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a b s t r a c t

Time series classification is a supervised learning problem aimed at labeling temporally structured

multivariate sequences of variable length. The most common approach reduces time series

classification to a static problem by suitably transforming the set of multivariate input sequences

into a rectangular table composed by a fixed number of columns. Then, one of the alternative efficient

methods for classification is applied for predicting the class of new temporal sequences. In this paper,

we propose a new classification method, based on a temporal extension of discrete support vector

machines, that benefits from the notions of warping distance and softened variable margin.

Furthermore, in order to transform a temporal dataset into a rectangular shape, we also develop a

new method based on fixed cardinality warping distances. Computational tests performed on both

benchmark and real marketing temporal datasets indicate the effectiveness of the proposed method in

comparison to other techniques.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Time series classification is a supervised learning problem
aimed at labeling temporally structured multivariate sequences of
variable length. Several applications have been naturally cast in
the form of time series classification, such as labeling the
trajectories of vehicles monitored by video surveillance systems,
or indexing ECG diagrams in a medical diagnosis context.
However, there are also application domains where the temporal
nature of the data is less evident and has been usually neglected.
In particular, a large majority of classification problems arising in
the domain of relational marketing are based on sequential data:
the behavior of customers is observed through time, and their
interactions with the company actually represent multivariate
time series. For example, for a telecommunication company each
time series corresponds to the transactions of a single customer
recorded along time periods, described by multiple variables
which may represent duration, economic value and number of
calls made for different types of connections. To model and
predict customers loyalty, one can formulate a binary classifica-
tion problem in which the label of each time series indicates
whether customer is still active or is a churner who presumably
left the company in favour of a competitor. When dealing with
marketing data, it is a common practice to reduce them to tabular
ll rights reserved.
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shapes by simply consolidating the variables on vertical time
frames along the temporal dimension. Other classification
problems involve instead univariate time series. This is the case
of ECG diagrams labeling, where each temporal sequence
expresses the cardiac activity recorded by one electrode and is
classified according to the patient state of health. We believe that
properly framing classification problems within a temporal
setting may lead to higher accuracy in prediction, as shown by
our computational experiences.

Several alternative paradigms for time series classification
have been proposed in the literature; we refer the reader to [1] for
a review. The most common approach is based on a two-stage
procedure. First, a rectangular representation of the time series is
derived by suitably transforming the set of multivariate input
sequences into a fixed number of columns, through different
rectangularization mechanisms. Then, a classification method is
applied for labeling the data, such as support vector machines
(SVM) [2], neural networks [3], induction trees [4], among others.
The rectangularization process is aimed at compressing the
temporal span of the different time series without compromising
the wealth of information contained in the original data.
Consequently, it plays a significant role in the whole classification
task and should not be undervalued.

An entirely different approach, which is very effective for
univariate time series classification, is based on the notion of
warping distance, a suitable measure of similarity between pairs
of time series. This distance allows to detect clusters and to
predict with high accuracy the class of new temporal sequences
by using distance-based methods, such as the 1-nearest neighbor
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classifier [5,6]. Kernels based on dynamic time warping and
incorporated within traditional SVMs have been proposed in
[7–9] and recently applied in [10] to brain activity classification.

In this paper, we propose a new classification method framed
within the two-stage scheme outlined above, that benefits from
the powerful notion of warping distance in both phases. More
specifically, we develop a new temporal variant of discrete
support vector machines to perform the classification task.
Discrete SVM, first introduced in [11,12], are a successful
alternative to classical SVM based on the idea of accurately
evaluating the number of misclassified examples instead of
measuring their distance from the separating hyperplane. Starting
from the original formulation, discrete SVM have been success-
fully extended in several directions, to deal with multi-class
problems [13] or to learn from a small number of training
examples [14].

The optimization model representing temporal discrete SVM
has two main novelties. First, it explicitly takes into account the
overall similarity among time series assigned to the same class, by
including into the objective function a term that depends on the
warping distances. Furthermore, the optimal discriminating
hyperplane derived by the model establishes a variable softening
of the margin of separation by introducing an additional term into
the objective function and modifying some of the constraints of
the optimization problem. The explicit inclusion of the margin as a
variable allows to regulate more effectively the trade-off between
the misclassification error on the training data and the general-
ization capability, by means of the corresponding cost coefficient.

A new procedure is also proposed for the rectangularization
stage, in order to fully exploit the intrinsic temporal dependence
in the data, by considering a fixed cardinality variant of the
warping distance that can be efficiently computed. By this way,
the dependence from time is preserved in the derived tabular
shape, and a proper phasing and alignment of the time series is
achieved. For example, in marketing applications customers with
different lifetime profiles are aligned and phased, allowing to
extract the maximum amount of information carried through
their recorded behavior.

To evaluate the effectiveness of the proposed method, which
combines the rectangularization phase with the classification task
performed by temporal discrete SVM, we have considered six
datasets, mostly composed by multivariate temporal sequences.
The results seem to indicate that temporal discrete SVM have a
great potential to perform an accurate classification of multi-
variate time series.
2. Temporal classification and warping distance

In a classification problem, that will be termed static in the
sequel to underline the difference from temporal classification
problems defined below, a set Sm ¼ fðxi,yiÞ; iAM¼ f1,2, . . . ,mgg of
training input–output examples is given. Here xiARn is an input
vector of real numbers and yiAD¼ f1,2, . . . ,Dg is the categorical
class label associated to xi. Each component xij of an example xi is
thought to be a realization of a random variable
Bj, jAN ¼ f1,2, . . . ,ng that will be referred to as an attribute of
Sm. Let H denote a set of functions f : Rn/D that represent
hypothetical relationships between xi and yi. A static classification

problem consists of defining an appropriate hypotheses space H
and a function f �AH which optimally describes the relationship
between inputs and outputs. When there are only two classes, i.e.
D¼2, we obtain a binary classification problem, while the general
case is termed as multicategory classification. For binary problems
we assume that yiAf�1,1g, without loss of generality.
In a temporal classification problem we are given a set of
multivariate time series {Ai}, iAM, where each Ai¼[ailt] is a
rectangular matrix of size L� Ti. Here lAL¼ f1,2, . . . ,Lg is the
index associated to the attributes of the time series, whereas
tAT i ¼ f1,2, . . . ,Tig is the temporal index that may vary in a
different range for each Ai. Every time series is also associated with
a class label yiAD. The temporal classification problem consists of
defining an appropriate function f * which optimally describes the
relationship between the time series {Ai} and their labels {yi}, in
the sense of minimizing some measure of misclassification.

Hence, the main difference between static and temporal
classification problems lies in the native rectangular structure of
the former, opposed to the variable length of each record in the
latter. Due to the vast amount of alternative effective methods
available for static classification problems, a commonly adopted
approach to time series classification relies on a two-phase
procedure. First, an appropriate transformation is devised to
obtain a rectangular representation of the set {Ai}. Then, a method
for static classification is applied to the rectangular dataset
derived in the first phase. An entirely different approach to time
series classification is based on the notion of warping distance
described in the next subsection.

2.1. Warping distance

The warping distance, originally introduced in the context of
speech recognition and signal processing [15], has been success-
fully applied as a proximity measure for clustering and labeling
univariate time series [5,6,16]. As a similarity measure, the
warping distance has proven to be more robust and versatile
than the Euclidean metric since, unlike this latter, it copes with
sequences of variable length and automatically performs shifts in
the sequences to identify similar profiles with different phases.
Furthermore, it has been shown that the warping distance for
each pair of time series can be calculated efficiently by dynamic
optimization in O(Tmax

2 ) time, where Tmax ¼maxfTi : iAMg is the
maximum temporal length of the m time series. Let also
Tmin ¼minfTi : iAMg be the minimum length.

We start by defining the warping distance for univariate time
series, for which L¼1, where a single attribute is recorded for each
sequence along its time trajectory. Notice that our description
departs from the way the argument is usually developed in the
literature, where the warping distance is introduced in strict
connection to the dynamic programming procedure traditionally
adopted for its computation. Instead, we prefer to express the
evaluation of the warping distance as an optimal path problem,
since this formulation sheds a clear light on the problem
structure, and allows to derive more easily the fixed cardinality
extension proposed in Section 3.

In order to find the optimal alignment between two univariate
time series Ai and Ak, let G¼(V,E) be a directed graph whose
vertices in V correspond to the pair of time periods
ðr,sÞ, rAT i, sAT k. A vertex v¼(r,s) indicates that the r-th value
of the time series Ai is matched with the s-th value of Ak. An
oriented arc (u,v) connects vertex u¼(p,q) to vertex v¼(r,s) if and
only if one of the following mutually exclusive conditions holds:

fr¼ pþ1; s¼ qg3fr¼ pþ1,s¼ qþ1g3fr¼ p,s¼ qþ1g: ð1Þ

Consequently, each vertex uAG has at most three outgoing arcs,
associated to the three conditions described in (1) and illustrated
in Fig. 1.

The length guv of the arc (u,v), connecting the vertices u¼(p,q)
and v¼(r,s), is defined as the squared distance associated to the
potential alignment of period r in Ai to period s in Ak, given by

guv ¼ g ikðr,sÞ ¼ ðai1r�ak1sÞ
2: ð2Þ
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Let also vf¼(1,1) and vl¼(Ti,Tk) be the vertices corresponding to
the alignment of the first and last periods in the two sequences,
respectively.

A warping path in G is any path connecting the source vertex vf

to the destination vertex vl. It is clear that a warping path
determines a coherent alignment between the two sequences of
periods composing each time series, such that matched time
periods are monotonically spaced in time and contiguous. The
warping distance between the time series Ai and Ak is defined as
the length of the shortest warping path in G (Fig. 2). The
cardinality H of the shortest warping path lies in the interval
[max(Ti,Tk),Ti+Tk�1]. Intuitively, the warping distance is a
suitable measure of similarity that allows to achieve a proper
phasing and alignment of two time series, as shown in Fig. 3.

Turning to multivariate time series, the concept of warping
path and warping distance between Ai and Ak can be readily
Fig. 1. Possible connections between the vertices u¼(p,q) and v¼(r,s) in G.
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Fig. 2. Shortest warping path between two univariate time series, Ai and Ak. In the

example, both series have the same length: Ti¼Tk¼14.

Fig. 3. Alignment between Ai and Ak.
generalized by summing over the L attributes, defining the length
guv of the arc (u,v) as

guv ¼
XL

l ¼ 1

ðailr�aklsÞ
2: ð3Þ

2.2. A DAGSP algorithm for warping distance computation

The graph G is a weighted directed acyclic graph (DAG) and is
also rather sparse since the outdegree of its vertices is at most
three, so that jEjr3jV j. It is known [17] that for a DAG the length
zv of the single-source shortest path between vf and all other
vertices vAV can be computed in time OðjEjþjV jÞ, reducing to
OðjV jÞ for G, by the procedure DAGSP:
procedure DAGSP (G,vf)

1
 topologically sort the vertices of G
2
 do zvf
¼ 0; for each uAV do zu ¼1
3
 for each uAV in topological order

4
 do for each vAV : ðu,vÞAE
5
 do zv ¼minðzv,zuþguvÞ
At the end of procedure DAGSP, zvl
equals the warping distance

between the time series Ai and Ak, computed in OðjV jÞ ¼OðTiTkÞ

time. Therefore, the warping distances for all pairs of time series
can be computed in O(m2Tmax

2 ) time.
In practice, most papers performing warping distance compu-

tations have imposed some form of global or local constraints to
prevent the alignment of periods positioned too far from each
other along the time axis. It has been noticed [5] that these
constraints not only decrease the time needed for evaluating the
warping distances, but also lead to more accurate similarity
metrics, improving the quality of the subsequent clustering or
classification task. Nicely, it turns out that most constraints of this
nature can be transposed into simple limitations on the network
topology of the graph G.

For example, we will assume in the sequel a global constraint
that permits to include a vertex v¼(r,s) in V only if jr�sjrW, for a
given integer parameter WZ0. This means that a vertex is in V

only if the absolute difference between the periods r and s that
can be aligned in the two time series is not greater than a fixed
threshold W. Due to this additional constraint, it follows that the
graph G, denoted hereafter as GW, contains at most ½WmaxðTi,TkÞ�

vertices. Hence, the warping distance between each pair of time
series can be computed by procedure DAGSP in O(Tmax) time,
leading to an overall O(m2Tmax) complexity for the whole set of
warping distances. By letting W vary along the time axis, one may
also define more general constraints.
3. Rectangularization by fixed cardinality warping paths

As noticed in the Introduction, if the time series have variable
length it is necessary to transform them into sequences of fixed
length in order to achieve a rectangular table to be fed into a
method for static classification. For instance, a rectangularization
can be obtained by fixing a priori the number T of desired
time periods, subdividing the time axis in T portions and then
consolidating each attribute for each sequence over the time
intervals by means of summaries or averages. Of course, this
representation appears somewhat simplistic, and it is likely
to loose important information embedded in the temporal
dependence within each time series.

In order to derive a more effective rectangularization of the
time series {Ai}, capable of taking into account their profiles and
capturing their behavior, in this section we propose a new
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rectangularization scheme based on a fixed cardinality extension
of the warping distance, in which the number H of arcs in the
optimal warping path is fixed a priori and is constant for each pair
of time series (Ai,Ak). Hence, it is required to compute the shortest
warping path in the graph GW subject to the additional constraint
that the number of arcs in the path is equal to a constant value H.
This problem is a single equality constrained version of the
general resource constrained shortest path problem that has been
investigated by different authors [18,19]. The single equality
constrained version of the problem is NP-hard for general graphs,
since the traveling salesman problem can be reduced to it by
taking H¼ jV j�1 and vf¼vl. However, it can be solved in
polynomial time if the graph is a DAG. In particular, we set
H¼Tmax since this choice leads to feasible solutions of the fixed
cardinality warping distance problem, provided that the range in
the time length of the m sequences is not too large.

Theorem 3.1. Assuming H¼Tmax, for any pair of time series there

exists at least a feasible warping path of cardinality H in the graph GW,
provided the conditions Tmaxo2Tmin and WZ1 are satisfied.

Proof. We know that for each pair of time series Ai and Ak the
cardinality H of any warping path in GW lies in the interval
[max(Ti,Tk),Ti+Tk�1], since WZ1. Hence, it is sufficient to show
that the choice H¼Tmax falls within this interval for any pair of
time series. Indeed, by definition H¼ TmaxZmaxðTi,TkÞ. On the
other hand, TiþTk�1Z2Tmin�1ZTmax ¼H. &

If the length of the time series has a large range of variability
and the condition Tmaxo2Tmin is violated, there are at least two
alternative ways to achieve the required regularity. First, one may
drop the time series whose length falls on the tails of the length
distribution, until the condition is met. Alternatively, to avoid a
loss of discarded examples, one can apply a standard technique
for replacing missing values in order to increase the value of Tmin.

To compute the cardinality constrained shortest warping path
in GW from the source vertex vf to the destination vertex vl, we
need to modify as follows the procedure DAGSP:
procedure DAGSP-FC ðGW,vf ,HÞ
1
 topologically sort the vertices of GW

2
 for each h¼1,2,y,H, do {zvf

ðhÞ ¼ 0; for each uAV do

zuðhÞ ¼1}

3
 for each uAV in topological order

4
 do for each vAV : ðu,vÞAE
5
 do for h¼1,2,y,H

6
 do zvðhÞ ¼minðzvðhÞ,zuðh�1ÞþguvÞ
Theorem 3.2. At the end of the procedure DAGSP-FC, zvl
ðHÞ indicates

the fixed cardinality warping distance between the time series Ai and

Ak, computed in OðHjV jÞ ¼ OðWT2
maxÞ ¼OðT2

maxÞ time for fixed W.

Proof. Let ovðhÞ, h¼ 1,2, . . . ,H, be the length of the shortest path
from vf to v containing exactly h arcs. We want to show that
zvðhÞ ¼ovðhÞ at termination of the algorithm, for each vAV and
for each h¼1,2,y,H. The theorem is proved by induction on h.

For h¼1, we have zvð1Þ ¼ gvf v ¼ovð1Þ if ðvf ,vÞAE, and

zvð1Þ ¼1¼ovð1Þ if ðvf ,vÞ=2E.

We assume now that zvðh�1Þ ¼ovðh�1Þ for each vAV and

show that this implies zvðhÞ ¼ovðhÞ. By contradiction, suppose

that zvðhÞ4ovðhÞ, and let {vf,v1,v2,y,vh�1,v} be the sequence of

vertices in the shortest path from vf to v composed by h arcs. Since

the vertices are topologically ordered, we have fvf!v1!

v2! � � �!vh�1!vg, where ! indicates the precedence relation-

ship. Furthermore, since the vertices are considered in topological
order in step 3, the values assumed by zu(j), j¼1,2,y,H at the

beginning of the step are retained until the end of the whole

procedure. Consider the path {vf,v1,v2,y,vh�1}, connecting vf to

vh�1 by means of h�1 arcs, and denote as

fvh�1
ðh�1Þ ¼ovðhÞ�gvh�1v its length. Due to the topological

ordering, when vertex v is considered in step 4, the value

zvh�1
ðh�1Þ is permanently fixed. Consequently, it must be

zvðhÞrzvh�1
ðh�1Þþgvh�1v. We have therefore

zvh�1
ðh�1ÞZzvðhÞ�gvh�1v4ovðhÞ�gvh�1v ¼fvh�1

ðh�1Þ,

so that a path from vf to vh�1 of cardinality (h�1) and length

strictly less than zvh�1
ðh�1Þ has been found, contradicting the

induction hypothesis. &

The rectangularization procedure is composed by the following
main steps.
1.
 First, we compute the warping distances eik, i,kAM; iok,
between all pairs of time series, by repeatedly using the
procedure DAGSP. Then, for each class label dAD we calculate
the centroid Ac of the class as the time series for which the sum
of the warping distances to all other time series in the class is
minimum, that is

Ac ¼ argmin
Ai :yi ¼ d

X
Ak :yk ¼ d

i a k

eik:

For each time series Ai, iac, having the class label yi¼d we
2.

compute the fixed cardinality warping distance between Ac

and Ai, by means of the procedure DAGSP-FC.

3.
 We then build a three-dimensional m� L�H matrix in which

the first entry corresponds to the time series, the second to the
attributes and the third to the number H of arcs in the optimal
warping path. For each series Ai we take its value in the
position (i,l,h) of the matrix as the value ailr, where r is the time
period aligned in the h-th arc of the warping path connecting
the time series Ai to the corresponding centroid Ac.
4.
 Finally, to obtain a rectangular m�n matrix, with n¼L�H, we
proceed by sequencing for each time series Ai the attributes
and the time periods.

Based on the previous discussion, it can be readily seen that the
whole rectangularization procedure leads to an overall O(m2Tmax

2 )
time complexity.
4. Temporal discrete support vector machines

At the end of the rectangularization phase described in Section
3, we may assume that the set of time series is represented by a
m�n matrix. In this section, we propose a new optimization
problem which extends the notion of discrete SVM in order to
perform time series classification. Here, we confine the attention
to binary classification tasks. General multicategory classification
problems can be reduced to sequences of binary tasks by means of
one-against-all or all-against-all schemes [20,13].

For many binary classification methods the generic hypothesis
takes the form f(x) ¼ sgn(g(x)), where g : Rn/R is a properly
defined score function. If the space H is based on the set of
separating hyperplanes in Rn, we have gðxÞ ¼wux�b. In order to
choose the optimal parameters w and b, SVM [22–24] resort to
the minimization of the following risk functional:

Rðf Þ ¼
1

m
Lðy,f ðxÞÞþlJf J2

K , ð4Þ

where Kð�,�Þ is a given symmetric positive definite function named
kernel; Jf J2

K denotes the norm of f in the reproducing kernel
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Hilbert space induced by K [21] and plays a regularization role;
L(y,f(x)) is a loss function that measures the accuracy by which the
predicted output f(x) approximates the actual output y; l is a
parameter that controls the trade-off between the empirical error
and the regularization term.

In the classical theory of SVM [22–24] the loss function
measures the distance of the misclassified examples from the
separating hyperplane. Discrete SVM represent a variant of SVM,
introduced in [11,12], for which the loss is expressed by a discrete
function which counts the number of misclassified examples.
The rational behind discrete SVM is that a precise evaluation of
the empirical error may determine a more accurate classifier. This
leads to the formulation of a mixed-integer optimization problem
that corresponds to the minimization of (4) using the discrete loss
function, with the inclusion of an additional regularization term
representing the number of attributes which define the separating
hyperplane. This term is aimed at reducing the dimension of the
space H, in order to derive optimal hypotheses of lower
complexity and higher generalization capability.

In the discrete SVM framework, the number of misclassified
examples is computed by means of the binary variables

pi ¼
0 if xi is correctly classified,

1 if xi is misclassified,

(
ð5Þ

while the count of the number of attributes defining the
separating hyperplane is based on the binary variables

qj ¼
0 if wj ¼ 0,

1 if wja0:

(
ð6Þ

Let ci,iAM, be a penalty for the misclassification of example xi,
and hj,jAN , the penalty cost of using attribute j. Let also S and R

be sufficiently large constant values, and a,b,g the parameters to
control the trade-off among the objective function terms. The
problem of determining an optimal separating hyperplane is
formulated through the following discrete support vector machines

model

min
a
m

Xm

i ¼ 1

cipiþ
b
2

Xn

j ¼ 1

ujþ
g
n

Xn

j ¼ 1

hjqj ðDSVMÞ

s:t: yiðwuxi�bÞZ1�Spi iAM ð7Þ

ujrRqj, jAN ð8Þ

�ujrwjruj, jAN ð9Þ

uZ0, p,q binaries, w,b free:

The family of bounding variables uj,jAN , and the constraints (9)
are introduced in order to linearize the norm of f in the risk
functional (4).

Although model (DSVM) is directly applicable to a dataset
obtained from the rectangularization of the time series, we
propose an extension of the original discrete SVM formulation by
defining two new regularization terms aimed at improving the
discrimination capability when dealing with temporal classifica-
tion problems.

In order to clarify the role of the first regularizer, observe that
the loss functions used in SVM and discrete SVM stick on
the assumption of leaving misclassified the examples lying inside
the strip region determined by the margin of separation, defined as
the distance between the pair of parallel canonical supporting

hyperplanes wux�b�1¼ 0 and wux�bþ1¼ 0. In model (DSVM) the
width of the margin is regulated by the second term in the
objective function, which expresses the linear representation of
the norm of f. To improve the discrimination among time series of
distinct classes, we adopt an alternative perspective for which the
margin is explicitly determined by the inclusion of a new variable
e40, and the discrete loss function is modified in order to
account only for those sequences which are actually misclassified
by the optimal hypothesis f *.

The second regularization term is represented by the sum of
the warping distances between all pairs of time series assigned to
the same class. Since the warping distance can be retained as a
similarity measure, the inclusion of this term into the objective
function aims at determining a separating hyperplane which is
optimal also with respect to time series likeness. Indeed, it is
reasonable to assume that temporal sequences belonging to the
same class usually exhibit resemblance in their temporal profiles.

Let each example xi represent the row corresponding to time
series Ai in the rectangular representation obtained at the end of
the first phase. Let eik denote the warping distance between the
pair of temporal sequences (xi,xk) of the training set Sm. In order
to determine the best separating function for time series
classification the following nonsmooth optimization problem
can be formulated:

min
1

m

Xm

i ¼ 1

cipiþ
1

2

Xn

j ¼ 1

ujþ
2d

mðm�1Þ

Xm

i ¼ 1

Xm

k ¼ iþ1

eik

�
jyið2pi�1Þþykð2pk�1Þj

2
�ne ðNTDVMÞ

s:t: yiðwuxi�bÞZe�Spi iAM ð10Þ

�ujrwjruj, jAN ð11Þ

uZ0, eZr, p binary, w,b free:

Here r40 is a lower threshold to prevent the case e¼ 0 that
might lead to useless optimal solutions for which Jf J¼ 0. In
model (NTDVM) the variable e plays a regularization role since it
progressively softens or hardens the separation between the two
classes determined by the optimal hyperplane. When e decreases
and approaches 0 the margin around the separating hyperplane
reduces and tends to vanish, whereas the opposite is true when
e increases. Notice that the explicit inclusion of the variable
e allows to fix to 1 the values of the parameters a and b in the
objective function, since the trade-off between the misclassifica-
tion error and the generalization capability of the classifier is
regulated by the parameter n. In particular, when n is large there
is an advantage in taking e large as well, and the misclassification
error increases. By converse, small values of n induce e to
decrease, reducing the empirical error at the expense of the
generalization capability.

Theorem 4.1. Given a feasible solution to problem (NTDVM), the

expression

Xm

i ¼ 1

Xm

k ¼ iþ1

eik
jyið2pi�1Þþykð2pk�1Þj

2
ð12Þ

is equal to the sum of the warping distances between all pairs of time

series assigned to the same class.

Proof. Let si ¼ yið2pi�1Þ, 8iAM. Consider first two examples, xi

and xk, belonging to the class {+1}, so that yi ¼ yk¼1. If xi and xk

are assigned to the positive class, they are both correctly
classified, and the binary variables pi and pk are forced to take
the value 0 by constraints (10). In this case, si¼sk¼�1 and the
warping distance between xi and xk is correctly computed in (12).
On the contrary, if xi and xk are labeled with the negative class,
they result in two misclassified examples, and constraints (10)
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force to 1 the binary variables pi and pk. In this case, si¼sk¼1 and
the warping distance between the two examples is still accounted
in the sum (12), as required. Finally, if xi and xk are assigned to
opposite classes, the variable s takes the value �1 for the
correctly classified example and the value 1 for the misclassified
one, and the warping distance between xi and xk is not included in
(12). An analogous reasoning can be developed when the
examples xi and xk belong to the class {�1}. &

The presence of the two new regularization terms in (NTDVM)
led us to drop the third term appearing in the objective function
of model (DSVM), aimed at controlling the complexity of the
optimal hypothesis f *, since the computational experiences
indicated that its role became practically irrelevant.

The inclusion of the sum of the warping distances between the
temporal sequences, expressed by (12), leads to a non-differenti-
able objective function in the mixed-integer optimization pro-
blem. In order to reformulate model (NTDVM) as a linear problem,
we define the family of continuous bounding variables rik,i,kAM,
and obtain the following optimization problem termed temporal

discrete support vector machines (TDVM):

min
1

m

Xm

i ¼ 1

cipiþ
1

2

Xn

j ¼ 1

ujþ
d

mðm�1Þ

Xm

i ¼ 1

Xm

k ¼ iþ1

eikrik�ne ðTDVMÞ

s:t: yiðwuxi�bÞZe�Spi, iAM ð13Þ

�rikryið2pi�1Þþykð2pk�1Þrrik, i,kAM; iok ð14Þ

�ujrwjruj, jAN ð15Þ

uZ0, rikZ0 i,k2M eZr, p binary, w,b free:

For determining a feasible suboptimal solution to model (TDVM),
we adopt a heuristic procedure based on a sequence of linear
programming (LP) problems. The heuristic starts by considering
the LP relaxation of problem (TDVM). Each LP problem (TDVM)t +1

in the sequence is obtained by fixing to zero the relaxed binary
variable with the smallest fractional value in the optimal solution
of the predecessor (TDVM)t. The procedure is stopped if problem
(TDVM)t is feasible and its optimal solution is integer feasible, and
the solution generated at iteration t is retained as an approxima-
tion to the optimal solution of problem (TDVM). Otherwise, if
problem (TDVM)t +1 is unfeasible, the procedure modifies the
previous LP problem (TDVM)t by fixing to 1 all of its fractional
variables. Problem (TDVM)t +1 defined in this way is feasible and
any of its optimal solutions is integer. Thus, the procedure is
stopped and the solution found for (TDVM)t is retained as an
approximation to the optimal solution of (TDVM).
Table 1
Description of the temporal datasets.

Dataset Classes Variables Length Examples

Jvowels 9 12 [7y29] 640

Pendigits 10 2 8 10 992

ECG 2 1 96 200

Telecom 2 32 [18y24] 1200

Electronics 2 27 [35y48] 1800

Robot

Failure 1 4 6 15 88

Failure 2 5 6 15 47

Failure 3 4 6 15 47

Failure 4 3 6 15 117

Failure 5 5 6 15 164
5. Computational setup and analysis

The proposed method, which combines the rectangularization
stage with the classification task performed by model (TDVM),
has been evaluated on six datasets mostly composed by multi-
variate temporal sequences. Four of these datasets are usually
considered as benchmark datasets for comparing the accuracy of
alternative classification methods. These are ‘‘Japanese vowels’’
(Jvowels), ‘‘robot execution failures’’ (Robot), ‘‘pen-based recogni-
tion of handwritten digits’’ (Pendigits), all available from the UCI
KDD Archive [25], and ECG available at the UCR Time Series
Homepage [26]. The last two datasets, indicated as Telecom and
Electronics, are real world marketing datasets referring, respec-
tively, to a retention analysis for a telecommunication company
and a cross-selling application in the consumer electronics
industry.

In particular, Jvowels consists of multivariate time series of
variable length given by the utterances of two Japanese vowels
provided by nine male speakers. Robot refers to five classification
tasks concerning the identification of a robot execution failures.
Each learning problem is based on a sample of multivariate
sequences of fixed length, where each series is described in terms
of numerical attributes providing the force and torque measure-
ments collected after failure detection. Pendigits consists of
bivariate time series of fixed length representing handwriting
digits samples. ECG is composed by univariate sequences of fixed
length reporting the measurements of the cardiac activity as
recorded by one electrode during one heartbeat. Finally, Telecom

and Electronics contain sequences of variable length described
both by numerical and categorical attributes. In the first case,
each sequence refers to a customer who has churned or who is
still loyal. In the second case, each series corresponds to an
individual who, in the past, has adhered or not to a digital camera
purchase promotion. For the marketing datasets the problem is to
devise an optimal classification function for identifying segments
of customers who are more likely to churn or to accept a future
promotional offer. The distinctive features of each dataset in
terms of number of classes, variables, time series length and
number of available examples, are summarized in Table 1. These
datasets were selected because they are illustrative of a wide
range of temporal classification problems.

Six alternative methods were considered for comparisons with
temporal discrete SVM (TDVM): discrete SVM (DSVM), SVM with
linear (SVMLIN), sigmoid (SVMSIG), radial basis function (SVMRBF) and
dynamic time warping (SVMDTW) kernels, and the 1-nearest
neighbor classifier (1NNWD) based on the warping distance
described in Section 2. In particular, this latter appeared as one of
the most robust and accurate classifier for time series in extensive
computational tests [6]. Among the kernels based on dynamic time
warping, we implemented the one proposed in [9] since it is positive
definite under favorable conditions. The results for classifiers
(TDVM) and (DSVM) were derived using the heuristic procedure
described in Section 4, whereas for SVM the LIBSVM library [27] was
employed, extending its standard version with the dynamic time
warping kernel. In order to perform the multicategory classification
of Jvowels, Pendigits and Robot, models (TDVM) and (DSVM) were
framed within the all-against-all scheme described in [13]. More-
over, in applying all the classifiers each categorical attribute in
Telecom and Electronics was converted into a numerical explanatory
variable. This was achieved by replacing each categorical value with
the conditional probability of observing that value given the positive
class. The rational behind this encoding is to replace each category
with a value that takes into account its individual relevance on the
target class.



Table 2
Classification accuracy (%) and 95% confidence intervals (%) on the temporal datasets.

Dataset Method

TDVM DSVM SVMLIN SVMSIG SVMRBF SVMDTW 1NNWDðWÞ

Jvowels 96.6 93.6 96.3 96.7 96.6 94.6 92.3 (9)

70.010 70.018 70.011 70.010 70.010 70.016 70.022

Pendigits 96.3 94.6 94.8 94.7 97.2 93.4 94.5 (1)

70.001 70.001 70.001 70.001 70.000 70.001 70.001

ECG 90.5 85.5 84.5 83.5 89.5 86.0 90.0 (1)

70.084 70.121 70.128 70.135 70.092 70.118 70.088

Telecom 95.2 92.4 86.3 86.2 88.3 84.3 86.2 (3)

70.007 70.011 70.019 70.019 70.017 70.022 70.019

Electronics 85.8 82.7 80.1 79.7 82.4 78.2 80.2 (2)

70.013 70.016 70.017 70.018 70.016 70.019 70.017

Robot

Failure 1 85.2 72.7 71.6 70.5 83.0 81.8 81.8 (3)

70.281 70.442 70.453 70.463 70.314 70.332 70.332

Failure 2 63.8 57.4 55.3 55.3 57.4 63.8 59.6 (3)

70.963 71.020 71.031 71.031 71.020 70.963 71.004

Failure 3 68.1 63.8 55.3 53.2 66.0 65.8 61.7 (1)

70.906 70.963 71.031 71.038 70.936 70.938 70.985

Failure 4 85.5 75.2 77.8 83.6 84.6 87.2 86.3 (3)

70.208 70.312 70.289 70.230 70.218 70.187 70.198

Failure 5 67.1 56.7 54.3 50.6 55.5 62.1 65.2 (2)

70.264 70.293 70.297 70.299 70.295 70.281 70.271

Table 3
Classification accuracy (%) by averaging over a fixed number of time periods.

Dataset Method

TDVM DSVM SVMLIN SVMSIG SVMRBF SVMDTW 1NNWD

Telecom 94.4 91.2 85.2 85.5 87.7 82.9 85.6

Electronics 85.1 81.8 79.3 79.1 81.9 77.7 79.4
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The performance of the competing classifiers was estimated
according to the size of each dataset. Due to the restricted number
of available examples, for ECG and the robot failure datasets 5-fold
cross-validation was applied. For Jvowels, Pendigits, Telecom and
Electronics we used instead 10-fold cross-validation. To the aim of
investigating the effect of the modeling parameters, different
settings were setup regarding the value of W, the weight factors
a;b; g; d and n appearing in the formulation of models (DSVM) and
(TDVM) and the kernel parameters in SVM methods. The most
promising values of the parameters were empirically found for
each classifier and for each training set by means of successive
refinements of a grid search. In particular, the parameter W took
its value in the range [1,10] with step 1. For discrete SVM
methods, models were generated by varying a, b, g, d and n in the
interval [0,1] with step 0.2. For SVM classifiers we considered
each combination of the regularization constant C¼{10i,
i¼�1,y,4} with the kernels parameters. Specifically, the scaling
and the shifting parameters of the sigmoid kernel ranged,
respectively, in the intervals [0.0001,1] and [�3,�1] with steps
of variable length; the RBF and the DTW kernel parameters were
varied, respectively, in the ranges [0.01,10] and [0.1,30] again
with variable grid steps. Finally, the classification accuracy and
the confidence interval were estimated as suggested in [28] on all
datasets.

The results presented in Table 2 indicate that the proposed
method has a great potential to perform accurate time series
classification. On most datasets considered in our tests, temporal
discrete SVM provided the highest rate of correct predictions,
leading to an increase in the accuracy ranging between 0.5% and
3.1%. The most significant improvement is achieved for
multivariate datasets. However, the performance exhibited on
ECG deserves attention too, since it shows that model (TDVM) can
lead to accurate predictions also for univariate temporal sequences.

It is worth to notice that the training and the classification
were quite fast for all datasets, requiring only a few seconds for
computing offline the warping distances, and then a time ranging
from seconds to less than a minute for applying the approximate
algorithm described in Section 4.

The general improvement in accuracy achieved by model
(TDVM) regards in the same way datasets containing fixed and
variable length time series, and therefore is not tied to the
rectangularization method based on the fixed cardinality warping
distance. However, the rectangularization technique proposed
seems to be in itself beneficial. To show this empirically, we
applied to Telecom and Electronics an alternative rectangularization
mechanism based on averaging over a fixed number (Tmin+Tmax)/2
of time periods. The improvement in accuracy achieved on the
same datasets rectangularized by the fixed cardinality warping
distance method ranged between 0.5% and 1.4%, consistently for
the different classifiers tested, as shown in Table 3.

Finally, Table 2 suggests that temporal discrete SVM represent
an improvement with respect to model (DSVM) when dealing
with the classification of multivariate time series.
6. Conclusions

In this paper we have proposed a new framework for the
classification of multivariate time series of variable length
composed by a two-phase procedure. In the first phase, time
series are converted into sequences of the same length by means
of a new rectangularization technique based on a fixed cardinality
version of the warping distance, which represents a robust and
versatile similarity measure between pairs of time series. In the
second phase, for addressing the classification task we have
developed a temporal variant of discrete SVM which incorporates
two regularization terms: the first term allows to control more
effectively the trade-off between accuracy and potential of
generalization, by including the margin of separation as a variable
into the optimization model. The second term is given by the sum
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of the warping distances between the pairs of time series assigned
to the same class, and is aimed at determining a separating
hyperplane which is optimal also with respect to time series
similarity. The effectiveness of the proposed framework has been
evaluated on four benchmark datasets and on two real-world
marketing datasets. On most datasets temporal discrete SVM
outperformed traditional SVM and the 1-nearest neighbor
classifier, leading to an increase in the accuracy ranging between
0.5% and 3.1%. Also the rectangularization procedure seemed to be
beneficial, since it provided an improvement in accuracy ranging
between 0.5% and 1.4% when compared with standard rectangu-
larization techniques based on averaging over a fixed number of
time periods. Future extensions of the proposed approach will be
pursued along two main directions, concerning, respectively, the
evaluation of alternative similarity measures among time series
and the use of nonlinear kernels in the temporal discrete SVM
classification model.
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