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In  this  paper,  we  propose  the large  margin  autoregressive  (LMAR)  model  for classification  of  time  series
patterns.  The  parameters  of the  generative  AR  models  for different  classes  are  estimated  using the  margin
of the  boundaries  of  AR  models  as the  optimization  criterion.  Models  that  use  a  mixture  of  AR  (MAR)
models  are  considered  for representing  the  data  that  cannot  be adequately  represented  using  a  single
AR model  for a  class.  Based  on  a mixture  model  representing  each  class,  we  propose  the  large  margin
mixture  of  AR  (LMMAR)  models.  The  proposed  methods  are  applied  on  the  simulated  time  series  data,
arge margin autoregressive model
arge margin mixture autoregressive model
ime series classification
utlier detection
ejection option

electrocardiogram  data,  speech  data  for E-set  in  English  alphabet  and  electroencephalogram  time  series
data. Performance  of  the  proposed  methods  is compared  with  that  of  support  vector  machine  (SVM)
based  classifier  that uses  AR coefficients  based  features.  The  proposed  methods  give  a better  classification
performance  compared  to the  SVM  based  classifier.  Being  generative  models,  the LMAR  and  LMMAR
models  provide  a generative  interpretation  that  enables  utilization  of the  rejection  option  in  the  high

he  pr
enerative and discriminative hybrid
odels

risk  classification  tasks.  T

. Introduction

Time series form an important class of data objects in tasks such
s speech recognition and medical signal analysis. An important
roperty shared by time series data is that the neighboring values

n time series are similar (temporal correlation). Therefore, the cur-
ent value of the time series can be expressed as a finite, linear aggre-
ate of previous values of the series and noise (autoregressive model).

The autoregressive (AR) model is a generative model in the sense
hat the current value of time series is generated as a linear com-
ination of previous values and a probability density function can
e defined on the AR model [1]. The AR model is widely used in the
asks such as time series prediction and parametric spectrum esti-

ation. In the current work, our objective is to utilize AR models
or time series classification.

Time series classification is an important problem in pattern
ecognition. In time series classification, a set of time series with
lass labels is given. This data is used to build a model for each class
training phase). When a new time series is given, an appropriate
abel is assigned to it (testing phase).

Pattern recognition methods for classification can be broadly

ivided into generative and discriminative methods. Generative
odels learn a joint probability distribution p(x, y), of the input

 and the label y, and perform classification using Bayes rule,
 = argmax

i
p(yi|x). Discriminative models learn the mapping from

∗ Corresponding author.
E-mail addresses: venkataramana.kini@gmail.com (B.V. Kini),

handra@cse.iitm.ac.in (C.C. Sekhar).

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2012.08.027
oposed  methods  can  also be used  for detection  of  novel  time  series  data.
© 2012  Elsevier  B.V.  All rights  reserved.

the input x to the label y. The generative model provides a con-
ducive framework for imposing structure and prior knowledge on
a given problem. Due to the generative nature of these models, the
outliers (data points that do not belonging to any of the known
classes) can be detected easily and uncertain classifications can be
referred to domain experts. Discriminative methods give a supe-
rior performance by focusing on the given task of classification
[2]. Discriminative models have been used in diverse time series
classification tasks [3–6].

The black-box nature of discriminative models makes incorpo-
ration of the structure of the problem difficult. For example, in time
series classification using the discriminative models, it is not possi-
ble to make use of the temporal correlation present in a time series
directly. Discriminative models have to depend on the temporal
methods such as AR modeling for feature extraction. This moti-
vates combining these two  methods synergistically, leading to a
hybrid method that retains the richness of generative models, at the
same time providing a superior classification performance. There
is an evidence that the models constructed in this manner can cap-
ture the subtleties of the time series data being analyzed [7].  In
the hybrid method, the parameters of the generative model are
estimated to maximize the classification performance rather than
maximizing the likelihood of the training data [7–9].

Recently, there has been a significant interest in the dis-
criminative training of generative models for classification tasks,
particularly in the area of speech recognition (for a review see

[7–11]). Most of these works use hidden Markov models or Gauss-
ian mixture models as the generative models. The current work is
on discriminatively training AR models for time series classifica-
tion.

dx.doi.org/10.1016/j.asoc.2012.08.027
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:venkataramana.kini@gmail.com
mailto:chandra@cse.iitm.ac.in
dx.doi.org/10.1016/j.asoc.2012.08.027
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Also, the probabilistic kernel functions can be used to cap-
ure temporal characteristics of time series [12,13]. These methods
evelop temporal models such as hidden Markov model and lin-
ar dynamic model for each time series data and then compute
ullback–Leibler (KL) divergence between these models. These
ethods cannot be considered to perform discriminative training

f generative models. These methods define kernel functions in the
pace of generative model parameters.

In [14,15] the AR coefficients are extracted from the time series
ata and the discriminative classifiers are used for classification of
ime series using AR coefficients based features.

We propose an approach to discriminatively train the generative
R models using the large margin method [17], that retains the rich

nterpretation of AR models. This interpretation enables the model
o utilize the rejection option in cases of high risk classification tasks
nd the detection of outliers when all classes are not covered in the
raining data set. The model uses the large margin concepts, that are
tilized in support vector machines (SVM). However, unlike SVMs,

arge margin AR (LMAR) models retain generative interpretation.
imilar to other discriminative methods, temporal dependencies
annot be directly captured in the SVMs. Therefore, AR modeling
r other temporal methods are used for feature extraction.

In certain time series classification problems, some classes may
ot be adequately represented using a single AR (MAR) model.

n such cases, it is useful to consider a mixture of AR models. We
ropose to build a mixture of AR models [24] for each class and
urther train these MAR  models using the large margin method
LMMAR model).

The mixture of AR models presented in our paper is related to a
ixture of ARMA models [24], which is used for time series cluster-

ng. It should be noted that in [25] a single time series is modeled
sing a mixture of AR models for segmenting the time series into
omogeneous parts. However, in our case a set of multiple time
eries is modeled using a mixture of AR models.

In the next section, we present the AR model based methods
or time series classification. We  first present the method that
ses a single AR model for each class and the large margin method
or estimation of parameters of AR models. Then we present the

ethod that uses a mixture of AR models for each class trained
sing the large margin method. In Section 3, we  present our
tudies using the proposed methods for time series classification
n different data sets. We  compare the performance of the pro-
osed method with that of the SVM based classifiers that use AR
oefficients based features.

. AR model based methods for time series classification

An AR process models the linear dependency that may  exist in
 given time series. It models the signal as the output of a linear
ystem driven by white noise of zero mean and unknown variance.
utoregressive moving average (ARMA) model regresses on noise
s well. However, there exists an equivalent higher order AR model.
ence, without loss of generality, AR models are considered in this
aper.

Let the time series training data be: X = {< x1 y1 >,  < x2 y2 >
 . . . , < xn yn >,  . . . , < xN yN >},  xn ∈ MR  and yn ∈ {1, 2, . . . , C}.
ere xn = [xn(1), xn(2), . . .,  xn(M)]T is the nth time series of length M,

n is the corresponding class label and C is the number of classes.
Using an AR model with order P, the value of time series xn at

iscrete time t can be represented as:

P∑

n(t) = −

p=1

anpxn(t − p) + en(t)

= x̂n(t) + en(t) (1)
omputing 13 (2013) 361–371

where en(t)∼N(0, �2) is the zero mean white noise with �2 as vari-
ance, and an = [an1, an2, . . .,  anP]T are the AR coefficients.

The autocorrelation function (ACF) of xn at lag p is estimated
using rnp =

∑
txn(t)xn(t + p), p = 1, . . .,  P and represented as rn = [rn1,

. . .,  rnP]T. The temporal characteristic of a time series can be cap-
tured using its ACF [1].  The variance of time series, rn0, estimated
using

∑
txn(t)xn(t) gives its instantaneous characteristic.

Since en(t)∼N(0, �2), the probability density function (pdf) of xn

can be written as [1,18]:

p(xn|an, �2) = (2��2)−M/2exp(−0.5�−2
M∑

t=1

e2
n(t))

= (2��2)−M/2exp(−0.5�−2aT
n�nan) (2)

where the autocorrelation matrix, �n, is defined as

�n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 r1 r2 . . . rP−1

r1 1 r1 . . . rP−2

...
...

...
...

...

rP−1 rP−2 . . . r1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n

(3)

Using Yule–Walker (Y–W) equations [1],  the AR coefficients an

can be derived from the autocorrelation function rn and the auto-
correlation matrix �n as an = �n

−1rn.
Therefore, (2) can be written as:

p(xn|rn) ∝ exp
(

−1
2

rT
n�n

−1rn

)
(4)

The autocorrelation matrix �n represents the temporal struc-
ture of one time series xn. That is, the inherent assumption in Eq. (4)
is that AR process is ergodic. We  can relax this assumption by using
multiple time series from the same class for estimating the ensem-
ble autocorrelation matrix �c for class c. The ensemble average
provides a robust estimate of the AR process compared to param-
eters estimated with ergodic assumption. We  propose that each
class is an AR process represented by the AR model design matrix
�c and the quantity rT

n�−1
c rn is similar to the squared Mahalanobis

distance. Using such models for different classes, c ∈ {1, 2, . . .,  C},
the classification of a new time series x with r as its ACF can be
performed using the following decision rule:

y = argmin
c

{rT �−1
c r} (5)

It is to be noted that the autocorrelation matrix �c has the
Toeplitz structure and can be characterized only by the ACFs for
the examples of the class. In the next subsection, we  develop the
large margin AR model for classification of time series data.

2.1. Large margin AR model

In the large margin AR (LMAR) model, we propose to maxi-
mize the margin (distance of the nearest training example from
the decision boundary) by optimizing the parameters involved, i.e.,
the ACFs representing each class. The ACFs are found not only to
classify the training data correctly, but also to place the decision
boundaries optimally. We  propose to constrain each time series
in the training data to be at least one unit distance away from the
decision boundary of each of the competing classes (similar to what
is done in case of large margin Gaussian mixture model [10]). For

a time series xn with its class label as yn, the constraints are as
follows:

rT
n(�c − �yn )rn ≥ 1, ∀c /= yn (6)
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here �c = �−1
c and �yn = �−1

yn
. The model is regularized by

mposing the smallest parameter constraint, i.e., by minimizing
he sum of the traces of the matrices �−1

c = �c , c = 1, 2, . . .,  C. The
ptimization problem is

Minimize
∑

c

trace(�c)

subject to,

1 + rT
n(�yn − �c)rn ≤ 0, ∀c /= yn, n = 1, 2, . . . , N

and �c 	 0, c = 1, 2, . . . , C

(7)

he positive definiteness constraint imposed on �c ensures that it
epresents a valid AR model. The optimal parameters of AR mod-
ls for different classes are estimated by solving this optimization
roblem. However, it may  not be feasible to classify all the training
xamples correctly, due to the presence of outliers. To handle such
ases, as in SVMs, we introduce the non-negative slack variables
nc into the optimization problem:

Minimize
∑

n

∑
c

�nc + �
∑

c

trace(�c)

subject to,

1 + rT
n(�yn − �c)rn ≤ �nc, ∀c /= yn, n = 1, 2, . . . , N

�nc ≥ 0, n = 1, 2, . . . , N and c = 1, 2, . . . , C

and �c 	 0, c = 1, 2, . . . , C
(8)

This constrained optimization can be reduced to unconstrained
ptimization:

(rc=1,...,C ) =
∑

n,c /=  yn

max(0,  1 + rT
n(�yn − �c)rn) + �

∑
c

trace(�c)

(9)

nd the optimization problem is solved using quadratic optimiza-
ion solvers [9,19–21]. The � matrices are ensured to be positive
efinite by performing eigen decomposition and reconstructing �
y using only positive eigen values after every optimization step.
he value of trade-off parameter � is determined empirically.

The LMAR model based classification of time series proposed
ere is different from the large margin Gaussian model based clas-
ification of i.i.d. data in [22]. The LMAR method explicitly captures
he autocorrelation information in time series data and optimizes
oundary between ensemble autoregressive models. It can handle
ariable length and nonstationary time series data (after perform-
ng differencing operation). The LMAR method is useful when it is
ossible to represent each class by the autocorrelation structure of
ime series data of that class.

.2. Mixture of AR (MAR) models

When the data of a class cannot be adequately represented using
 single AR model, it is necessary to represent it using a mixture of
R models. In this section, we present the maximum likelihood

ML) method for estimation of parameters of a mixture of AR mod-

ls. Let Xc = {x1, x2, . . . , xNc } be a set of time series data from class
. Let us assume that the time series data is generated by K differ-
nt AR models, which correspond to the K mixture components.
he responsibility of generating xn by kth component is given by
omputing 13 (2013) 361–371 363

p(xn|ak, �2
k

). For the entire mixture, it is given by a convex combi-
nation of such responsibilities:

p(xn) =
K∑

k=1

˛kp(xn|ak, �2
k ) (10)

where ˛ks are the mixture coefficients satisfying the condition∑K
k=1˛k = 1. The ML  estimates of the parameters âk, �̂2

k
for k = 1,

2, . . .,  K can be obtained by maximizing the log likelihood of the
data of class c:

Lc(Xc) =
Nc∑

n=1

ln

K∑
k=1

˛kp(xn|ak, �2
k ) (11)

This parameter estimation problem does not have a closed form
solution. However, the above problem can be solved using the
expectation–maximization (EM) method. In this method, the com-
ponent labels are the latent variables. The mixture coefficients and
the AR model parameters for each component are estimated by
maximizing the conditional expectation of log-likelihood of the
joint density of data and component labels, given the data and the
current estimates of the parameters.

Below, we formulate the EM framework for estimation of
parameters of an MAR  model.

2.2.1. Estimation of parameters of MAR model using EM
algorithm

The latent variable zn for a time series xn is defined as a 1-
of-K vector zn = [z1

n, z2
n, . . . , zK

n ]T such that zk
n = 1 and zj

n = 0, for
j /= k. This indicates that xn was generated by the component k.
The complete log-likelihood function for the missing data Zc =
{z1, z2, . . . , zNc } and the dataset Xc can be written as:

Lc((Xc, Zc)|�, �) = ln

Nc∏
n=1

p(xn, zn|�, �) =
Nc∑

n=1

K∑
k=1

zk
nln(˛kp(xn|�k))

(12)

where � = [˛1, . . .,  ˛K]T, � = {	1, . . .,  	K}, and 	k = {ak, �2
k
}.

The EM algorithm consists of two  steps. The first step is referred
to as E-step which is an evaluation of the conditional expectation of
Lc given the data Xc and the current estimates of the parameters. The
second step, called as M-step, constitutes estimating the unknown
parameters by maximizing the conditional expectation. The two
steps are repeated until the convergence is achieved.

E-step:  The conditional expectation Q (�, �|�̂, �̂)  of Lc given the
data Xc and the current estimates of the parameters �̂ and �̂ is:

Q (�, �|�̂, �̂)  = E[Lc(�, �, Xc, Zc)|Xc, �̂, �̂]  (13)

=
Nc∑

n=1

K∑
k=1

ln(˛kp(xn|�k)) E[zk
n|Xc, �̂, �̂]  (13)

Since zk
n is a binary variable, the required expectation is evaluated

as follows:

wk
n = E[zk

n|Xc, �̂, �̂]  = P(zk
n = 1|Xc, �̂, �̂)  = p(xn|	̂k) P(zk

n = 1)
p(xn)

= p(xn|	̂k) ˆ̨k∑K
r=1p(xn|	̂r) ˆ̨r

(14)

The conditional expectation can be written as
Q (�, �|�̂, �̂)  =
Nc∑

n=1

K∑
k=1

wk
n ln(˛kp(xn|�k)) (15)
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M-step:  The updated parameters in the next iteration are esti-
ated by maximizing the above conditional expectation. The
ixing coefficients are estimated as:

ˆ k = 1
Nc

Nc∑
n=1

wk
n, k = 1, . . . , K (16)

he AR model parameters are obtained by maximizing the Q func-
ion w.r.t. 	 as follows:

ˆ
 = argmax

	

Nc∑
n=1

K∑
k=1

wk
n ln(˛kp(xn|	k)) (17)

ubstituting for p(xn|	k)

(˛, 	| ˆ̨ , 	̂)  =
Nc∑

n=1

K∑
k=1

wk
n

{
ln(˛k) + ln(2��2

k
)−M/2 + −1

2��2
k

M∑
t=1

(aT
k
xnt + xnt )

2

}
(18)

ere, xnt = [xn,t−1, xn,t−2 . . . xn,t−p]T. By differentiating Q w.r.t ak and
2
k

, respectively, setting equal to zero:

∂Q

∂ak

=
Nc∑

n=1

wk
n

∂
∂ak

{
M∑

t=1

aT
k xntxntak + 2akxntxnt

}
= 0 (19)

∂Q

∂�2
k

=
Nc∑

n=1

wk
n

{
−M

2
1

�2
k

+ 1

(�2
k

)2

M∑
t=1

(en(t))2

}
= 0 (20)

he kth component AR model parameters are estimated as:

ˆk = −
(

Nc∑
n=1

wk
n �n

)−1 Nc∑
n=1

wk
n rn (21)

2̂
k

=
∑Nc

n=1wk
n

∑M
t=1(en(t))2

M
∑Nc

n=1wk
n

(22)

The E and M steps are repeated until the relative decrease in Q
etween two iterations is below a specified threshold.

The EM algorithm for MAR  model gives the estimated AR
oefficients for each mixture. These AR coefficients are converted to
utocorrelation coefficients using Y–W equations (P equations with

 unknowns). The autocorrelation coefficients are used in forming
utocorrelation matrix and in turn in the inverse autocorrelation
atrix.

.3. Large margin mixture of AR (LMMAR) models

Let �ck denote the matrix for the kth component in the MAR
odel for the class c. Every time series xn in the training data has

 mixture label kn (the component with highest posterior proba-
ility) together with the class label yn. The objective in the large
argin method is to ensure that each time series is closer to its

arget class than any other class. For each labeled time series (xn,
n, kn), the constraints are as follows:

T
n(�ck − �ynkn )rn ≥ 1, ∀c /= yn (23)
By using the soft-max inequality, we can rewrite the above
nequality as:

 log
∑

k

exp−rT
n�ckrn − rT

n�ynkn rn ≥ 1, ∀c /= yn (24)
omputing 13 (2013) 361–371

Therefore, the optimization problem for LMMAR model can be
stated as follows:

Minimize
∑

n

∑
c

�nc + �
∑

c

∑
k

trace(�ck)

subject to,

1 + rn
T �ynkn rn + log

∑
k

exp−rT
n �ckrn ≤ �nc, ∀c /= yn, n = 1, 2, . . . , N

�nc ≥ 0, n = 1, 2, . . . , N and c = 1, 2, . . . , C

˚ck 	 0, c = 1, 2, . . . , C, k = 1, 2, . . . , K

(25)

The method for estimation of parameters of the LMMAR model
is similar to that of the LMAR model. However, compared to the
LMAR models, the LMMAR  model involves a two-step procedure,
first estimating the MAR  component labels using the EM algorithm
and then optimizing the parameters for large margin. Though we
started with AR model as underlying model for time series data, the
optimization function for the LMMAR  model is similar to that of the
LMGMM  model [22]. However, the LMGMM and LMMAR  models
differ in the following respects:

• The LMMAR  model effectively captures temporal dependency in
terms of autocorrelation present in time series data. The LMGMM
considers the data to be independent and identically distributed.

• Unlike LMGMM  (which involves inverse of covariance matrix as
parameter of optimization), the autocorrelation matrix has to be
Toeplitz matrix throughout the optimization for representing a
valid AR model. The Toeplitz structure of autocorrelation matrix
is preserved by having the autocorrelation vector as the param-
eter of optimization instead of inverse autocorrelation matrix as
parameter of optimization.

In the next section, we  apply these models on simulated and
real world datasets of time series.

3. Experiments and results

We perform 5-fold cross validation to find the classification per-
formance of different models. The different models that we  study
are: AR model, LMAR model, MAR  model, LMMAR  model and SVM
trained on AR coefficient based cepstral features.

In LMAR, LMMAR  and SVM models, the � hyperparameter has
to be found. Also, for nonlinear SVM the parameter of the kernel
function has to determined. The grid search [35] is used for finding
the appropriate � and parameters of the kernel functions.

3.1. Selection of AR model order and number of AR components

For AR and LMAR models, the important parameter that needs
to be selected is the AR model order. In case of MAR  and LMMAR
models, we also need to select the number of components in the
MAR  model representing each class.

3.1.1. AR model order
The appropriate AR model order P is crucial for capturing the

dependencies in the signal. A high value of P will lead to capturing
of noise. A low value of P could lead to insufficient capturing of
signal characteristics. The signal to noise ratio (SNR) is used for
deciding the appropriate order of the AR modeling. The SNR for a

signal x is defined to be:

SNR = 10log10

∑M
t=1(x(t))2∑M

t=1(x(t) − x̂(t))2
(26)
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here x̂(t) is the prediction made using an AR model. The AR model
rder P for which the SNR is the highest is chosen.

.1.2. Number of components in MAR  model
The Bayesian information criterion (BIC) is used to select the

umber of components in the MAR  model representing a particular
lass. The BIC [24] for MAR  model of class c is computed as follows:

IC =
Nc∑

n=1

ln

[
K∑

k=1

˛kp(xn|	k)

]
− 1

2
(K(P + 1) + K) ln Nc (27)

The SNR and BIC based methods for choosing hyperparameters
rovide parsimonious values of the AR model order and number
f components from optimal representation point of view. These
ethods do not guarantee the optimal classification performance.

his necessitates validation of the models using cross validation
ethod. We  vary the AR model order and number of components

round the values provided by the SNR and BIC based methods.

.2. Study on simulated time series data

In this study we consider AR models of first order. For the first
rder AR model, the AR coefficient a and autocorrelation coeffi-
ient r1 will be equal [1].  Also, two class classification problem is
onsidered for simplicity. The AR coefficients for the data of class

 are normally distributed in the range 0.2–0.4 with mean 0.3 and
tandard deviation equal to 0.05. Similarly for class 2 in the range
.4–0.8 with mean 0.6 and standard deviation 0.1. The time series
ata is generated using Eq. (1).  The noise variance (�2) is set to
.01. The number of time series examples generated for each class

s 100. Each time series example of a class is generated using the
alue of AR coefficient a in the corresponding range. The length of
ach time series is chosen as 50, after observing that autocorrela-
ion coefficients can be estimated with sufficient accuracy. Consider

 test time series example x generated using a as the value of AR
oefficient. The corresponding autocorrelation coefficient vector is

 = [1 r1]T. The distance of the time series x with its autocorrelation
oefficient vector r to the model of a class with autocorrelation
atrix �c is rT �−1

c r. The distance of time series with different val-
es of r1 (in the range 0.2–0.8, with step size 0.01) to the models
f class 1 and class 2 is plotted in Fig. 1(a). The minimum distance
ccurs at 0.3 and 0.6 for classes 1 and 2, respectively. Also, it can be
een that the classification boundary is close to 0.45. It also shows
he range of autocorrelation values in which the test time series
xample is misclassified.

However, with the LMAR model the classification boundary is
ptimized and the classification error is reduced as can be seen in
ig. 1(b). Also, the distances from the model have a generative inter-
retation. The time series data with autocorrelation coefficients in
he boundary regions (around 0.4) can be referred to the domain
xperts to decide upon. Also, the outlier data can be found easily by
etting an appropriate threshold on the distance. The SVM based
ethod that uses AR coefficients based features will also be able to

ptimize the boundary. However, the generative interpretation of
R models is lost.

For our study on simulated time series classification using MAR
nd LMMAR models, we consider the two class classification prob-
em in which the data of each class is represented using an MAR

odel with two components. Each component is represented using
n AR model of order 1. For data of class 1, the AR coefficients
or component 1 are in the range 0–0.1 (normally distributed with

ean 0.05 and standard deviation 0.025) and for component 2 in

he range 0.3–0.4 (with mean 0.35 and standard deviation 0.025)).
or class 2, the AR coefficients for component 1 are in the range
.1–0.3 (with mean 0.2 and standard deviation 0.05) and for compo-
ent 2 in the range 0.4–0.6 (with mean 0.5 and standard deviation
omputing 13 (2013) 361–371 365

0.05). The training data includes 50 time series examples generated
for each component. First, the component label of each time series
in both classes is determined by applying the EM method. Then the
boundaries of the classes are optimized using the LMMAR  method.
The distance of a test time series example with its autocorrelation
coefficient vector r = [1 r1]T to each of the components in the MAR
models for the two classes is plotted for different values of r1 (with
step size 0.01) in Fig. 2(a) for MAR  models and Fig. 2(b) for LMMAR
models. As can be seen in Fig. 2(a), the MAR  model leads to mis-
classification of time series at the boundaries (0.1, 0.3 and 0.4). The
LMMAR  model finds the class boundaries close to 0.1, 0.3 and 0.4,
which match with the actual class boundaries. Also, the rejection
option and outlier detection can be performed by applying appro-
priate thresholds on distances. In this case, the linear SVM method
cannot separate the classes with AR coefficients based features. One
needs to use a kernel function to separate them, which will further
make generative interpretation more difficult. Also, for this kind
of multi-modal data, it is suboptimal to use a single AR model to
represent each class as can be seen in Fig. 2(c). The time series data
from one of the model components is misclassified from each class.

3.3. Study on abnormal ECG pattern classification

The electrocardiogram (ECG) describes the electrical activity of
the heart. The Hotler ECG device is used for recording ECG. In rou-
tine physical checkups, the ECG signal is recorded and studied by
physicians. However, for cardiac patients, ECG is recorded through-
out the day. Physicians then analyze and interpret the ECG time
series. As it is time consuming and tedious, there is a need for
automatic ECG pattern recognition system [6,14,26].

The MIT-BIH ECG database contains data for complex car-
diac and other physiological signals. For our studies, the data is
obtained from the MIT-BIH arrhythmia database, MIT-BIH ventri-
cular arrhythmia database and MIT-BIH supraventricular database.
The categories of ECG signals in these databases are: normal sinus
rhythm (NSR), atrial premature contraction (APC), premature ven-
tricular contraction (PVC), supra ventricular contraction (SVT),
ventricular tachycardia (VT), and ventricular fibrillation (VF).

3.3.1. Preprocessing
The sampling frequencies for time series in the databases are dif-

ferent and are as follows – arrhythmia database: 360 Hz, ventricular
database: 250 Hz and supraventricular database: 128 Hz. Therefore,
the examples in arrhythmia and supraventricular databases were
re-sampled to 250 Hz. It is important to detect the R peaks in the
ECG signals. The R peaks of ECG were detected using the Tompkin’s
algorithm [23]. The length of time series data in AR modeling should
be carefully selected, and the length should cover at least one car-
diac cycle. The cardiac cycle lengths vary for different arrhythmias
and normal cardiac signals. In the normal ECG of an adult, the heart
beat rate ranges between 60 and 100 beats per minute. In APC, the
RR interval is shorter and in VF it is even shorter compared to NSR.
Therefore, in the current study 300 sample length time series is
used in AR modeling. Differencing (third order) of the ECG signal
is carried out to account for the non-stationary nature of the ECG
signals. The effective length of the time series after differencing is
297. The number cardiac cycles used in this study as follows: NSR
(10,000), SVT (6121), APC (2505), PVC (6183), VT (470), VF (484).

3.3.2. Selection of model hyperparameters
The average SNR levels for training data of different classes
and for different AR orders are shown in Fig. 3. It is seen that the
improvement in SNR is relatively less beyond the fourth order of
AR model, except in the case of SVT. Therefore, we  set the model
order of four as initial model order in our experiments.
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The BIC values for different classes with increasing number of
omponents in the MAR  model are shown in Fig. 4. It can be seen
hat the increase in the BIC values is insignificant for the number of
omponents beyond three. The initial value of number of AR com-
onents is set to 3 for NSR, APC and SVT classes, and 2 for VT, VF
nd PVC classes.

.3.3. Study on ECG classification using AR models

Experiments were performed with models developed in the

revious sections. We  studied the classification performance for
ifferent values of model order used in the AR and LMAR mod-
ls. Fig. 5 shows the average fivefold classification performance for
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different values of model order. It can be seen that for the model
order of 5, the best classification performance is achieved. The 5-
fold average classification performance of the LMAR models is given
in Table 1. The corresponding classification performance for the AR
models is given in parentheses.

Next, we perform similar experiments with MAR  models and
the corresponding LMMAR  models. The number of components and
the AR model order used to represent data of each class are varied.

The 5-fold classification performance is shown in Fig. 6. The model
MAR1 uses 2 components for NSR, APC, and SVT and 1 component
for PVC, VT and VF. For MAR2 and MAR3 models, the number of com-
ponents for each class was  increased by one and two, respectively.

r
1

r
1

0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06 class 1 AR component 1
 class 2 AR component 1
 class 1 AR component 2
 class 2 AR component 2

distance from class 1 AR model
distance from class 2 AR model

AR model (c) LMAR  model

l components and (c) LMAR model of two classes, for different values of r1 used in



B.V. Kini, C.C. Sekhar / Applied Soft Computing 13 (2013) 361–371 367

Table  1
Average 5-fold classification accuracies and misclassification accuracies (in %) for LMAR model and in parentheses for AR model on ECG data.

Actual class Hypothesized class

NSR APC PVC SVT VF VT

NSR 98.13 0.83 0.32 0.44 0.19 0.09
(94.15) (3.15) (1.46) (0.53) (0.53) (0.18)

APC 0.16 97.56 0.60 1.55 0.07 0.06
(2.04) (93.12) (1.70) (2.31) (0.29) (0.54)

PVC 1.28  1.14 97.04 0.29 0.16 0.09
(0.29) (2.29) (93.39) (2.27) (1.43) (0.33)

SVT  0.29 1.06 1.18 97.12 0.29 0.06
(2.23) (3.04) (1.54) (92.06) (0.76) (0.37)

VF 0.19 0.13 1.03 0.13 97.26 1.26
(1.68) (1.44) (2.69) (2.22) (85.32) (6.65)

VT 0.13  0.14 0.07 0.15 2.17 97.34
(1.21) (1.56) (2.33) (3.10) (7.70) (84.10)

Table 2
5-Fold average classification accuracies and misclassification accuracies (in %) for LMMAR  model and in parentheses for MAR  model on ECG data.

Actual class Hypothesized class

NSR APC PVC SVT VF VT

NSR 98.99 0.61 0.13 0.15 0.06 0.06
(93.56) (3.44) (1.17) (1.1) (0.39) (0.34)

APC 0.26 98.60 0.61 0.42 0.06 0.05
(1.19)  (94.41) (1.34) (1.84) (0.63) (0.59)

PVC  0.1 1.01 98.76 0.05 0.05 0.03
(1.67)  (2.31) (91.92) (1.18) (1.24) (1.68)

SVT  0.22 0.03 0.8 98.77 0.13 0.05
(1.24) (1.34) (2.48) (92.63) (1.25) (1.06)

VF  0.18 0 0.01 0.02 98.51 1.28
(2.1
0.03
(2.1
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sified and referred further for investigation by cardiologists. This
(2.32) (1.64) 

VT  0.15 0.01 

(1.4)  (2.27) 

t can be seen from Fig. 6 that the best performance is obtained
or the AR model order 5 and the MAR1 model. The 5-fold classi-
cation performance for LMMAR1 model is given in Table 2. The
orresponding classification performance of MAR1 model is given
n parentheses.

It is seen that the large margin AR models give a significantly
etter performance than the AR models. The overall average clas-
ification accuracy is 90.84% for the AR models and 97.96% for the
arge margin AR models. Similarly, the overall classification accu-
acy is 91.77% for the MAR  models and 98.59% for the large margin

AR  models.
Rejection option: In the current application, the classification

rrors are not desired. Mostly, the data which are closer to the
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 0.18 2.22 97.41
4) (3.86) (5.33) (85.0)

boundary are misclassified. It is appropriate to refer such uncer-
tain cases to human experts (cardiologists). Therefore, we applied
a threshold on the distance computed in Eq. (5),  for the data to
be classified. The threshold is set to the maximum distance cor-
responding to 95% of the correctly classified training data of a
particular class. The overall classification accuracy is 99.73% for
LMMAR, 92.16% for MAR  model, 99.64% for LMAR model and 90.39%
for AR model. However, 5.71% of data for LMMAR, 8.91% for MAR,
5.72% for LMAR and 8.66% for AR model were rejected as unclas-
threshold can be further fine tuned for different classes depending
on the risk involved in wrong classification. For example, it can be
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in  MAR  models.
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Table 3
5-Fold average classification accuracies and misclassification accuracies (in %) for
SVM using AR features on ECG data.

Actual class Hypothesized class

NSR APC PVC SVT VF VT

NSR 98.24 0.79 0.68 0.14 0.05 0.10
APC 0.66  98.21 0.78 0.26 0.05 0.04
PVC  0.15 1.08 98.58 0.09 0.06 0.04
SVT 0.18  0.33 0.54 98.75 0.16 0.04
ig. 5. Average 5-fold classification performance of (a) AR model and (b) LMAR
odel based classifiers for different values of model order P on ECG data.

olerated when the NSR class data is misclassified into arrhythmias,
ut not vice versa.

Outlier detection: In the current application, the data of all the
lasses may  not be available or scarce while training. In such cases,
hen the model is posed with the unseen class data, it is desired

hat the data is not classified into one of the existing classes. It
hould be termed as novel data. Also, it is more informative if we
an say that the novel data is more similar to one of the existing
lasses than the others. To verify the capability of LMMAR model
owards this, we  performed training using the data of NSR, APC and
F classes and found the classification performance for the data of
ll classes. The NSR and APC classes are chosen because they are
ommon ECG classes and the data is abundantly available for these
lasses. The VF class is included to check the similarity of VT and

F classes. We  apply a threshold on the distance corresponding to

he 94.95% of correctly classified training data of a particular classs,
o determine the outliers. It was found that the average accura-
ies for the NSR, APC and VF classes are 99.14%, 98.22% and 97.93%,

1 2 3 4 5 6 7 8
85

90

95

100

AR Model Order

A
vg

 C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

(a) MAR Model

MAR
1

MAR
2

MAR
3

1 2 3 4 5 6 7 8
85

90

95

100
(b) LMMAR Model

AR Model Order

LMMAR
1

LMMAR
2

LMMAR
3

ig. 6. Average 5-fold classification performance of (a) MAR  model and (b) LMMAR
odel based classifiers for different values of model order P and different number

f  components K on ECG data.
VF  0.25 0.06 0.05 0.09 96.10 3.45
VT  0.35 0.09 0.09 0.06 3.21 96.20

respectively. However, 5.98% data from these classes is rejected as
outliers. Most of the data of SVT and PVC classes was classified as
outliers (with 0.98% acceptance). From VT class, 12.31% of exam-
ples are classified as VF class and the rest are rejected as outliers.
From this result, it is seen that the VF class is more similar to the
VT class than to others. Similar outlier detection performance was
obtained using LMAR model with 0.98% acceptance for SVT and PVC.
The outlier detection using AR and MAR  models is slightly better
with 0.93% acceptance for SVT and PVC.

3.3.4. Study on ECG classification using SVMs
Further, we  performed classification experiments using SVMs

with fifth order AR coefficients based cepstral features [16]. We
used the Gaussian kernel and one-versus-one strategy for multi-
class classification. The 5-fold average classification performance
of SVMs is given in Table 3 for AR model order 5. It can be seen that
the SVMs give a classification performance of 97.74%. This classifi-
cation accuracy is less than that of the LMAR and LMMAR  models.
The SVMs do not carry the generative model interpretation of AR
models and the large margin AR models.

3.4. E-set speech time series classification

We  evaluated the proposed models on multi-speaker, utterance
recognition for E-set data [31,33,34].  This data set is considered to
be difficult data to classify because the classes differ only in the
consonant part. In this subsection, we  present the results of our
study on this time series classification task.

The E-set recognition task involves recognition of spoken utter-
ances of nine letters in English alphabet: {b, c, d, e, g, p, t, v, z}. The
Oregon Graduate Institute (OGI) spoken letter database is used in
this study [31]. The data set consists of 300 utterances from 150
speakers (75 male and 75 female) for each letter. From each of the
speech time series, the consonant part is extracted by retaining the
first 40% of the time series and discarding the rest, as in [32]. The
initial AR model order is chosen to be 12 in accordance with [18].

First, we compare the results obtained by applying the AR and
LMAR models. For different values of AR model order, the 5-fold
classification performance of AR model and LMAR model is shown
in Fig. 7. It can be seen that for the model order of 15 and 16, respec-
tively, the AR model and LMAR models give the best classification
performance. The 5-fold average classification performance for the
AR and LMAR models is found to be 57.4% and 83.1%, respectively.

Similarly, for different values of AR model order and different
number of components, the 5-fold classification performance of
MAR  model and LMMAR  model is shown in Fig. 8. The initial num-
ber of components in MAR  model for each class is set to be 2. It can
be seen that for the model order of 14 and 15, respectively, the MAR
model and LMMAR  model give the best classification performance.

The number of components is 3 for both models. The average clas-
sification performance for the MAR  and LMMAR  models is found to
be 58.7% and 87.6%, respectively. For MAR  model and LMMAR  mod-
els, the BIC method of finding the number of components is found
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Table  4
5-Fold average classification accuracies and misclassification accuracies (in %) for LMMAR  and in parentheses for LMAR model on E-set data.

Actual class Hypothesized class

b c d e g p t v z

b 87.1 0 5.2 0.9 0 1.2 0 4.8 0.8
(82.1)  (0.3) (6.8) (3.1) (0.1) (2.1) (0) (5.5) (0)

c  0 90.6 0.3 0.2 0 5.7 0 3.2 0
(0.1) (87.1) (0.8) (0.1) (1.1) (4.9) (0) (4.8) (1.1)

d 0.2  2.7 84.1 0 0 8.2 1.8 1.6 1.4
(1.2)  (1.8) (81.9) (0.3) (0) (8.7) (2.1) (3.9) (0.1)

e  0 0 1.4 93.6 0 4.2 0 0.8 0
(1.1)  (0.9) (1.6) (93.4) (1.7) (0) (1.3) (0) (0)

g  2.0 0.3 1.2 0 92.5 3.1 0.9 0 0
(4.1) (0.2) (0) (2.2) (89.1) (3.7) (0) (0.7) (0)

p 1 1.1 9.2 0 2.1 81.4 5.6 0.3 0.3
(3.1)  (1.1) (10.8) (0.1) (2.3) (76.6) (4.9) (1.1) (0)

t 2.2  3.8 0 0 0 8.4 85.2 0.2 0
(0.7)  (0.7) (0) (0) (0) (14.2) (84.1) (0.3) (0)

v 5.7 3.3 0 0.2 0.8 7.1 0 81.8 1.1
(6.4)  (4.6) (2.4) (0) 

z  0 2.1 0.3 0 

(0)  (4.1) (0) (0) 
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Fig. 7. 5-Fold average classification performance of (a) AR model and (b) LMAR
model based classifiers for different values of model order P on E-set data.
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Fig. 8. 5-Fold average classification performance of (a) MAR  model and (b) LMMAR
model based classifiers for different values of model order P and different number
of  components K on E-set data.
(0) (7.6) (0) (77.2) (1.8)
0 4.6 0 6.2 86.8
(0.8) (5.2) (0) (10.9) (79.0)

to be not useful, as it suggested to choose approximately 5 num-
ber of components for each class. The classification performance of
LMAR and LMMAR  models is shown in Table 4.

With AR coefficients (order 15) based cepstral features, the aver-
age classification performance for SVM is found to be 82.1% and is
shown in Table 5. From these results, we  can infer that the classes
c, e, g are easy to discriminate from the other classes. The class p
is confused with all the other classes. From experiments, we  also
observe that the model size (AR model order and number of com-
ponents in the mixture) has to be sufficiently large enough for good
discrimination between different classes.

Among all classes, e class is distinct in the sense that all other
classes have consonants. This class is detected as outlying class with
100% accuracy using AR model by applying a threshold correspond-
ing to the distance for 95% correctly classified training data from
all other classes. We  studied the outlier detection performance of
LMAR and LMMAR  models by using the data of all classes other
than the e class for training. We  found that the data of e class was
detected as the outlying class with 100% accuracy, both with the
LMAR and LMMAR  models. This suggests that the generative inter-
pretation of AR models is retained by the LMAR models and LMMAR
models.

The average performance of LMMAR  is found to be better than
that of the SVM that uses AR coefficients based cepstral features.
However, the performance of LMMAR  model on E-set data is not
better compared to the large margin hidden Markov models [33],
that make use of mel-frequency cepstral coefficients (MFCC) as
features and HMMs  as the underlying model. Autoregressive hid-
den Markov models, trained with large margin method may  give a
better performance for E-set recognition.

3.5. EEG time series classification

EEG time series have been widely used in the area of
human–computer interaction for the study of underlying human
brain process. We  study the EEG dataset from the UCI KDD archive
for our experiments [http://kdd.ics.uci.edu]. This EEG dataset arose
from a large study to examine EEG correlates of genetic predispo-
sition to alcoholism. There are two kinds of subjects in the data:
control subjects and alcoholic subjects. Multichannel EEG time

series were recorded for these two  kinds of subjects. Each sub-
ject is exposed to stimuli that are pictures of objects chosen from
the 1980 Snodgrass and Vanderwart picture set. It contains mea-
surements, sampled at 256 Hz for 1 s, from 64 electrodes placed on

http://kdd.ics.uci.edu
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Table 5
5-Fold average classification accuracies and misclassification accuracies (in %) for SVM model using AR coefficients based features on E-set data.

Actual class Hypothesized class

b c d e g p t v z

b 80.2 0 4.8 3.3 2.7 4.0 1.2 2.8 1.0
c  0 87.4 1.6 1.9 0.1 5.8 0.2 2.7 0.3
d  0 5.1 81.9 0 0 8.3 1.7 1.6 1.4
e 2.3  1.7 3.1 85.9 0 6.7 0 0.2 0.1
g 6.1  0.2 1.7 0 82.1 7.9 2 0 0
p  1.4 1.6 10.7 0 2.1 77.1 6.9 0 0

1.6 7.4 81.8 0 1.2
2.1 6.0 1.9 80 1
1.4 5.6 0 5.2 80.8
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Fig. 10. 5-Fold average classification performance of (a) MAR  model and (b) LMMAR
model based classifiers for different values of model order P and different number
of  components K on EEG data.

Table 6
5-Fold average classification accuracies and misclassification accuracies (in %) for
t  2.0 3.7 2.3 0 

v 7.8 1.2 0 0 

z  2.1 3.7 1.2 0 

he scalp. The whole dataset includes 122 subjects, with each sub-
ect performed 120 trials where different stimuli were shown. The
ataset contains data for each subject for each of three matching
aradigms, single picture, two matching picture, two non-matching
ictures, respectively. We  include in our datasets time series from
wo channel F4 for each trial of the subjects. We  perform classifi-
ation on these datasets with the goal of separating time series of
ontrol and alcoholic subjects. Following previous work by Keirn
nd Aunon [36], we start with AR model with order 6 in our exper-
ments to represent the EEG time series. A differencing step is first
pplied to the time series as the preprocessing step to remove the
onstationary trend.

First, we compare the results obtained by applying the AR and
MAR models. For different values of AR model order, the 5-fold
lassification performance of AR model and LMAR model on EEG
ataset is shown in Fig. 9. It can be seen that for the model order
f 7 and 8, respectively, the AR model and LMAR models give the
est classification performance. The 5-fold average classification
erformance for the AR and LMAR models is found to be 59.3% and
4.2%, respectively.

Similarly, for different values of AR model order and different
umber of components, the 5-fold classification performance of
AR  model and LMMAR  model on EEG dataset is shown in Fig. 10.

he initial number of components in MAR  model for each class
s set to be 2. It can be seen that for the model order of 6 and 7,
espectively, the MAR  model and LMMAR  model give the best clas-

ification performance. The number of components is 2 for both
odels. The 5-fold average classification performance for the MAR

nd LMMAR models is found to be 79.9% and 95.9%, respectively.
or MAR  model and LMMAR models, the BIC method of finding the
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ig. 9. 5-Fold average classification performance of (a) AR model (b) LMAR model
ased classifiers for different values of model order P on EEG data.

LMMAR  and in parentheses for LMAR model on EEG data.

Actual class Hypothesized class

Control Alcoholic

Control 93.2 6.8
(72.9) (27.1)
Alcoholic 2.9 97.1
(25.3) (74.7)

number of components is found to be not useful, as it suggested
to choose 3 number of components for each class. The 5-fold clas-
sification performance of LMAR and LMMAR  models is shown in
Table 6.
With AR coefficients (order 6) based cepstral features, the 5-fold
average classification performance for SVM is found to be 83.5% and
is shown in Table 7. The overall performance of LMMAR is found to
be better than that of the SVM that uses cepstral based features.

Table 7
5-Fold average classification accuracies and misclassification accuracies (in %) for
SVM model using AR coefficients based features on EEG data.

Actual class Hypothesized class

Control Alcoholic

Control 81.2 18.8
Alcoholic 12.9 87.1
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Table  8
Classification accuracy (%) with 95% confidence intervals for different methods for the ECG, E-set and EEG benchmark datasets.

Dataset AR LMAR MAR  LMMAR  SVM
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[
nical Report, Dept. of Computer Science and Information Engineering, National
Taiwan University, Taipei, 2003.
ECG 90.84 ± 1.67 97.96 ± 1.78 

E-set 57.41 ± 2.67 83.12 ± 2.22 

EEG 59.31  ± 3.07 74.22 ± 2.97 

Table 8 gives the average 5-fold classification accuracies with 95
 confidence intervals obtained by different methods for 3 different
atasets.

. Conclusion

In this work we proposed a new method for time series classi-
cation. The proposed method inspired by discriminative training
f generative models, has the richness of generative models and
erformance of discriminative methods. A mixture AR model used
o represent each class is trained discriminatively using the large

argin methods. The proposed method is applied on ECG and E-set
ata and found to perform better than the state-of-the-art method
ased on SVM, that makes use of AR modeling for feature extraction.
he time series mixture modeling being an important problem,
he estimates of mixture model parameters can be improved by
sing Bayesian estimation, instead of maximum likelihood esti-
ates. Also, the autoregressive hidden Markov model [18] can be

sed as the underlying generative model, for speech recognition
asks. Our method can be extended for classifying multivariate time
eries.
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