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Time series is a very popular type of data which exists in many domains. Clustering time series data has a
wide range of applications and has attracted researchers from a wide range of discipline. In this paper a
novel algorithm for shape based time series clustering is proposed. It can reduce the size of data, improve
the efficiency and not reduce the effects by using the principle of complex network. Firstly, one-nearest
neighbor network is built based on the similarity of time series objects. In this step, triangle distance is
used to measure the similarity. Of the neighbor network each node represents one time series object and
each link denotes neighbor relationship between nodes. Secondly, the nodes with high degrees are cho-
sen and used to cluster. In clustering process, dynamic time warping distance function and hierarchical
clustering algorithm are applied. Thirdly, some experiments are executed on synthetic and real data. The
results show that the proposed algorithm has good performance on efficiency and effectiveness.
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1. Introduction

Time series is a very popular type of data which exists in many
domains. Clustering time series data has a wide range of applica-
tions and has attracted researchers from a wide range of discipline.
For example, many researchers cluster the time series data which
come from brain activity (Golay et al., 1998; Wismüller et al.,
2002), commercial consumption (Košmelj & Batagelj, 1990), retail
pattern (Kumar, Patel, & Woo, 2002), gene expression (Möller-Le-
vet, Klawonn, Cho, & Wolkenhauer, 2003), earthquake (Shumway,
2003), financial data (Guan & Jiang, 2007), robot sensor data
(Ramoni, Sebastiani, & Cohen, 2000) and speaker verification (Tran
& Wagner, 2002) and so on. There are three main objectives in clus-
tering time series, each of which requires different approaches
(Bagnall & Janacek, 2005).

1.1. Type 1 objective: similarity in time

The first possible objective is to cluster together series that vary
in a similar way on each time step. For example, one may want to
cluster share prices of companies to discover which shares change
in price together. Fig. 1 shows two clusters in each of which two
time series change in a similar way on each time step.

1.2. Type 2 objective: similarity in shape

The second possible objective is to cluster series with common
shape features together. This may constitute identifying common
ll rights reserved.

: +86 10 62282039.
hang).
trends occurring at different times or similar sub patterns in the
data. For example, the stock analyst may be interested in grouping
shares that have exhibited similar patterns of change independent
of when they occurred. The two broad approaches to achieving
this objective are to either transform the data using techniques
such as dynamic time warping, or to develop specific algorithms
for matching subsequence patterns. Fig. 2 gives three clusters of
time series each of which has typical characteristics in shapes.

1.3. Type 3 objective: similarity in change

The third objective is to cluster series by the similarity in how
they vary from time step to time step. For example, a stock analyst
may wish to cluster together shares that tend to follow a rise in
share price with a fall the next day. The popular approach for this
type of objective is to assume some form of underlying model such
as a hidden Markov model or an ARMA process, fit a model to the
series and cluster based on similarity of fitted parameters. Fig. 3
shows two time series clusters. The left one produced by AR(2)
model is different from the right one produced by ARMA(2, 2).
Although the series belonging to same cluster have different
shapes, they vary in similar way on each time step which means
that each time point depends on the value of specified earlier time
steps in similar way.

In this paper a novel algorithm for shape based time series
clustering is proposed. It can reduce the size of data, improve the
efficiency and not reduce the effects by using the principle of com-
plex network. Firstly, one-nearest neighbor network is built based
on the similarity between any pair of time series. In this step,
triangle distance is used to measure the similarity. Of the neighbor
network each node represents one time series and each link
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Fig. 1. Two clusters of time series for similarity in time.

Fig. 2. Three clusters of time series each of which has same shape.
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denotes nearest neighbor relationship between nodes. Secondly,
the nodes with high number of neighbors are chosen as candidate
objects and used to cluster. In clustering process, dynamic time
warping distance function and hierarchical clustering algorithm
are applied to these chosen candidate objects. Some experiments
are executed on synthetic and real data. The results show that
the proposed algorithm has good performance on efficiency and
effects.

The rest of this paper is organized as follows. Background of the
underlying theory and a survey of previous works in this area are
given in Section 2. In Section 3 the key points of shape based time
series clustering and triangle similarity and dynamic time warping
measures are given. Also the experimental data used in this paper
are described. In Section 4 the process of building nearest neighbor
network and the algorithm of choosing candidates are proposed.
And the effects of choosing candidates are discussed. The hierarchi-
cal clustering method and the experimental results are discussed
in Section 5. The conclusions are presented in Section 6.
2. Literature

The two time series being compared are normally sampled at
the same interval, but their length might or might not be the same.
Clustering algorithms can work directly with raw data. However, it
is usual that the time series data are preprocessed before cluster-
ing. There are many methods can be used to transform the raw
data including principle component analysis (Gavrilov, Anguelov,
Indyk, & Motwani, 2000), piecewise aggregate approximation
(Yeh, Dai, & Chen, 2007), discrete Fourier transformation (Agrawal,
Faloutsos, & Swami, 1993; Janacek, Bagnall, & Powell, 2005),
Fig. 3. Two clusters of time series data. The left is produc
discrete wavelet transformation (Struzik & Siebes, 1999; Yin & Ga-
ber, 2008), clipping (Bagnall & Janacek, 2005; Bagnall, Ratanama-
hatana, Keogh, Lonardi, & Janacek, 2006). Then the transformed
data serve as the inputs to clustering algorithm. Usually transfor-
mation of raw data can improve the efficiency by reducing the
dimensions of data or improve the clustering effects by smoothing
the trend and giving prominence to the typical features.

One key component of clustering is the function used to mea-
sure the similarity between data being compared. In practices
and researches of clustering time series many measures were em-
ployed, such as Euclidean distance, Pearson’s correlation coeffi-
cient, short time series distance (Möller-Levet et al., 2003),
dynamic time warping (Hu, Ray, & Han, 2006; Yu, Dong, Chen,
Jiang, & Zeng, 2007), probability-based distance (Kumar et al.,
2002), KL distance (Dahlhaus, 1996) and J divergence (Shumway,
2003). In one survey of time series clustering (Liao, 2005), the for-
mulas of various measures were given.

A lot of algorithms have been developed to cluster different
types of time series data. In spirit they try to modify the existing
algorithms for clustering static data in such a way that time series
data can be handled or to convert time series data into the form of
the static data so that the existing algorithms for clustering static
data can be directly used. The popular clustering algorithms, gen-
erally also used in clustering time series data, include K-means
(Beringer & Hüllermeier, 2006; Lin, Vlachos, Keogh, & Gunopulos,
2004), hierarchical clustering, density-based clustering (Chandra-
kala & Sekhar, 2008) and model-based clustering. Among them
model-based clustering composes of polynomial (Bagnall & Jana-
cek, 2005), ARIMA (Corduas & Piccoloa, 2008; Kalpakis, Gada, &
Puttagunta, 2001), Hidden Markov models (Bicego, Murino, &
Figueiredo, 2003; Hu et al., 2006), Gaussian mixed models
ed by AR(2) and the right is produced by ARMA(2, 2).
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(Biernacki, Celeux, & Govaert, 2000), Markov chain (Ramoni et al.,
2000).

3. Notations and experimental data

3.1. Time series clustering

For concreteness, we define the data type of interest, time ser-
ies. Time series dataset U consists of n time series objects,
U ¼ fo1; o2; . . . ; ong. And each time series object is an ordered set
of t real values. The goal of clustering is to identify structure in
an unlabeled dataset by objectively organizing data into homoge-
neous groups where within-group-object similarity is minimized
and the between-group-object dissimilarity is maximized. In order
to improve performance on time series data, a lot of problems must
be taken into account including high dimensionality, very high fea-
ture correlation, and large amounts of noise. Importantly for shape
based time series clustering some of the various properties can be
often encountered, which include noise, amplitude scaling, offset
translation, longitudinal scaling, linear drift, discontinuities and
temporal drift. These properties are also mentioned and used by
other researchers in this domain and are generally accepted in
verifying the validation of distance measures and algorithms
(Agrawal, Lin, Sawhney, & Shim, 1995; Bagnall & Janacek, 2005;
Chu & Wong, 1999; Kalpakis et al., 2001; Keogh & Pazzani, 1998;
Man & Wong, 2001; Perng, Wang, Zhang, & Parker, 2000; Rafiei &
Mendelzon, 1997). For clarity these properties are illustrated in a
visual way (shown in Fig. 4) by reference to Keogh’s work (Keogh
& Pazzani, 1998) based on which we add the subfigure of temporal
drift.

3.2. Similarity/distance measures

The function used to measure the similarity or distance be-
tween two time series objects is one key component in the time
series clustering algorithm. In this paper, two measures are em-
ployed which are triangle similarity and dynamic time warping
(DTW) distance.

3.2.1. Triangle similarity
Let oi be a t-dimensional time series object, oi ¼ foi1; oi2; . . . ; oitg.

The standardized time series object boi ¼ fôi1; ôi2; . . . ; ôitg, where

ôij ¼
oijPt

k¼1o2
ik

� �1=2 ; j ¼ 1;2; . . . ; t: ð1Þ
drift. 

Noise A

Offset Translation Lo

Linear Drift D

Temporal Drift 

Fig. 4. Some of the difficulties encountered in d
The triangle similarity measure between oi and oj is defined as

dTðoiÞ ¼
Pt

k¼1oikojkPt
k¼1o2

ik

� �1=2 Pt
k¼1o2

jk

� �1=2 ¼
Xt

k¼1

ôikôjk: ð2Þ

Each time series object can be treated as a vector in t-dimen-
sional space. Triangle distance measure is the cosine of triangle be-
tween two vectors, so the range of value of triangle distance is
from�1 to 1. When the two vectors are overlapping and have same
directions, the value is 1 and two time series objects are most sim-
ilar to each other. Otherwise when the two vectors are overlapping
and have opposite directions and are most different to each other,
the value is �1. Triangle similarity measure can deal with noise,
amplitude scaling very well and deal with offset translation, linear
drift well in some situations (Zhang, Wu, Yang, Ou, & Lv, 2009).

3.2.2. Dynamic time warping distance (DTW)
DTW is a generalization of classical algorithms for comparing

discrete sequences to sequences of continuous values. Given two
time series, oi ¼ foi1; oi2; . . . ; oing and oj ¼ foj1; oj2; . . . ; ojmg, DTW
aligns the two series so that their differences is minimized. We
can get a n �m matrix where the (s, k) element of the matrix is
the distance d(ois, ojk) between two time points ois and ojk. The
Euclidean distance is used. A warping path, W ¼ w1;w1; . . . ;wK

where maxðm;nÞ 6 K 6 mþ n� 1, is a set of matrix elements that
satisfies three constraints: boundary condition, continuity and
monotonicity. The boundary condition constraint requires the
warping path to start and finish in diagonally opposite corner cells
of the matrix. That is w1 ¼ ð1;1Þ and wk ¼ ðm;nÞ. The continuity
constraint restricts the allowable steps to adjacent cells. The mono-
tonicity constraint forces the points in the warping path to be
monotonically spaced in time. The warping path that has the
minimum distance between the two series is of interest.
Mathematically,

dDTW ¼ min
XK

k¼1

wK=K

 !
: ð3Þ

Dynamic programming can be used to effectively find this path
by evaluating the following recurrence, which defines the cumula-
tive distance as the sum of the distance of the current element and
the minimum of the cumulative distance of the adjacent elements:

dcumðs; kÞ ¼ dðois; ojkÞ þminfdcumðs� 1; k� 1Þ;
dcumðs� 1; kÞ; dcumðs; k� 1Þg: ð4Þ
mplitude Scaling 

ngitudinal Scaling 

iscontinuities 

efining a distance measure for time series.



Fig. 5. Two examples of each class from CC dataset.
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The superiority of DTW over Euclidean distance has been dem-
onstrated by several authors (Aach & Church, 2001; Chu, Keogh,
Hart, & Pazzani, 2002; Vlachos, Gunopoulos, & Kollios, 2002; Yi &
Faloutsos, 2000). Keogh shows a classification experiment on time
series data, which verifies that classification error rate of Euclidean
distance is an order of magnitude higher than DTW’s (Keogh &
Ratanamahatana, 2005). DTW’s advantage is that it can deal with
temporal drift very well. In this point DTW is superior over Euclid-
ean distance and triangle similarity. However the performance of
DTW on very large database may be a limitation (Berndt & Clifford,
1994). Computation cost of DTW is much higher than Euclidean
distance and triangle similarity.
3.3. Experimental data

In our experiments, we use three datasets which are also used
by several other researchers in the same domain.

Control chart (CC) : This dataset was proposed in Alcock and
Manolopoulos (1999) to validate clustering techniques and used
in Geurts (2001) for classification. Each series is an order set of
sixty real values and classified into one of six possible classes. Each
series is produced by

aðo; tÞ ¼

mþ rs; if cðoÞ ¼ Normal

mþ rsþ asinð2pt=TÞ; if cðoÞ ¼ Cyclic

mþ rsþ gt; if cðoÞ ¼ Increasing

mþ rs� gt; if cðoÞ ¼ Decreasing

mþ rsþ kx; if cðoÞ ¼ Upward

mþ rs� kx; if cðoÞ ¼ Downward

8>>>>>>>><>>>>>>>>:
ð5Þ

Fig. 5 shows two examples of each class from which we can find
that these time series have such characteristics as shown in Fig. 4.

Cylinder–Bell–Funnel (CBF): This problem was first introduced in
Kadous (1999) and then used in Gonzalez and Diez (2000) for val-
Fig. 6. Two series of telecom customers’ daily calls in one month.
idation. Each series is separated into one of three classes: Cylinder
(C), Bell (B) and Funnel (F).

Each series is described by one temporal attribute given by

aðo; tÞ ¼
ð6þ gÞ � v½aþb�ðtÞ þ �ðtÞ; if cðoÞ ¼ C

ð6þ gÞ � v½aþb�ðtÞ � ðt � aÞ=ðb� aÞ þ �ðtÞ; if cðoÞ ¼ B

ð6þ gÞ � v½aþb�ðtÞ � ðb� tÞ=ðb� aÞ þ �ðtÞ; if cðoÞ ¼ F

8><>:
ð6Þ

where t 2 ½1;128� and v½aþb�ðtÞ ¼ 1 if a 6 t 6 b, 0 otherwise. In the
original problem, g and �ðtÞ are drawn from a standard normal dis-
tribution N(0, 1), a is an integer drawn uniformly from [16, 32] and
b � a is an integer drawn uniformly from [32, 96]. Each object is cre-
ated based on different parameters, which means that before one
object is created, all parameters including g, a, b � a must be ran-
domly redrawn according to their probability distributions. Then
this series can be created by formula. Fig. 2 shows two examples
of each class from which we can find that these time series have
such characteristics as shown in Fig. 4.

Telecom customers’ consumption data (TCCD): This dataset comes
from one mobile company in China mainland. Each series is com-
posed of 30 time points each of which denotes one customer’s daily
call counts in one month. There are 86,802 series in this dataset.
Not like CBF and CC datasets, the series of this dataset are not clus-
tered in advance, so it can not be used to verify the final clustering
results. Fig. 6 shows the series of two customers’ daily calls in one
month.

In the experiments CC and CBF are all synthetic datasets and
each series object in them belongs to one of several classes, so they
can be used to verify the clustering effects by comparing each ob-
ject’s class with its cluster.

4. One-nearest neighbor network

In order to reduce the size of data and improve the efficiency
but not reduce the effects, some ideas of complex network (Albert
& Barabási, 2002; Boccalettia, Latorab, Morenod, Chavezf, & Hwan-
ga, 2006; Watts, 2004) are borrowed to build one-nearest neighbor
network. The network is built based on the similarity between any
pair of time series, of which each node represents one time series
and each link denotes one-nearest neighbor relationship between
nodes. Based on some statistical properties of one-nearest net-
work, some series are selected as candidates for further clustering.
In this section, one-nearest neighbor network and its’ statistical
properties are defined and the process of selecting candidates is
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given. The following experiments verify that this process can re-
duce the size of data by approximate ten percent, but not reduce
the effects greatly.
4.1. One-nearest neighbor network and its degree distribution

4.1.1. Definitions
A weighted and directed graph GW = (N, L, W) consists of a set

N ¼ fn1;n2; . . . ;nNg of nodes, a set L ¼ fl1; l2; . . . ; lmg of links, and
a set of weights W ¼ fw1;w2; . . . ;wmg. Each of links is defined by
a couple of nodes i and j, and is denoted as lij which stands for a link
from i to j, and lij – lji. The degree ki of a node i is the number of
links incident with the node. Each of weights is a real number
and attached to one link. In a directed graph, the degree of the node
has two components: the number of outgoing links kout

i (referred to
as the out-degree of the node), and the number of ingoing links kin

i

(referred to as the in-degree of the node). The most basic topolog-
ical characterization of a graph can be contained in terms of the de-
gree distribution P(k), defined as the probability that a node chosen
uniformly at random has degree k or, equivalently, as the fraction
of nodes in the graph having degree k. Node strength si of a node i is
defined as

si ¼
X
j2N

wij ð7Þ

Neighbor network can be represented as a weighted and direc-
ted graph. In one-nearest neighbor network, each node represents
one time series and each link denotes one-nearest neighbor rela-
tionship between nodes. In other words lij denotes that node j is
the nearest neighbor of node i in terms of similarity defined in
Fig. 7. In-degree distributions of the neighbor networks. The left top figure describes th
describes the in-degree distribution of CC networks with different sizes. The bottom figu
nearest neighbors.
formula (2). The weight wij of link lij is defined as the similarity
measure between node i and node j, so wij 2 ½�1;1�. The out-degree
of any node is 1 and the in-degree can be different. The nodes with
high in-degree have more neighbors and locate in the local center
of the network.

4.1.2. Degree distribution of one-nearest neighbor network
Some statistical properties of one-nearest neighbor networks of

all experimental datasets, including degree distribution and corre-
lation between node strength and degree, are computed to under-
stand the networks. The size of CC dataset is specified by different
numbers from 500 to 9000 and the size of CBF dataset ranges from
300 to 9000. And each class of the dataset has the same number of
objects. The experimental results show that in all neighbor net-
works with different dataset size, the correlation between strength
and degree approaches to 1.

The in-degree distributions of one-nearest neighbor network of
all the three datasets are shown in Fig. 7. Note that all the figures
are drawn in logarithm style. It can be seen that for different sizes
of networks the in-degree follow the power-law distribution de-
scribed by

PðkÞ � k�a ð8Þ

where k is in-degree and a is referred as degree exponent. The
power-law distribution means that the in-degrees of the nodes for
all networks are highly right skewed, in other words, their distribu-
tion has a long right tail of values that are far above the mean. So a
little part of nodes has much bigger in-degree than other nodes and
has central roles in terms of similarity, which implies that except
for themselves they can also represent the typical characters of
e in-degree distribution of CBF networks with different sizes. The right top figure
re describes the in-degree distribution of TCCD networks with different number of
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their neighbors. For TTCD dataset, k-nearest neighbor networks (k,
number of nearest neighbors) with different k values are built and
the in-degree distributions are drawn and can be also found to fol-
low power-law distribution.

In order to further confirm the power-law distribution of in-de-
gree, some experiments are carried out. For CC dataset and CBF
dataset the degree exponent and R-square fit goodness are com-
puted. And for each specified size of network, 50 networks are built
based on formulas (5) and (6) and their statistical measures are
computed. In Fig. 8 the box chart of degree exponent and fitted
R-square for each network are given. The top two figures are for
CBF dataset. It can be seen that as the size of network increases,
the degree exponent increases firstly and become stable around
2.6 and its variance decreases. Except for some outliers of network
with size of 300, R-square of any network is above 0.9 which
Fig. 8. Degree exponents of neighbor networks. The top two figures are box charts of deg
different sizes. The middle two figures are for CC datasets. The bottom figures are for T

Fig. 9. The algorithm of c
means that power-law distribution is a good fit. CC networks’ de-
gree exponent approximately stabilizes at 3.0 and R-squares of
most networks are above 0.9.

In most applications of the real world, the number of objects is
so great that it is very time-spending to find the nearest neighbor.
The complexity of finding nearest neighbor globally is �ðn2Þ, n is
number of objects. In order to reduce the costs of finding nearest
neighbor, the objects can be firstly clustered into some clusters
by method of k-means. Number of clusters k is assigned byffiffiffiffiffiffiffiffiffiffiffi

n=2f
p

where f is number of scanning dataset in k-means process.
And then the task of finding nearest neighbor for each object is lim-
ited into its cluster, which reduces the searching area greatly. The
complexity is �ðn3=2Þ which is approved in Appendix A. Because the
results of k-means depend on the initial seeds, 50 different net-
works of TTCD are built with different initial seeds. We can see that
ree exponents and R-square fit goodness of degree distribution for CBF datasets with
CCD dataset with different number of neighbors.

hoosing candidates.



Fig. 10. Reduction rates and error rates of choosing candidate objects. The top two figures are for CBF dataset. The bottom figures are for CC dataset.
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as the number of neighbors increases, the degree exponent and R-
square for TTCD all decrease. Degree exponent ranges from 2.9 to
3.3 and R-square are all above 0.82.
4.2. Choosing candidates for clustering

4.2.1. Algorithm
Because in-degree follows the power-law distribution, some

nodes with bigger in-degree can be chosen as candidates who
can reflect the typical characters of their neighbors. So the task
of clustering the whole dataset is transformed to clustering the
candidates. There is no doubt that clustering candidates can reduce
the cost of computation. Of course we need to find out whether
clustering candidates will affect the effects greatly. The process
of choosing candidates is based on nearest neighbor’s order which
is defined as the distance in the nearest neighbor network. For
example, if series A is nearest neighbor of series B and series C is
nearest neighbor of series B, then B is first order nearest neighbor
of A, C is first order nearest neighbor of B and is second order near-
est neighbor of A. The algorithm of choosing candidates is shown in
Fig. 9. The chosen candidates are used as the inputs of further hier-
archical clustering. All neighbors of each candidate will belong to
the same cluster with the candidate.
Fig. 11. A sample of dendrogram representation for hierarchical clustering of data
objects {a, b, c, d, e}.
4.2.2. Analysis
Whether clustering candidates has effects on final clustering re-

sults can be evaluated from two aspects. One is the reduction rate
which is defined as ratio of the size of candidate set to the size of
dataset. Smaller it is, smaller the computation costs of hierarchical
clustering are. The other is the error rate which is defined as ratio
of number of misclassified objects, which belong to neighbors set
NS (described in Fig. 9) and has different class with their candidate,
to the size of dataset. If the error rate is high, the final clustering
results are poor.

Fig. 10 shows the results of choosing candidates for CC and CBF
datasets. It can be seen that the reduction rate decreases greatly
from first order to second order and not distinctly from third order
to fourth order. For CBF dataset, the reduction rate is below 0.1
when the maximum order is assigned with three or four, which
means that the size of candidate set is less than 10% of whole data-
set size. For CC dataset, the reduction rate is about 0.15. For all
datasets in some order, the changes of error rates are not distinct
when the size of dataset is large enough. Once the number of
objects is greater than 3000, the error rate of CBF dataset is below
0.01. For CC dataset, the error rates of all experiments are below
0.005. So it can be concluded that the method of clustering candi-
dates is effective.
5. Hierarchical clustering

5.1. Method

After the candidates are chosen, hierarchical clustering method
is applied to them. A hierarchical clustering method works by
grouping data objects into a tree of clusters. There are generally
two types of hierarchical clustering methods: agglomerative and
divisive. Agglomerative method starts by placing each object in
its own cluster and then merges these atomic clusters into larger
and larger clusters, until all objects are in a single cluster or until
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certain termination conditions such as the desired number of clus-
ters are satisfied. Divisive method does just the reverse of agglom-
erative hierarchical clustering by starting with all objects in one
cluster. It subdivides the cluster into smaller and smaller pieces
(Han & Kamber, 2006). A tree structure called a dendrogram is
commonly used to represent the process of hierarchical clustering.
It shows how objects are grouped together step by step. Fig. 11
shows a dendrogram for five objects. In this paper, agglomerative
method is adopted to group the candidate objects into clusters
and any time series object in the neighbor set will also belong to
the cluster of its neighbor candidate.

The distance between any one pair of single objects are com-
puted by dynamic time warping defined in formula (3). During
the agglomerative process, the distance between one pair of clus-
ters, C and C0, is measured based on intra-cluster distance function
given by
Fig. 13. The box plot of error rates of clustering results. The to

Fig. 12. The ratio of complexity of clustering candidates on clustering whole
dataset directly.
dintra ¼
1
jCkC0j

X
o2C

X
o02C0

dDTWðo; o0Þ; ð9Þ

where dDTw(o, o0) refers to dynamic time warping distance between
time series objects o and o0, |C| means the number of objects which
belong to cluster C.

5.2. Complexity

Suppose that time series dataset consists of n time series objects
and each object is an ordered set of t real values. If all objects are
clustered directly, the number of computation steps of DTW dis-
tance between any two objects is t(t � 1)/2 and the computation
complexity of hierarchical of clustering is n(n � 1)/2, so the total
cost is

Cdirect ¼
nðn� 1Þ

2
� tðt � 1Þ

2
: ð10Þ

Suppose that selecting candidates can reduce the size by the
reduction rate c. Then the total computation complexity of hierar-
chical clustering of candidates is cnðcn� 1Þ=2 � tðt � 1Þ=2 and the
complexity of selecting candidates is (2f)1/2n3/2 � n/2 (shown in
Appendix A) where f denotes the number of scans of dataset. The
total complexity of our method is

Ccandidate ¼
cnðcn� 1Þ

2
� tðt � 1Þ

2
þ ½ð2f Þ1=2n3=2 � n=2�t: ð11Þ

Though generally f � n, here let f = n/8 and we can get

Ccanditate ¼
cnðcn� 1Þ

2
� tðt � 1Þ

2
þ nðn� 1Þ

2
t

<
c2nðn� 1Þ

2
� tðt � 1Þ

2
þ nðn� 1Þ

2
t: ð12Þ
p row is for CBF dataset and the bottom is for CC dataset.
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So the ratio of complexity of our method on complexity of clus-
tering whole dataset directly is

Ratio ¼ Ccandidate=Cdirect ¼ c2 þ 2
t � 1

: ð13Þ

Based on formula (13), we analyze the change of ratio with
number of time points and reduction rate in a visual way as shown
in Fig. 12. It can be seen that ratio decreases with the increase of
number of points, which illustrates that our method become more
effective when time series is longer. Ratio is positively correlated
with reduction rate c and decreases rapidly as reduction rate
decreases.

5.3. Clustering results

The class of one cluster is defined as what the largest portion of
objects in this cluster belong to. For example if in one cluster the
largest portion of objects belong to class ‘C’, then the cluster’s class
is ‘C’. If one object’s class is inconsistent with its cluster’s class,
then it is called as misclassified object. The error rate of clustering
results is defined as ratio of number of misclassified objects in all
clusters to the size of dataset. In this paper the clustering effects
are evaluated through error rate. The final clustering results are
shown in Fig. 13. The top figures are for CBF dataset and the bottom
figures are for CC dataset. The left ones are under condition that or-
der k of choosing candidates equals to 3 and the right ones are that
order equals to 4. For each value of parameters (number of objects
and order) 50 different datasets are produced and clustered. From
the results we can see that error rate decreases as number of ob-
jects decreases. In this case the error rates of different orders are
not distinct. Once number of objects in CBF dataset is greater than
2700, average of error rates is less than 2%. For CC dataset all the
error rates are less than 1%. The clustering effects of our algorithm
are acceptable.

6. Conclusion

In this paper we propose a novel algorithm for shape based time
series clustering. It can select representative candidate objects
from the time series dataset based on the objects’ degree in their
neighbor network. The neighbor network is built based on the sim-
ilarity of time series objects which is measured by triangle dis-
tance. Of the neighbor network each node represents one time
series object and each link denotes neighbor relationship between
nodes. Once the candidates are chosen, the task of clustering all ob-
jects in dataset is transferred to cluster the candidates, which can
reduce the size of data, improve the efficiency and not reduce
the effects. In clustering process, dynamic time warping distance
function and hierarchical clustering algorithm are applied. Some
experiments are executed on synthetic and real data. The results
show that the proposed algorithm has good performance on effi-
ciency and effectiveness.
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Appendix A. The complexity of finding nearest neighbor

Suppose that there are n time series objects. In order to find the
nearest neighbor, the distance of any pair of series must be com-
puted, so the complexity is given by
nðn� 1Þ=2:

The k-means method is applied to these objects and groups
them into k clusters. Suppose that during the clustering, f (in most
cases f 	 n) scans of dataset are carried out and each cluster has
the same number of objects. The complexity is given by

n=kðn=k� 1Þ
2

kþ nkf :

It can be easily verified that the above formula is minimized
when k ¼

ffiffiffiffiffiffiffiffiffiffiffi
n=2f

p
. Replacing formula with k ¼

ffiffiffiffiffiffiffiffiffiffiffi
n=2f

p
, the complex-

ity is given by

ð2f Þ1=2n3=2 � n=2:
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