. More generally, for large graphs, it seems wise to use a
dedicated algorithm (as EXTRACOL’s preprocessing phase) to find
large independent sets and remove them from the graph.

For DSJC1000.9, EXTRACOL improves on the result of MACOL
with one fewer color. For the two random graphs (DSJC1000.x,
x¼1,5) and the three flat graphs (flat1000_x_0,x¼50,60,76),
EXTRACOL and MACOL achieve the same results in terms of the
number of colors used. However, EXTRACOL requires less
search effort and finds these solutions more quickly in terms
of the number of iterations. This observation remains in fact
valid for most of the tested graphs. This tends to show that
EXTRACOL’s preprocessing makes the residual graph easier
to color.
Finally, for the two random geometric graphs (R1000.1c and
R1000.5), the results of EXTRACOL are inferior to those obtained
with MACOL. We investigate this phenomenon in Section 5.2.
4.2.3. Comparison with other algorithms

Now we compare EXTRACOL with seven other state-of-art
heuristics published in the literature [28,32,24,13,10,25,9]. One
notices that all of them but one [10] are population-based hybrid
algorithms.

For this comparison, we are mainly interested in solution
quality in terms of the number of colors needed to color a graph.
Table 3 presents the comparative results on the set of the 11
graphs. Columns 3 and 4 recall the previous best known k� and
the best results obtained by EXTRACOL (kbest). Columns 5–11
present the best results obtained by these reference algorithms.

From Table 3, we observe that recent hybrid algorithms like
[28,32,24] show globally very good or excellent performance, in
particular on graphs with no more than 1000 vertices. However,
none of them can find a 222-coloring for DSJC1000.9 which is
achieved by EXTRACOL. This difference seems even more pro-
nounced when the three very large graphs are considered. Indeed,
to color C2000.5 and C4000.5, the reference algorithms require at
least 148 and 271 colors, respectively, with the best results
obtained recently by Evo_Div [28] using a time limit of 5 and
30 days while EXTRACOL requires only 146 and 260 colors. For

http://www.info.univ-angers.fr/pub/hao/extracol.html

Table 4
Effect of our preprocessing (EXTRACOL) and conventional preprocessing (OBOCOL) on C2000.5.

EXTRACOL OBOCOL

jSj� No. of sets

of jSj

No. of colored

vertices

No. of colors

used

jSj� No. of sets

of jSj

No. of colored

vertices

No. of colors

used

Independent sets 16�53 16�36

obtained by 15�18 1202 77 15�27 1205 79

preprocessing 14�6 14�16

14�8 14�5

13�14 13�20

Independent sets 12�16 12�14

(color classes) 11�10 798 69 11�13 795 69

from MACOL 10�15 10�6

9�4 9�7

8�2 8�3

7�0 7�1

Total 2000 146 2000 148

Table 3
Comparison of EXTRACOL with seven best performing coloring algorithms. Most of them are population-based hybrid algorithms.

Instance n kn kbest Seven reference graph coloring algorithms

[28] [32] [24] [13] [10] [25] [9]

DSJC1000.1 1000 20 20 20 – 20 20 21 – –

DSJC1000.5 1000 83 83 83 84 83 84 88 89 84

DSJC1000.9 1000 223 222 223 223 225 224 228 – –

R1000.1c 1000 98 101 98 – 98 – 98 98 99

R1000.5 1000 234 249 238 – 234 – 237 241 268

flat1000_50_0 1000 50 50 50 50 50 50 50 50 84

flat1000_60_0 1000 60 60 60 60 60 60 60 60 84

flat1000_76_0 1000 82 82 82 83 82 84 87 89 84

C2000.5 2000 148 146 148 150 – – 162 165 153

C2000.9 2000 413 409 – – – – – – –

C4000.5 4000 271 260 271 – – – 301 – 280

Q. Wu, J.-K. Hao / Computers & Operations Research 39 (2012) 283–290288
C2000.9 which is very dense (and hard), few results are available
in the literature. On the other hand, we observe that EXTRACOL
performs poorly on R1000.1c and R1000.5 with respect to most of
the reference algorithms.
5. Analysis and insights

5.1. Influence of preprocessing

The EXTRACOL’s preprocessing phase uses a heuristic method
to extract at each iteration as many pairwise disjoint independent
sets as possible. Compared to the conventional preprocessing
which extracts greedily independent sets one by one, our pre-
processing is able to cover more vertices than the greedy extrac-
tion approach. In other words, in order to cover the same number
of vertices (nearly jV j�qÞ, our preprocessing needs fewer inde-
pendent sets and thus fewer colors for these vertices.

To highlight the difference of these two preprocessing meth-
ods, we show a detailed comparison by considering two large
graphs (C2000.5 and C4000.5). We recall that these two graphs
are very difficult if they are directly colored without a preproces-
sing phase. Indeed, even the most recent hybrid algorithms can
only find 148-coloring for C2000.5 and 271-coloring for C4000.5.

To solve these two instances, we apply both the conventional
greedy preprocessing method and our preprocessing method to
extract independent sets until there are at most 800 vertices left
in the residual graph, which is then colored by MACOL. For both
algorithms, each instance is solved 5 times with a time limit of
5 days per run. The results are summarized in Table 4 (C2000.5)
and Table 5 (C4000.5). In the table, we show the results obtained,
respectively, with our preprocessing (EXTRACOL) and the con-
ventional greedy preprocessing method (OBOCOL). Columns
2 and 5 show, in the form of x� y, the number y of independent
sets of size x extracted by the preprocessing phase (upper part of
each table) or established by MACOL (lower part of each table).
Columns 3 and 6 give the number of vertices covered by the
independent sets. Columns 4 and 7 indicate the number of these
independent sets (color classes).

From Table 4, we observe that for C2000.5, our preprocessing
identifies 77 independent sets (of sizes 16, 15, 14) covering 1202
vertices while the conventional preprocessing removes 1205
vertices, but using 79 colors. We notice also that our preproces-
sing extracts more independent sets of the largest size than the
conventional preprocessing (53 against 36). For both residual
graphs, they are colored by MACOL with 69 colors. This leads to a
difference of two colors in favor of our preprocessing.

Similarly, from Table 5, we observe that for C4000.5, the
maximal independent set that is identified is of size 18. The
conventional preprocessing can only extract 40 independent sets
of this size while our preprocessing extracts 63. Moreover, our
preprocessing removes 191 large independent sets which cover
3202 vertices, while the conventional preprocessing extracts four
more independent sets (i.e. 195) which cover only 3200 vertices.
To color both residual graphs, MACOL requires additional 69
colors. Once again, this leads to a better solution with our
preprocessing method with four colors in less with respect to
the conventional preprocessing.

Table 6
Detailed results on R1000.5 showing the number of independent sets extracted

(N1), the maximum clique size of the residual graph (N2), and the lower bound on

the needed colors after the extraction ðN3 ¼N1þN2Þ.

Size of indepen-

dent set

EXTRACOL OBOCOL

N1 N2 N3 N1 N2 N3

7 12 225 Z237 8 229 Z237

6 20 209 Z241 24 211 Z243

Table 5
Effect of the preprocessing (EXTRACOL) and conventional greedy preprocessing (OBOCOL) on C4000.5.

EXTRACOL OBOCOL

jSj� No. of sets

of jSj

No. of colored

vertices

No. of colors

used

jSj� No. of sets

of jSj

No. of colored

vertices

No. of colors

used

Independent sets obtained

by preprocessing

18�63 18�40

17�57 17�66

16�42 3202 191 16�40 3200 195

15�21 15�32

14�8 14�17

Independent sets (color

classes) from MACOL

14�7 14�7

13�22 13�20

12�12 12�11

11�10 798 69 11�16 800 69

10�6 10�5

9�5 9�5

8�6 8�4

7�1 7�1

Total 4000 260 4000 264

Q. Wu, J.-K. Hao / Computers & Operations Research 39 (2012) 283–290 289
Finally, if we compare the coloring results of Tables 4 and 5
with those reported in Table 3, we observe that for these two very
large random graphs, even the conventional preprocessing
method leads to better results than the direct coloring approach.

5.2. Limitation of preprocessing

As previously observed, EXTRACOL performs poorly on the two
geometric graphs R1000.1c and R1000.5 although it shows
excellent performance on all the other large graphs. It is then
interesting to investigate what happens on these graphs. Clearly,
it would be very difficult to provide a formal justification. Still,
empirical observations would contribute to some extent to the
understanding of EXTRACOL’s counter-performance on these
graphs.

Notice first that the geometric graphs are constructed in a
special way [29]. For a graph RN.d, the set of N points (nodes) are
randomly scattered in an 1 by 1 square. Two nodes are adjacent if
their geometric distance is smaller than d. So contrary to standard
random graphs, geometric graphs have special structures in terms
of node degrees, independent sets and cliques. These structures
may imply a particular relation between the number of color
classes of a given size in an optimal coloring (call this number A)
and the number of independent sets (potential color classes) of
the same size existing in a graph (call this number B). To illustrate
this point, we sampled a set of optimal 65-colorings for geometric
graph r250.5. Inspecting these optimal solutions shows the
number of color classes of size 6 (the largest possible size for
this graph) within a 65-coloring varies between 2 and 6 while it is
easy to extract 12 pairwise disjoint independent sets of this size,
i.e. A5B. In other words, more than half of the extracted
independent sets of size 6 are not part of an optimal coloring
and using these independent sets as color classes would increase
the number of needed colors with respect to the chromatic
number.

To complement this explanation, we show in Table 6 some
statistics obtained on R1000.5 with the preprocessing phase.

R1000.5 has a known chromatic number of 234. For this graph,
it is quite easy for our ATS algorithm to find maximum cliques of
size 234. Consequently, for the preprocessing to be helpful, each
time an independent set is removed from the graph, the max-
imum clique size for the residual graph should decrease by 1.
However, we observe from Table 6 that this is not always the case
when the preprocessing is applied to this graph.
For instance, the first iteration of our preprocessing extracts 12
pairwise disjoint independent sets of size 7. However, one
observes that at least three out of these 12 independent sets
cannot be part of an optimal solution and are wrongly extracted.
Indeed, the residual graph after extracting these 12 independent
sets contains cliques of size 225, implying that we need at least
237 (12 plus 225) colors for the initial graph which is three colors
above the chromatic number. The situation becomes even worse
when 20 pairwise disjoint independent sets of size 6 are addi-
tionally extracted because the lower bound of the needed colors
becomes now 241. The same observation can be made with the
conventional greedy preprocessing which leads to even worse
results (see OBOCOL results). We conclude that for this graph,
some large independent sets are not part of any optimal 234-
coloring and extracting such independent sets cannot help
decrease the number of colors needed for the whole graph. The
analysis realized on R1000.1c leads to the same conclusion.

This analysis shows the limit of the preprocessing approach
which is basically due to its greedy nature. Indeed, if a mistake is
made during the preprocessing phase, the mistake cannot be
repaired. To remedy this difficulty, one possibility would be to
allow the coloring procedure to integrate the extracted indepen-
dent sets during its search.
6. Conclusion

In this paper, we revisited the graph coloring approach based
on independent set extraction and proposed an effective algo-
rithm (EXTRACOL) for coloring large graphs. The proposed pre-
processing used by EXTRACOL distinguishes itself from the
conventional greedy extraction methods. Instead of extracting
one independent set each time, the proposed preprocessing

Q. Wu, J.-K. Hao / Computers & Operations Research 39 (2012) 283–290290
method tries to extract many pairwise disjoint sets. Such a
preprocessing maximizes the number of vertices covered by the
extracted independent sets, hopefully making the residual graph
easier to color. To identify large independent sets and pairwise
disjoint sets, we devised an adaptive tabu search algorithm which
employs among other things a focused neighborhood and a
dynamic tabu list management strategy.

The computational results obtained on the 11 largest DIMACS
benchmark graphs with 1000, 2000 and 4000 vertices show,
except for the two geometric random graphs, remarkable perfor-
mance. In particular, for four very hard instances (DSJC1000.9,
C2000.5, C2000.9, C4000.5), EXTRACOL is able to improves on the
previous best known results reported in the literature by finding
solutions with 222, 146, 409 and 260 colors, respectively, imply-
ing a gain of 1, 2, 4 and 11 colors with respect to the current best
colorings for these graphs.

We also presented detailed analyses of the preprocessing
phase in hope of getting some insights about the advantages
and limitations of the proposed approach. This approach could be
further improved by allowing the coloring algorithm to reconsi-
der the independent sets extracted during the preprocessing
phase. Such an improvement can be for instance achieved within
the multi-level optimization paradigm.
Acknowledgment

We are grateful to the referees for their comments and
questions which helped us to improve the paper. The work is
partially supported by the ‘‘Pays de la Loire’’ Region (France)
within the RaDaPop (2009–2013) and LigeRO (2010–2013)
projects.

References

[1] Avanthay C, Hertz A, Zufferey N. A variable neighborhood search for graph
coloring. European Journal of Operational Research 2003;151(2):379–88.

[2] Blöchliger I, Zufferey N. A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Computers and Operations Research 2008;35(3):960–75.

[3] Burke EK, McCollum B, Meisels A, Petrovic S, Qu R. A graph-based hyper
heuristic for timetabling problems. European Journal of Operational Research
2007;176:177–92.

[4] Chams M, Hertz A, de Werra D. Some experiments with simulated ann-
ealing for coloring graphs. European Journal of Operational Research
1987;32:260–6.

[5] Chiarandini M, Stützle T. An application of iterated local search to graph
coloring. In: Johnson DS, Mehrotra A, Trick M, editors. Proceedings of the
computational symposium on graph coloring and its generalizations, Ithaca,
New York, USA; 2002. p. 112–25.

[6] Costa D, Hertz A, Dubuis O. Embedding of a sequential procedure within an
evolutionary algorithm for coloring problem in graphs. Journal of Heuristics
1995;1:105–28.
[7] de Werra D, Eisenbeis C, Lelait S, Marmol B. On a graph-theoretical model for
cyclic register allocation. Discrete Applied Mathematics 1999;93(2–3):191–203.

[8] Dorne R, Hao JK. A new genetic local search algorithm for graph coloring. In:
Lecture notes in computer science, vol. 1498; 1998. p. 745–54.

[9] Fleurent C, Ferland JA. Genetic and hybrid algorithms for graph coloring.
Annals of Operations Research 1996;63:437–61.

[10] Funabiki N, Higashino T. A minimal-state processing search algorithm for
graph coloring problems. IEICE Transaction Fundamentals 2000;E83-
A:1420–30.

[11] Galinier P, Hao JK. Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 1999;3(4):379–97.

[12] Galinier P, Hertz A. A survey of local search methods for graph coloring.
Computers and Operations Research 2006;33(9):2547–62.

[13] Galinier P, Hertz A, Zufferey N. An adaptive memory algorithm for the
K-colouring problem. Discrete Applied Mathematics 2008;156(2):267–79.

[14] Gamache M, Hertz A, Ouellet JO. A graph coloring model for a feasibility
problem in monthly crew scheduling with preferential bidding. Computers
and Operations Research 2007;34(8):2384–95.

[15] Garey MR, Johnson DS, So HC. An application of graph coloring to printed
circuit testing. IEEE Transactions on Circuits and Systems 1976;23:591–9.

[16] Garey MR, Johnson DS. Computers and intractability: a guide to the theory of
NP-completeness. San Francisco: W.H. Freeman and Company; 1979.

[17] Hamiez JP, Hao JK. Scatter search for graph coloring. In: Lecture notes in
computer science, vol. 2310. Springer-Verlag; 2002. p. 168–79.

[18] Hertz A, de Werra D. Using tabu search techniques for graph coloring.
Computing 1987;39:345–51.

[19] Hertz A, Plumettaz M, Zufferey N. Variable space search for graph coloring.
Discrete Applied Mathematics 2008;156(13):2551–60.

[20] Johnson DS, Aragon CR, McGeoch LA, Schevon C. Optimization by simulated
annealing: an experimental evaluation, part II, graph coloring and number
partitioning. Operations Research 1991;39(3):378–406.

[21] Johnson DS, Trick MA, editors. Cliques, coloring, and satisfiability: second
dimacs implementation challenge. DIMACS series in discrete mathematics
and theoretical computer science, vol. 26. American Mathematical Society;
1996.

[22] Laguna M, Martı́ R. A GRASP for coloring sparse graphs. Computational
Optimization and Applications 2001;19(2):165–78.

[23] Lü Z, Hao JK. A memetic algorithm for graph coloring. European Journal of
Operational Research 2010;200(1):235–44.

[24] Malaguti E, Monaci M, Toth P. A metaheuristic approach for the vertex
coloring problem. INFORMS Journal on Computing 2008;20(2):302–16.

[25] Morgenstern C. Distributed coloration neighborhood search. In: Johnson DS,
Trick MA, editors. Cliques, coloring, and satisfiability: second dimacs imple-
mentation challenge. DIMACS series in discrete mathematics and theoretical
computer science, vol. 26. American Mathematical Society; 1996. p. 335–7.

[26] Östergard PR. A fast algorithm for the maximum clique problem. Discrete
Applied Mathematics 2002;120(1–3):197–207.

[27] Porumbel DC, Hao JK, Kuntz P. A search space cartography for guiding graph
coloring heuristics. Computers and Operations Research 2010;37(4):769–78.

[28] Porumbel DC, Hao JK, Kuntz P. An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring.
Computers and Operations Research 2010;37(10):1822–32.

[29] Sewell EC. An improved algorithm for exact graph coloring. In: Johnson DS,
Trick MA, editors. Cliques, coloring, and satisfiability: second dimacs imple-
mentation challenge. DIMACS series in discrete mathematics and theoretical
computer science, vol. 26. American Mathematical Society; 1996. p. 359–76.

[30] Smith DH, Hurley S, Thiel SU. Improving heuristics for the frequency assign-
ment problem. European Journal of Operational Research 1998;107(1):
76–86.

[31] Zufferey N, Amstutz P, Giaccari P. Graph colouring approaches for a satellite
range scheduling problem. Journal of Scheduling 2008;11(4):263–77.

[32] Xie XF, Liu J. Graph coloring by multiagent fusion search. Journal of
Combinatorial Optimization 2009;18(2):99–123.

	Coloring large graphs based on independent set extraction
	Introduction
	Review of graph coloring based on maximum independent set
	EXTRACOL: an algorithm for large graph coloring
	General procedure
	Adaptive tabu search for maximum independent set
	Finding maximal pairwise disjoint independent sets
	Coloring the residual graph

	Experimental results
	Experimental settings
	Computational results
	Comparison with the current best results
	Comparison between EXTRACOL and MACOL
	Comparison with other algorithms

	Analysis and insights
	Influence of preprocessing
	Limitation of preprocessing

	Conclusion
	Acknowledgment
	References

